Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Lanthanite-(Nd), $\mathrm{Nd}_{2}\left(\mathrm{CO}_{3}\right)_{3} \cdot \mathbf{8 H} \mathrm{H}_{2} \mathrm{O}$

Shaunna M. Morrison, ${ }^{\text {a }}{ }^{*}$ Marcelo B. Andrade, ${ }^{\text {a }}$
Michelle D. Wenz, ${ }^{\text {a }}$ Kenneth J. Domanik ${ }^{\text {b }}$ and Robert T. Downs ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Geosciences, University of Arizona, 1040 E. 4th Street, Tucson, Arizona 85721-0077, USA, and ${ }^{\mathbf{b}}$ Lunar and Planetary Laboratory, University of Arizona, 1629 E. University Blvd, Tucson, AZ. 85721-0092, USA
Correspondence e-mail: shaunnamm@email.arizona.edu

Received 16 January 2013; accepted 30 January 2013

Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{O}-\mathrm{C})=0.007 \AA$; Hatom completeness $0 \% ; R$ factor $=0.020 ; w R$ factor $=0.057$; data-to-parameter ratio $=15.4$.

Lanthanite-(Nd), ideally $\mathrm{Nd}_{2}\left(\mathrm{CO}_{3}\right)_{3} \cdot 8 \mathrm{H}_{2} \mathrm{O}$ [dineodymium(III) tricarbonate octahydrate], is a member of the lanthanite mineral group characterized by the general formula $R E E_{2}\left(\mathrm{CO}_{3}\right)_{3} \cdot 8 \mathrm{H}_{2} \mathrm{O}$, where $R E E$ is a 10 -coordinated rare earth element. Based on single-crystal X-ray diffraction of a natural sample from Mitsukoshi, Hizen-cho, Karatsu City, Saga Prefecture, Japan, this study presents the first structure determination of lanthanite-(Nd). Its structure is very similar to that of other members of the lanthanite group. It is composed of infinite sheets made up of corner- and edgesharing of two NdO_{10}-polyhedra (both with site symmetry ..2) and two carbonate triangles (site symmetries .. 2 and 1) parallel to the $a b$ plane, and stacked perpendicular to c. These layers are linked to one another only through hydrogen bonding involving the water molecules.

Related literature

For background to the lanthanite mineral group, see: Berzelius (1825); Blake (1853); Coutinho (1955); Shinn \& Eick (1968); Ansell et al. (1976); Dal Negro et al. (1977); Cesbron et al. (1979); Roberts et al. (1980); Fujimori (1981); Svisero \& Mascarenhas (1981); Nagashima et al. (1986); Atencio et al. (1989); Coimbra et al. (1989); Graham et al. (2007). For information on dawsonite, see: Corazza et al. (1977). For details of rigid-body motion, see: Downs et al. (1992). For resources for bond-valence calculations, see: Brese \& O'Keeffe (1991).

Experimental

```
Crystal data
\(\mathrm{Nd}_{2}\left(\mathrm{CO}_{3}\right)_{3} \cdot 8 \mathrm{H}_{2} \mathrm{O}\)
\(M_{r}=612.64\)
Orthorhombic, Pccn
\(a=8.9391\) (4) A
```

```
\[
\begin{aligned}
& b=9.4694 \text { (4) } \AA \\
& c=16.9374 \text { (8) A } \\
& V=1433.72(11) \AA^{3} \\
& Z=4
\end{aligned}
\]
```


Mo $K \alpha$ radiation

$\mu=7.25 \mathrm{~mm}^{-1}$
Data collection
Bruker APEXII CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2005)

$$
T_{\min }=0.325, T_{\max }=0.869
$$

$T=296 \mathrm{~K}$
$0.20 \times 0.18 \times 0.02 \mathrm{~mm}$

9235 measured reflections 1570 independent reflections 1373 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.018$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.020$
102 parameters H -atom parameters not refined $\Delta \rho_{\text {max }}=0.81 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.59 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry (\AA).

$D-\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$	$D \cdots A$
OW1 . . O1	2.645 (4)	OW3 \cdots OW1 ${ }^{\text {1V }}$	2.795 (4)
OW1 . ${ }^{\text {OW }} 1^{\text {i }}$	2.772 (5)	OW3...O5	2.928 (4)
OW1 . ${ }^{\text {O }}$ W $4^{\text {ii }}$	2.792 (5)	OW4 -OW1 ${ }^{\text {vii }}$	2.994 (6)
OW1 . OW $33^{\text {iii }}$	2.795 (4)	OW4 \cdots OW1 ${ }^{\text {vii }}$	2.792 (5)
$\mathrm{OW} 2 \cdots \mathrm{O} 1^{\text {iv }}$	2.645 (3)	OW4 \cdots OW2 ${ }^{1}$	2.833 (5)
OW2 \cdots OW $2^{\text {i }}$	2.786 (5)	OW4 \cdots OW4 ${ }^{\text {viii }}$	2.909 (9)
OW2 \cdots O 5	2.815 (4)	OW4 \cdots OW2 ${ }^{1}$	3.231 (6)
$\mathrm{O} W 2 \cdots \mathrm{OW} 4^{\text {i }}$	2.833 (5)		
$\mathrm{OW} 3 \cdots \mathrm{O} 2^{\text {v }}$	2.626 (5)		

Symmetry codes: (i) $-x+\frac{1}{2},-y+\frac{1}{2}, z$; (ii) $-x+\frac{1}{2}, y, z-\frac{1}{2}$; (iii) $x+\frac{1}{2},-y+1,-z+\frac{1}{2}$; (iv) $x-\frac{1}{2},-y+1,-z+\frac{1}{2}$; (v) $x,-y+\frac{3}{2}, z+\frac{1}{2}$; (vi) $\quad-x+\frac{1}{2},-y+\frac{3}{2}, z ; \quad$ (vii) $-x+\frac{1}{2}, y, z+\frac{1}{2} ;$ (viii) $-x+1,-y+1,-z+1$.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XtalDraw (Downs \& Hall-Wallace, 2003); software used to prepare material for publication: publCIF (Westrip, 2010).

The authors gratefully acknowledge Marcus Origlieri for providing the lanthanite-(Nd) sample to the RRUFF Project. Funding support of this study was given by the Arizona Science Foundation, the Brazilian government (CNPq 202469/ 2011-5) and NASA NNX11AP82A, Mars Science Laboratory Investigations. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Aeronautics and Space Administration.

[^0]
References

Ansell, H. G., Pringle, G. J. \& Roberts, A. C. (1976). Geol. Sur. Can. 76-1B, 353-355.
Atencio, D., Bevins, R. E., Fleischer, M., Williams, C. T. \& Williams, P. A. (1989). Mineral. Mag. 53, 639-642.

Berzelius, J. (1825). Taschenbuch für die gesamte Mineralogie mit Hinsicht auf die neuesten Entdeckungen, 19, 193-218.
Blake, W. P. (1853). Am. J. Sci. 16, 228-230.
Brese, N. E. \& O’Keeffe, M. (1991). Acta Cryst. B47, 192-197.
Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

inorganic compounds

Cesbron, F., Sichère, M. C., Vachey, H., Cassedanne, J. P. \& Cassedanne, J. O. (1979). Bull. Soc. Fr. Minéral. Cristallogr. 102, 342-347.

Coimbra, A. M., Coutinho, J. M. V., Atencio, D. \& Iwanuchi, W. (1989). Can. Mineral. 27, 119-123.
Corazza, E., Sabelli, C. \& Vannucci, S. (1977). Neues Jahrb. Mineral. Monatsh. pp. 381-397.
Coutinho, J. M. V. (1955). Bol. Fac. Fil. Ciênc. Letr. USP, 186, 119-126.
Dal Negro, A., Rossi, G. \& Tazzoli, V. (1977). Am. Mineral. 62, 142-146.
Downs, R. T., Gibbs, G. V., Bartelmehs, K. L. \& Boisen, M. B. (1992). Am. Mineral. 77, 751-757.
Downs, R. T. \& Hall-Wallace, M. (2003). Am. Mineral. 88, 247-250.
Fujimori, K. (1981). An. Acad. Bras. Ciênc. 53, 147-152.

Graham, I. T., Pogson, R. E., Colchester, D. M., Hergt, J., Martin, R. \& Williams, P. A. (2007). Can. Mineral. 45, 1389-1396.
Nagashima, K., Miyawaki, R., Takase, J., Nakai, I., Sakurai, K., Matsubara, S., Kato, A. \& Iwano, S. (1986). Am. Mineral. 71, 1028-1033.
Roberts, A. C., Chao, G. Y. \& Cesbron, F. (1980). Geol. Sur. Can. 80-1C, 141142.

Sheldrick, G. M. (2005). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Shinn, D. B. \& Eick, H. A. (1968). Inorg. Chem. 7, 1340-1345.
Svisero, D. P. \& Mascarenhas, Y. (1981). Atas do 3° Simp. Reg. Geol., Núcleo S. P. 1, 295-304.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Lanthanite-(Nd), $\mathrm{Nd}_{2}\left(\mathrm{CO}_{3}\right)_{3} \cdot \mathbf{8 H} \mathbf{2} \mathbf{O}$

Shaunna M. Morrison, Marcelo B. Andrade, Michelle D. Wenz, Kenneth J. Domanik and Robert T. Downs

S1. Comment

Crystals of the lanthanite group minerals exhibit a thin, platy habit and are characterized by the general formula $R E E_{2}\left(\mathrm{CO}_{3}\right)_{3} \cdot 8 \mathrm{H}_{2} \mathrm{O}$, where $R E E$ is a 10 -coordinated rare earth element. The group consists of lanthanite-(La), lanthanite-(Ce) and lanthanite-(Nd). The first of these minerals was found by Berzelius (1825) during one of his excursions to Bastnäs, Västmanland, Sweden, where he studied the local minerals and formulated the fundamentals of modern chemistry. Over 150 years later, Dal Negro et al. (1977) refined the crystal structure of the Bastnäs lanthanite and reported it in the non-standard setting Pbnb of space group No. 56. The chemistry of a different sample from this locality was later determined to be dominated by Ce (Atencio et al., 1989). Of the lanthanite group minerals, the structure of lanthanite-(Ce) is the only one previously determined from a natural sample. However, Shinn \& Eick (1968) synthesized lanthanite-(La) and performed a refinement in the standard setting Pccn of space group No. 56.
Lanthanite-(Nd) from Bethlehem, Pennsylvania, US, was first described by Blake (1853), although it was not possible to discriminate the Nd-dominance at that time. It was not until Atencio et al. (1989) analyzed a Bethlehem sample that it was found to be Nd-rich. Lanthanite- (Nd) has since been reported from other localities, including Curitiba, Brazil (Coutinho, 1955; Ansell et al., 1976; Cesbron et al., 1979; Roberts et al., 1980; Fujimori, 1981; Svisero \& Mascarenhas, 1981); Saga Prefecture, Japan (Nagashima et al., 1986); Santa Isabel, São Paulo, Brazil (Coimbra et al., 1989); and Whitianga, Coromandel Peninsula, New Zealand (Graham et al., 2007). With the exception of those found in Whitianga, all lanthanite-(Nd) samples from these localities, including the one used in this study, exhibit a predominance of Nd with sub-equal La and a notable depletion of Ce . In reference to this phenomenon, Atencio et al. (1989) stated that lanthanite minerals comprise two distinct groups: one in which the proportions of La, Ce and Nd are similar and another in which La and Nd are similar in abundance while Ce is severely depleted or entirely absent. This trend presumably stems from differences in formational conditions, but the exact mechanism (s) remain (s) unclear.

Many of the studies referenced above reported lanthanite-(Nd) unit-cell parameters, but none reported the crystal structure. This study presents the first crystal structure refinement of lanthanite-(Nd). In the course of identifying minerals for the RRUFF project (http://rruff.info), we found an un-twinned lanthanite-(Nd) sample from Mitsukoshi, Hizen-cho, Karatsu City, Saga Prefecture, Japan and performed single-crystal X-ray diffraction.
The general structure feature of lanthanite- (Nd) is that of infinite sheets of corner- and edge-sharing $\mathrm{NdO}_{10^{-}}$and carbonate-polyhedra (Fig. 1) parallel to the $a b$ plane, and stacked perpendicular to c. The layers are linked to one another only by hydrogen bonding between water molecules (Fig. 2). This accounts for the micaceous cleavage of the lanthanite minerals (Fig. 3) (Dal Negro et al., 1977). There are two distinct Nd-sites (Nd1 and Nd2 at Wyckoff positions $4 c$ and 4 d), as well as two C -sites (C 1 and C 2 at Wyckoff positions $4 d$ and $8 e$). Nd 1 and Nd 2 share an edge (O 3 and O 4) in the a-direction, forming a chain. The chains are linked in the b-direction by NdO_{10} polyhedra sharing a corner (O5) and
sharing edges with the C 2 carbonate group. Nd 1 is bonded to two water molecules (OW1 and OW2) while Nd 2 is bonded to one (OW3) that protrude from the primary sheet in the c-direction. The C 1 carbonate group also projects from the sheet along c. According to bond valence calculations (Brese \& O'Keeffe, 1991), without accounting for hydrogen bonding, each O -atom of the C 1 carbonate group is under-bonded, with bond valence sums of 1.64 and 1.47 bond valence units for O 1 and O 2 , respectively. The two O 1 atoms are bonded only to Nd 2 and C 1 , resulting in an underbonding that is satisfied by hydrogen bonding as an acceptor of OW1 and OW2 (Table 1). The apex O-atom, O2, is not bonded to any cation other than C 1 and therefore has much larger thermal displacement parameters and a shorter bond length (1.243 (8) \AA) than usually found in carbonate groups. The $\mathrm{C} 1-\mathrm{O} 2$ bond is close to satisfying the rigid-body criteria of equal displacement amplitudes of C 1 and O 2 along the $\mathrm{C} 1-\mathrm{O} 2$ bond direction. The bond length, corrected for rigid-body motion is $1.268 \AA$ (Downs et al., 1992). O2 is also the acceptor of an hydrogen bond from the OW3 atom of the adjacent sheet, thus connecting the two sheets. There are not many minerals with dangling O atoms in CO_{3} groups, but these features are also observed in the crystal structures of isotypic lanthanite-(La) (Shinn \& Eick, 1968), lanthanite-(Ce) (Dal Negro et al., 1977) and in dawsonite, $\mathrm{NaAlCO}_{3}(\mathrm{OH})_{2}$ (Corazza et al., 1977). The last water molecule, OW4, is not bonded to any cation, but instead is situated between the OW1 of a given polyhedral layer and OW2 of the adjacent layer, linking the two layers together through hydrogen bonds.

S2. Experimental

The lanthanite-(Nd) specimen used in this study was from Mitsukoshi, Hizen-cho, Karatsu City, Saga Prefecture, Japan, and is in the collection of the RRUFF project (deposition No. R060993; http://rruff.info). The experimental empirical formula, $\left(\mathrm{Nd}_{0.95} \mathrm{La}_{0.61} \mathrm{Pr}_{0.17} \mathrm{Sm}_{0.12} \mathrm{Gd}_{0.08} \mathrm{Y}_{0.04} \mathrm{Eu}_{0.03}\right)_{\Sigma=2}\left(\mathrm{CO}_{3}\right)_{3} \cdot 7.97 \mathrm{H}_{2} \mathrm{O}$, was based on 17 O atoms and was determined from data of a CAMECA SX100 electron microprobe at the conditions of $15 \mathrm{keV}, 10 \mathrm{nA}$, and a beam size of $20 \mu \mathrm{~m}$. An average of 23 analysis points yielded (wt. \%): $\mathrm{H}_{2} \mathrm{O} 23.50$ (by difference), $\mathrm{CO}_{2} 21.60, \mathrm{Y}_{2} \mathrm{O}_{3} 0.70, \mathrm{La}_{2} \mathrm{O}_{3} 16.32, \mathrm{Pr}_{2} \mathrm{O}_{3} 4.56$, $\mathrm{Nd}_{2} \mathrm{O}_{3}$ 26.06, $\mathrm{Sm}_{2} \mathrm{O}_{3} 3.49, \mathrm{Eu}_{2} \mathrm{O}_{3} 0.87, \mathrm{Gd}_{2} \mathrm{O}_{3} 2.40, \mathrm{~Tb}_{2} \mathrm{O}_{3} 0.12, \mathrm{Dy}_{2} \mathrm{O}_{3} 0.45$.

S3. Refinement

Due to similar X-ray scattering lengths, all rare earth elements were treated as Nd. The highest residual peak in the difference Fourier maps was located at $(1 / 4,3 / 4,0.3413), 1.03 \AA$ from $N d 2$, and the deepest hole at $(0.2515,0.8358$, 0.2813), $0.81 \AA$ from Nd2. H -atoms from water molecules could not be assigned reliably and were excluded from refinement.

Figure 1
Looking down on a sheet of the lanthanite-($\mathrm{Nd)}$ structure. NdO_{10} polyhedra are represented in blue and carbonate triangles are represented in green.

Figure 2
The crystal structure of lanthanite-(Nd) represented with displacement ellipsoids at the 99% probability level. Blue, green, red and cyan represent $\mathrm{Nd}, \mathrm{C}, \mathrm{O}$ atoms and $\mathrm{H}_{2} \mathrm{O}$ molecules, respectively.

Figure 3
Photograph of the lanthanite-(Nd) specimen analyzed in this study, illustrating its platy habit.

Dineodymium(III) tricarbonate octahydrate

Crystal data

$\mathrm{Nd}_{2}\left(\mathrm{CO}_{3}\right)_{3} \cdot 8 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=612.64$
Orthorhombic, Pccn
Hall symbol: -P 2ab 2ac
$a=8.9391$ (4) \AA
$b=9.4694$ (4) \AA
$c=16.9374(8) \AA$
$V=1433.72(11) \AA^{3}$
$Z=4$

Data collection

Bruker APEXII CCD area-detector

 diffractometerRadiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scan
Absorption correction: multi-scan
(SADABS; Sheldrick, 2005)
$T_{\text {min }}=0.325, T_{\text {max }}=0.869$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.020$
$w R\left(F^{2}\right)=0.057$
$S=1.12$
1570 reflections
102 parameters
0 restraints

$$
\begin{aligned}
& F(000)=1160 \\
& D_{\mathrm{x}}=2.838 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } \mathrm{K} \mathrm{\alpha} \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 6318 \text { reflections } \\
& \theta=2.3-27.5^{\circ} \\
& \mu=7.25 \mathrm{~mm}^{-1} \\
& T=296 \mathrm{~K} \\
& \text { Platy, pink } \\
& 0.20 \times 0.18 \times 0.02 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
& 9235 \text { measured reflections } \\
& 1570 \text { independent reflections } \\
& 1373 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.018 \\
& \theta_{\max }=27.5^{\circ}, \theta_{\min }=3.2^{\circ} \\
& h=-11 \rightarrow 11 \\
& k==-10 \rightarrow 11 \\
& l=-21 \rightarrow 19
\end{aligned}
$$

Primary atom site location: structure-invariant

 direct methodsSecondary atom site location: difference Fourier map
H -atom parameters not refined

$$
w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0225 P)^{2}+5.4801 P\right]
$$

$$
\text { where } P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3
$$

$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.81 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.59 \mathrm{e}^{-3}{ }^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Nd1	0.2500	0.2500	$0.250082(15)$	$0.01450(9)$
Nd2	0.2500	0.7500	$0.280450(15)$	$0.01381(9)$
C1	0.2500	0.7500	$0.1061(3)$	$0.0211(11)$
C2	$0.4597(4)$	$0.4972(3)$	$0.28322(19)$	$0.0142(6)$
O1	$0.3229(3)$	$0.6575(3)$	$0.14676(14)$	$0.0181(5)$

O2	0.2500	0.7500	$0.0327(3)$	$0.069(2)$
O3	$0.0234(3)$	$0.3837(3)$	$0.20815(16)$	$0.0210(5)$
O4	$0.0234(3)$	$0.6160(3)$	$0.23732(16)$	$0.0216(5)$
O5	$0.3158(3)$	$0.4931(3)$	$0.29412(15)$	$0.0192(5)$
OW1	$0.3170(3)$	$0.3820(3)$	$0.12154(16)$	$0.0232(5)$
OW2	$0.1140(3)$	$0.3219(3)$	$0.37844(16)$	$0.0261(6)$
OW3	$0.1241(3)$	$0.6457(3)$	$0.40530(17)$	$0.0343(7)$
OW4	$0.3878(6)$	$0.3889(5)$	$0.4972(3)$	$0.0749(15)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Nd1	$0.01417(13)$	$0.01111(16)$	$0.01822(16)$	$0.00172(9)$	0.000	0.000
Nd2	$0.01354(13)$	$0.01037(16)$	$0.01752(16)$	$-0.00126(9)$	0.000	0.000
C1	$0.018(2)$	$0.022(3)$	$0.023(3)$	$0.003(2)$	0.000	0.000
C2	$0.0165(15)$	$0.0119(17)$	$0.0143(14)$	$0.0004(12)$	$-0.0013(12)$	$0.0014(12)$
O1	$0.0181(11)$	$0.0150(12)$	$0.0212(12)$	$0.0022(9)$	$-0.0017(9)$	$-0.0018(10)$
O2	$0.095(5)$	$0.094(5)$	$0.017(2)$	$0.070(4)$	0.000	0.000
O3	$0.0224(12)$	$0.0121(13)$	$0.0284(13)$	$0.0055(10)$	$-0.0016(10)$	$0.0001(10)$
O4	$0.0188(11)$	$0.0131(14)$	$0.0329(14)$	$-0.0039(10)$	$-0.0022(10)$	$-0.0029(10)$
O5	$0.0128(11)$	$0.0165(13)$	$0.0284(13)$	$0.0006(9)$	$0.0027(10)$	$0.0008(10)$
OW1	$0.0280(13)$	$0.0159(13)$	$0.0255(13)$	$-0.0007(11)$	$0.0012(11)$	$-0.0012(10)$
OW2	$0.0171(12)$	$0.0357(17)$	$0.0254(13)$	$-0.0010(11)$	$0.0007(10)$	$0.0006(12)$
OW3	$0.0303(15)$	$0.050(2)$	$0.0228(13)$	$-0.0153(14)$	$0.0008(11)$	$-0.0011(13)$
OW4	$0.089(3)$	$0.077(3)$	$0.059(3)$	$-0.028(3)$	$0.035(2)$	$-0.029(2)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

Nd1-O5	2.491 (2)	Nd2-O5	2.513 (2)
Nd1-O5 ${ }^{\text {i }}$	2.491 (2)	$\mathrm{Nd} 2-\mathrm{Ol}^{\text {iv }}$	2.514 (2)
Nd1-O3 ${ }^{\text {i }}$	2.492 (2)	$\mathrm{Nd} 2-\mathrm{O} 1$	2.514 (2)
Nd1-O3	2.492 (2)	Nd2-OW3 ${ }^{\text {iv }}$	2.591 (3)
Nd1-OW1 ${ }^{\text {i }}$	2.581 (3)	Nd2-OW3	2.591 (3)
Nd1-OW1	2.581 (3)	$\mathrm{Nd} 2-\mathrm{O} 3{ }^{\text {ii }}$	2.759 (3)
Nd1-OW2	2.582 (3)	$\mathrm{Nd} 2-\mathrm{O} 3^{\text {v }}$	2.759 (3)
Nd1-OW2 ${ }^{\text {i }}$	2.582 (3)	Nd2-C1	2.953 (6)
$\mathrm{Nd} 1-\mathrm{O} 4{ }^{\text {ii }}$	2.762 (3)	$\mathrm{Nd} 2-\mathrm{C} 2{ }^{\text {iv }}$	3.040 (3)
$\mathrm{Nd} 1-\mathrm{O} 4{ }^{\text {iii }}$	2.762 (3)	$\mathrm{C} 1-\mathrm{O} 2$	1.243 (8)
Nd1-C2	3.051 (3)	C1-O1	1.291 (4)
Nd1- $\mathrm{C}^{\text {i }}$	3.051 (3)	$\mathrm{C} 1-\mathrm{O} 1^{\text {iv }}$	1.291 (4)
$\mathrm{Nd} 2-\mathrm{O} 4$	2.499 (3)	$\mathrm{C} 2-\mathrm{O} 4{ }^{\text {ii }}$	1.263 (4)
$\mathrm{Nd} 2-\mathrm{O} 4{ }^{\text {iv }}$	2.499 (3)	$\mathrm{C} 2-\mathrm{O}^{\text {ii }}$	1.272 (4)
$\mathrm{Nd} 2-\mathrm{O} 5^{\text {iv }}$	2.513 (2)	C2-O5	1.300 (4)
$\mathrm{O} 5-\mathrm{Nd} 1-\mathrm{O} 5^{\mathrm{i}}$	145.15 (12)	$\mathrm{O} 4{ }^{\text {iv }}-\mathrm{Nd} 2-\mathrm{O} 5$	109.18 (8)
$\mathrm{O} 5-\mathrm{Nd} 1-\mathrm{O}^{3}$	111.28 (8)	$\mathrm{O} 5^{\mathrm{iv}}-\mathrm{Nd} 2-\mathrm{O} 5$	169.43 (12)
$\mathrm{O} 5-\mathrm{Nd} 1-\mathrm{O}^{\mathrm{i}}$	78.92 (8)	$\mathrm{O} 4-\mathrm{Nd} 2-\mathrm{O}^{\text {iv }}$	72.75 (8)
$\mathrm{O} 5-\mathrm{Nd} 1-\mathrm{O} 3$	78.92 (8)	$\mathrm{O} 4{ }^{\text {iv }}-\mathrm{Nd} 2-\mathrm{Ol}^{\text {iv }}$	76.70 (8)

O5 ${ }^{\text {i }}$ - $\mathrm{Nd} 1-\mathrm{O} 3$	111.28 (8)
O3 ${ }^{\text {i }}$-Nd1-O3	146.88 (12)
O5-Nd1-OW1 ${ }^{\text {i }}$	139.03 (8)
O 5 - $\mathrm{Nd} 1-\mathrm{OW1}{ }^{\text {i }}$	75.53 (8)
$\mathrm{O3}^{\mathrm{i}}-\mathrm{Nd} 1-\mathrm{OW1}{ }^{\text {i }}$	72.68 (8)
$\mathrm{O} 3-\mathrm{Nd} 1-\mathrm{OW} 1^{1}$	79.45 (8)
O5-Nd1-OW1	75.53 (8)
$\mathrm{O5}{ }^{\text {i }}$ - $\mathrm{Nd} 1-\mathrm{OW} 1$	139.03 (8)
O3 ${ }^{\text {i}}$ - $\mathrm{Nd} 1-\mathrm{OW} 1$	79.45 (8)
O3-Nd1-OW1	72.68 (8)
OW1 1 - Nd 1 -OW1	64.96 (12)
O5-Nd1-OW2	67.38 (8)
O5- ${ }^{\text {i }}$ Nd1-OW2	83.13 (9)
$\mathrm{O} 3{ }^{\text {i}}$ - $\mathrm{Nd} 1-\mathrm{OW} 2$	139.15 (9)
$\mathrm{O} 3-\mathrm{Nd} 1-\mathrm{OW} 2$	73.95 (8)
OW1 1 - Nd1-OW2	136.78 (8)
OW1-Nd1-OW2	133.78 (8)
O5-Nd1-OW2 ${ }^{\text {i }}$	83.13 (9)
O 5 - $\mathrm{Nd} 1-\mathrm{OW} 2{ }^{\text {i }}$	67.38 (8)
O3 ${ }^{\text {i }}$-Nd1-OW2 ${ }^{\text {i }}$	73.95 (8)
$\mathrm{O} 3-\mathrm{Nd} 1-\mathrm{OW} 2^{\text {i }}$	139.15 (9)
OW1 ${ }^{\text {i }}$ - $\mathrm{Nd} 1-\mathrm{OW} 2^{\text {i }}$	133.78 (8)
OW1-Nd1-OW2 ${ }^{\text {i }}$	136.78 (8)
OW2-Nd1-OW2 ${ }^{\text {i }}$	65.29 (12)
$\mathrm{O} 5-\mathrm{Nd} 1-\mathrm{O} 4{ }^{\text {ii }}$	48.95 (8)
$\mathrm{O} 5-\mathrm{Nd} 1-\mathrm{O} 4{ }^{\text {ii }}$	127.62 (8)
$\mathrm{O} 3{ }^{\text {i }}-\mathrm{Nd} 1-\mathrm{O} 4{ }^{\text {ii }}$	62.36 (9)
$\mathrm{O} 3-\mathrm{Nd} 1-\mathrm{O} 4{ }^{\text {ii }}$	120.53 (9)
OW1 ${ }^{\text {i }}-\mathrm{Nd} 1-\mathrm{O} 4{ }^{\text {ii }}$	119.54 (8)
OW1-Nd1-O4 $4^{\text {ii }}$	68.74 (8)
OW2-Nd1-O4 ${ }^{\text {ii }}$	103.32 (8)
$\mathrm{OW} 2{ }^{\text {i }}-\mathrm{Nd} 1-\mathrm{O} 4^{\text {ii }}$	68.87 (8)
$\mathrm{O} 5-\mathrm{Nd} 1-\mathrm{O} 4{ }^{\text {iii }}$	127.62 (8)
$\mathrm{O} 5-\mathrm{Nd} 1-\mathrm{O} 4{ }^{\text {iii }}$	48.95 (8)
$\mathrm{O} 3{ }^{\text {i }}-\mathrm{Nd} 1-\mathrm{O} 4{ }^{\text {iii }}$	120.53 (9)
$\mathrm{O} 3-\mathrm{Nd} 1-\mathrm{O} 4{ }^{\text {iii }}$	62.36 (9)
OW1 ${ }^{\text {i }}-\mathrm{Nd} 1-\mathrm{O} 4{ }^{\text {iii }}$	68.74 (8)
OW1-Nd1-O4 $4^{\text {iii }}$	119.54 (8)
OW2-Nd1-O4 $4^{\text {iii }}$	68.87 (8)
$\mathrm{OW} 2 \mathrm{i}-\mathrm{Nd} 1-\mathrm{O} 4{ }^{\text {iii }}$	103.32 (8)
$\mathrm{O} 4{ }^{\text {ii }}-\mathrm{Nd} 1-\mathrm{O} 4{ }^{\text {iii }}$	171.14 (11)
$\mathrm{O} 4-\mathrm{Nd} 2-\mathrm{O} 4{ }^{\text {iv }}$	146.01 (13)
$\mathrm{O} 4-\mathrm{Nd} 2-\mathrm{O} 5{ }^{\text {iv }}$	109.18 (8)
$\mathrm{O} 4{ }^{\text {iv }}-\mathrm{Nd} 2-\mathrm{O}^{\text {iv }}$	74.05 (8)
$\mathrm{O} 4-\mathrm{Nd} 2-\mathrm{O} 5$	74.05 (8)

$\mathrm{O} 5{ }^{\text {iv }}-\mathrm{Nd} 2-\mathrm{O} 1^{\text {iv }}$	71.64 (8)
$\mathrm{O} 5-\mathrm{Nd} 2-\mathrm{O}{ }^{\text {iv }}$	118.74 (8)
$\mathrm{O} 4-\mathrm{Nd} 2-\mathrm{O} 1$	76.70 (8)
$\mathrm{O} 4{ }^{\text {iv }}-\mathrm{Nd} 2-\mathrm{O} 1$	72.75 (8)
$\mathrm{O} 5^{\text {iv }}-\mathrm{Nd} 2-\mathrm{O} 1$	118.74 (8)
$\mathrm{O} 5-\mathrm{Nd} 2-\mathrm{O} 1$	71.64 (8)
$\mathrm{O} 1^{\text {iv }}-\mathrm{Nd} 2-\mathrm{O} 1$	51.48 (11)
$\mathrm{O} 4-\mathrm{Nd} 2-\mathrm{OW} 3{ }^{\text {iv }}$	141.63 (9)
$\mathrm{O} 4^{\text {iv }}-\mathrm{Nd} 2-\mathrm{OW} 3^{\text {iv }}$	72.13 (9)
$\mathrm{O} 5^{\text {iv }}-\mathrm{Nd} 2-\mathrm{OW} 3^{\text {iv }}$	69.98 (9)
O5-Nd2-OW3 ${ }^{\text {iv }}$	101.07 (10)
$\mathrm{O} 1^{\text {iv }}-\mathrm{Nd} 2-\mathrm{OW} 3{ }^{\text {iv }}$	135.64 (9)
$\mathrm{O} 1-\mathrm{Nd} 2-\mathrm{OW} 3^{\text {iv }}$	139.06 (9)
O4-Nd2-OW3	72.13 (9)
$\mathrm{O} 4{ }^{\text {iv }}-\mathrm{Nd} 2-\mathrm{OW} 3$	141.63 (9)
$\mathrm{O} 5^{\text {iv }}-\mathrm{Nd} 2-\mathrm{OW} 3$	101.07 (10)
O5-Nd2-OW3	69.98 (9)
$\mathrm{O} 1^{\text {iv }}-\mathrm{Nd} 2-\mathrm{OW} 3$	139.06 (9)
$\mathrm{O} 1-\mathrm{Nd} 2-\mathrm{OW} 3$	135.64 (9)
OW3 ${ }^{\text {iv }}-\mathrm{Nd} 2-\mathrm{OW} 3$	70.59 (13)
$\mathrm{O} 4-\mathrm{Nd} 2-\mathrm{O} 3{ }^{\text {ii }}$	120.36 (9)
$\mathrm{O} 4^{\text {iv }}-\mathrm{Nd} 2-\mathrm{O} 3^{\text {ii }}$	62.32 (9)
$\mathrm{O} 5^{\text {iv }}-\mathrm{Nd} 2-\mathrm{O} 3{ }^{\text {ii }}$	130.16 (8)
$\mathrm{O} 5-\mathrm{Nd} 2-\mathrm{O} 3{ }^{\text {ii }}$	48.87 (7)
$\mathrm{O} 1^{\text {iv }}-\mathrm{Nd} 2-\mathrm{O} 3{ }^{\text {ii }}$	116.91 (8)
$\mathrm{O} 1-\mathrm{Nd} 2-\mathrm{O} 3{ }^{\text {ii }}$	70.95 (8)
$\mathrm{OW} 3{ }^{\text {iv }}-\mathrm{Nd} 2-\mathrm{O} 3{ }^{\text {ii }}$	74.51 (9)
$\mathrm{OW} 3-\mathrm{Nd} 2-\mathrm{O} 3^{\text {ii }}$	98.79 (9)
$\mathrm{O} 4-\mathrm{Nd} 2-\mathrm{O}^{\text {v }}$	62.32 (9)
$\mathrm{O} 4{ }^{\text {iv }}-\mathrm{Nd} 2-\mathrm{O} 3^{\text {v }}$	120.36 (9)
$\mathrm{O} 5^{\text {iv }}-\mathrm{Nd} 2-\mathrm{O}^{\text {v }}$	48.87 (7)
$\mathrm{O} 5-\mathrm{Nd} 2-\mathrm{O}^{\text {v }}$	130.16 (8)
$\mathrm{O} 1^{\text {iv }}-\mathrm{Nd} 2-\mathrm{O}^{\text {v }}$	70.95 (8)
$\mathrm{O} 1-\mathrm{Nd} 2-\mathrm{O}^{\text {v }}$	116.91 (8)
$\mathrm{OW} 3^{\text {iv }}-\mathrm{Nd} 2-\mathrm{O}^{\text {v }}$	98.79 (9)
OW3-Nd2-O3 ${ }^{\text {v }}$	74.51 (9)
$\mathrm{O}^{\text {ii- }}$ - $\mathrm{Nd} 2-\mathrm{O}^{\text {v }}$	171.97 (11)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$	122.2 (2)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1^{\text {iv }}$	122.2 (2)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{O}^{\text {iv }}$	115.5 (5)
$\mathrm{O} 4{ }^{\text {ii }}-\mathrm{C} 2-\mathrm{O}^{\text {ii }}$	125.6 (3)
$\mathrm{O} 4{ }^{\text {ii }}-\mathrm{C} 2-\mathrm{O} 5$	117.4 (3)
$\mathrm{O} 3{ }^{\text {ii }}-\mathrm{C} 2-\mathrm{O} 5$	117.0 (3)
$\mathrm{O} 4{ }^{\text {ii }}-\mathrm{C} 2-\mathrm{O} 1$	113.5 (2)

[^1]Hydrogen-bond geometry (\AA)

$D-\mathrm{H} \cdots A$	$D \cdots A$
$\mathrm{O} W 1 \cdots \mathrm{O} 1$	$2.645(4)$
$\mathrm{O} W 1 \cdots \mathrm{O} W 1^{\mathrm{i}}$	$2.772(5)$
$\mathrm{O} W 1 \cdots \mathrm{O} W 4^{\text {vi }}$	$2.792(5)$
$\mathrm{O} W 1 \cdots \mathrm{O} W 3^{\mathrm{ii}}$	$2.795(4)$
$\mathrm{O} W 2 \cdots \mathrm{O} 1^{\text {vii }}$	$2.645(3)$
$\mathrm{O} W 2 \cdots \mathrm{O} W 2^{\mathrm{i}}$	$2.786(5)$
$\mathrm{O} W 2 \cdots \mathrm{O} 5$	$2.815(4)$
$\mathrm{O} W 2 \cdots \mathrm{O} W 4^{\mathrm{i}}$	$2.833(5)$
$\mathrm{O} W 3 \cdots \mathrm{O} 2^{\text {viii }}$	$2.626(5)$
$\mathrm{O} W 3 \cdots \mathrm{O} W 1^{\text {vii }}$	$2.795(4)$
$\mathrm{O} W 3 \cdots \mathrm{O} 5$	$2.928(4)$
$\mathrm{O} W 3 \cdots \mathrm{O} W 3^{\mathrm{iv}}$	$2.994(6)$
$\mathrm{O} W 4 \cdots \mathrm{O} W 1^{\mathrm{ix}}$	$2.792(5)$
$\mathrm{O} W 4 \cdots \mathrm{O} W 2^{\mathrm{i}}$	$2.833(5)$
$\mathrm{O} W 4 \cdots \mathrm{O} W 4^{\mathrm{x}}$	$2.909(9)$
$\mathrm{O} W 4 \cdots \mathrm{O} W 2^{\mathrm{i}}$	$3.231(6)$

[^2]
[^0]: Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2719).

[^1]: Symmetry codes: (i) $-x+1 / 2,-y+1 / 2, z$; (ii) $x+1 / 2,-y+1,-z+1 / 2$; (iii) $-x, y-1 / 2,-z+1 / 2$; (iv) $-x+1 / 2,-y+3 / 2, z$; (v) $-x, y+1 / 2,-z+1 / 2$.

[^2]: Symmetry codes: (i) $-x+1 / 2,-y+1 / 2, z$; (ii) $x+1 / 2,-y+1,-z+1 / 2$; (iv) $-x+1 / 2,-y+3 / 2, z$; (vi) $-x+1 / 2, y, z-1 / 2$; (vii) $x-1 / 2,-y+1,-z+1 / 2$; (viii) $x,-y+3 / 2$, $z+1 / 2$; (ix) $-x+1 / 2, y, z+1 / 2 ;(\mathrm{x})-x+1,-y+1,-z+1$.

