Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

catena-Poly[[bis[4-(dimethylamino)-pyridine- $\left.\kappa N^{1}\right]$ cobalt(II)]-di- μ-azido$\left.\kappa^{4} N^{1}: N^{3}\right]$

Fatiha Guenifa, Ouahida Zeghouan, Nasreddine Hadjadj, Lamia Bendjeddou* and Hocine Merazig

Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Faculté des Sciences Exactes, Campus Chaabet Ersas, Université
Constantine I, 25000 Constantine, Algeria
Correspondence e-mail: Lamiabendjeddou@yahoo.fr

Received 10 February 2013; accepted 22 February 2013

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; some non- H atoms missing; R factor $=0.032 ; w R$ factor $=0.086$; data-to-parameter ratio $=$ 17.6.

The title layered polymer, $\left[\mathrm{Co}\left(\mathrm{N}_{3}\right)_{2}\left(\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{~N}_{2}\right)_{2}\right]_{n}$, contains $\mathrm{Co}^{\mathrm{II}}$, azide and 4 -(dimethylamino)pyridine (4-DMAP) species with site symmetries $m 2 m, 2$ and m, respectively. The Co^{2+} ion adopts an octahedral coordination geometry in which four N atoms from azide ligands lie in the equatorial plane and two 4DMAP N atoms occupy the axial positions. The $\mathrm{Co}^{\mathrm{II}}$ atoms are connected by two bridging azide ligands, resulting in a chain parallel to the c axis.

Related literature

For applications of coordination polymers, see: Fujita et al. (1994); Hagrman et al. (1999); Hoskins \& Robson (1990); Yaghi \& Li (1995). For a related Cu complex, see: Dalai et al. (2002).

Experimental

Crystal data

$\left[\mathrm{Co}\left(\mathrm{N}_{3}\right)_{2}\left(\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{~N}_{2}\right)_{2}\right]$
$M_{r}=387.33$
Orthorhombic, Cmcm
$a=9.622(5) \AA$
$b=18.404$ (5) \AA
$c=9.734$ (5) \AA

Data collection
Bruker APEXII diffractometer 5192 measured reflections 1393 independent reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.086$
$S=1.07$
1393 reflections
$V=1723.7(13) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=1.02 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.1 \times 0.09 \times 0.08 \mathrm{~mm}$

1099 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.031$

79 parameters
H -atom parameters constrained
$\Delta \rho_{\max }=0.43 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.37 \mathrm{e}^{-3}$

Table 1
Selected bond lengths (\AA).

Co-N1	$2.1764(19)$	$\mathrm{Co}-\mathrm{N} 1 B$	$2.135(3)$
$\mathrm{Co}-\mathrm{N} 1 A$	$2.110(3)$		

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012), Mercury (Macrae et al., 2006) and POVRay (Persistence of Vision Team, 2004).

This work was supported by the Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Université de Constantine 1, Algeria. Thanks are also due to MESRS and ATRST (Ministère de l'Enseignement Supérieur et de la Recherche Scientifique et l'Agence Thématique de Recherche en Sciences et Technologie, Algérie) via the PNR program for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2189).

References

Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. \& Spagna, R. (2003). J. Appl. Cryst. 36, 1103.
Dalai, S., Mukherjee, P. S., Mallah, T., Drew, M. G. B. \& Chaudhuri, N. R. (2002). Inorg. Chem. Commun. 5, 472-474.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Fujita, M., Kwan, Y. J., Washizu, S. \& Ogura, K. (1994). J. Am. Chem. Soc. 116, 1151-1152.
Hagrman, P. J., Hagrman, D. \& Zubieta, J. (1999). Angew. Chem. Int. Ed. Engl. 38, 2638-2684.
Hoskins, B. F. \& Robson, R. (1990). J. Am. Chem. Soc. 112, 1564-1575.
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. \& van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.

Persistence of Vision Team (2004). POV-RAY. Persistence of Vision Raytracer Pty Ltd, Victoria, Australia. URL: http://www.povray.org/.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Yaghi, O. M. \& Li, J. (1995). J. Am. Chem. Soc. 117, 10401-10402.

supporting information

Acta Cryst. (2013). E69, m175 [doi:10.1107/S1600536813005205]

catena-Poly[[bis[4-(dimethylamino)pyridine- $\left.\kappa N^{1}\right]$ cobalt(II)]-di- μ-azido- $\left.\kappa^{4} N^{1}: N^{3}\right]$

Fatiha Guenifa, Ouahida Zeghouan, Nasreddine Hadjadj, Lamia Bendjeddou and Hocine Merazig

S1. Comment

The chemistry of coordination polymers has evolved rapidly in recent years and a variety of topologies has been constructed through ligand design and the use of different transition metal geometries. These polymers may have interesting properties and applications, e.g. adsorption, ion exchange, non-linear optical and magnetic materials (Hoskins et al., 1990; Fujita et al., 1994; Yaghi \& Li, 1995; Hagrman et al., 1999).

Pseudohalide anions are excellent ligands for obtaining discrete, one-dimensional, two-dimensional or threedimensional systems. Among these, the azido ligand is the most versatile in linking divalent metal ions. When the azide group acts as bridging ligand there are two typical coordination modes: end-to-end (EE or $\mu-1,3$) in which the resulting complexes usually shows ferromagnetic behavior, and end-on (EO or $\mu-1,1$) which results in antiferromagnetic behavior.
In the course of our investigation of functional coordination complexes and polymers, a new azide-bridged coordination polymer with 4-dimethylaminopyridine has been prepared and structurally characterized.

Part of the structure of (I) with the atom numbering scheme is shown in Figure 1. The structure consists of layers of cobalt atoms linked by double end-to-end (EE) azido bridges, placed along the [001] direction at $b=0$ and $b=1 / 2$, forming a one-dimensional polymeric chain with each cobalt(II) ion in an octahedral environment (Fig. 2). In the crystal, parallel one-dimensional polymers form a three-dimensional network. The minimum interdinuclear Co \cdots Co distance bridged by the EE-azido ligands is 5.097 (2) \AA. In this structure, the ligand L displays monodentate binding to $\mathrm{Co}^{\mathrm{II}}$.
The octahedral coordination around the cobalt(II) atoms (Fig. 3, Table 1) consists of two L ligands coordinated via the pyridine nitrogen atom which occupy the axial positions $(\mathrm{Co}-\mathrm{N} 1 \mathrm{~A}=2.110(3) \AA$ and $\mathrm{Co}-\mathrm{N} 1 \mathrm{~B}=2.135(3) \AA)$ and four azide bridges in the equatorial plane $(\mathrm{Co}-\mathrm{N} 1=2.1764(19) \AA$) which act as symmetrical end-to-end $(\mu-1,3)$ double bridges betwee two neighboring cobalt atoms.
This structure can be compared with that observed for $[\mathrm{Cu}(L) 2(\mathrm{~N} 3) 2] \mathrm{n}(L: 4$-dimethylaminopyridine (Dalai et al., 2002), which shows also double end-to-end (EE) azido bridges. Here each copper is bonded to two nitrogen atoms of the pyridine ligands (1.999 (7) $\AA, 2.014$ (7) \AA) and two nitrogen atoms of the azide (2.029 (5) \AA). There are also two weak attachments to two nitrogen atoms of the azide (2.611 (6) \AA) in axial positions to create a doubl EE-bridged onedimensional polymer with each copper(II) ion in a pseudo-octahedral environment. The distance between two neighboring copper ions is 5.20 (1) \AA.

S2. Experimental

A mixture of NaN_{3} and $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ in methanol was stirred for half an hour, then 4-dimethylaminopyridine was added to the solution and the reaction continued to stir for one hour. After filtration, the pink filtrate was allowed to stand at room temperature. Pink crystals were obtained by slow evaporation.

S3. Refinement

The aromatic H atoms were placed at calculated positions with $\mathrm{C}-\mathrm{H}=0.93$ and $0.96 \AA$, for aromatic and methyl H atoms, respectively, with $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$.

Figure 1

View of the structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented as spheres of arbitrary radii [symmetry codes: (i) $x+1, y,-z+1 / 2$; (ii) x, y, $-z+1 / 2$; (iii) $x+1, y, z$; (v) $x+1,-y+1,-z$; (vii) $x+1,-y+1, z+1 / 2$; (viii) $x+1,-y+1, z-1 / 2$; (ix) $x,-y+1, z-1 / 2$; (x) $x,-y+1,-z$; (xvii) $x,-y+1, z+1 / 2$; (xviii) $x,-y+1,-z+1$; (xix) $x+1,-y+1,-z+1]$.

Figure 2
View of part of the crystal structure of (I), showing layers along the [001] direction. Hydrogen atoms are omitted for clarity.

Figure 3
Part of the crystal structure, showing the octahedral coordination around the cobalt(II) atoms. Hydrogen atoms are omitted for clarity [symmetry codes: (i): $-x+1, y,-z+1 / 2$; (ii): $x, y,-z+1 / 2$; (iii): $-x+1, y, z]$.

catena-Poly[[bis[4-(dimethylamino)pyridine- κN^{1}]cobalt(II)]-di- μ-azido- $\left.\kappa^{4} N^{1}, N^{3}\right]$

Crystal data

$\left[\mathrm{Co}\left(\mathrm{N}_{3}\right)_{2}\left(\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{~N}_{2}\right)_{2}\right]$
$M_{r}=387.33$
Orthorhombic, Cmcm
Hall symbol: -C 2c 2
$a=9.622(5) \AA$
$b=18.404$ (5) \AA
$c=9.734(5) \AA$
$V=1723.7(13) \AA^{3}$
$Z=4$

Data collection

Bruker APEXII

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ scans
5192 measured reflections
1393 independent reflections

$$
\begin{aligned}
& F(000)=804 \\
& D_{\mathrm{x}}=1.493 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 1393 \text { reflections } \\
& \theta=3.1-30.0^{\circ} \\
& \mu=1.02 \mathrm{~mm}^{-1} \\
& T=293 \mathrm{~K} \\
& \text { Needle, pink } \\
& 0.1 \times 0.09 \times 0.08 \mathrm{~mm}
\end{aligned}
$$

$$
1099 \text { reflections with } I>2 \sigma(I)
$$

$$
R_{\mathrm{int}}=0.031
$$

$$
\theta_{\max }=30.0^{\circ}, \theta_{\min }=3.1^{\circ}
$$

$$
h=-11 \rightarrow 13
$$

$$
k=-25 \rightarrow 25
$$

$$
l=-9 \rightarrow 13
$$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.086$
$S=1.07$
1393 reflections
79 parameters

$$
\begin{aligned}
& 0 \text { restraints } \\
& \mathrm{H} \text {-atom parameters constrained } \\
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0383 P)^{2}+1.0521 P\right] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.43 \text { e } \AA^{-3} \\
& \Delta \rho_{\min }=-0.37 \mathrm{e}^{-3}
\end{aligned}
$$

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$	Occ. (<1)
Co	0.50000	$0.45887(2)$	0.25000	$0.0257(1)$	
N1	$0.33908(16)$	$0.45953(7)$	$0.09288(16)$	$0.0355(4)$	
N1A	0.50000	$0.34420(13)$	0.25000	$0.0267(8)$	
N1B	0.50000	$0.57488(14)$	0.25000	$0.0279(8)$	
N2	$0.34145(19)$	0.50000	0.00000	$0.0263(5)$	
N2A	0.50000	$0.11621(15)$	0.25000	$0.0383(10)$	
N2B	0.50000	$0.80246(14)$	0.25000	$0.0358(9)$	
C1A	0.50000	$0.07558(14)$	$0.1240(3)$	$0.0536(10)$	
C1B	$0.6285(3)$	$0.84282(14)$	0.25000	$0.0514(9)$	

C2A	0.50000	$0.19006(16)$	0.25000	$0.0280(9)$	
C2B	0.50000	$0.72899(16)$	0.25000	$0.0264(9)$	
C3A	0.50000	$0.23072(12)$	$0.1278(3)$	$0.0315(7)$	
C3B	$0.6237(2)$	$0.68797(12)$	0.25000	$0.0318(7)$	
C4A	0.50000	$0.30567(12)$	$0.1330(3)$	$0.0311(7)$	
C4B	$0.6178(2)$	$0.61381(12)$	0.25000	$0.0313(7)$	
H1B1	0.60862	0.89393	0.25000	0.0769^{*}	0.500
H1B2	0.68126	0.83069	0.16947	0.0769^{*}	0.500
H1B3	0.68126	0.83069	0.33053	0.0769^{*}	0.0377^{*}
H3A	0.50000	0.20711	0.04332	0.0382^{*}	
H3B	0.70933	0.71138	0.25000	0.0805^{*}	
H1A1	0.50000	0.02454	0.14436	0.0373^{*}	0.0376^{*}
H4A	0.50000	0.33101	0.05031	0.0805^{*}	0.500
H4B	0.70142	0.58851	0.25000	0.0805^{*}	0.500
H1A2	0.58146	0.08752	0.07175		
H1A3	0.41854	0.08752	0.07175		

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Co	$0.0356(3)$	$0.0196(2)$	$0.0218(2)$	0.0000	0.0000	0.0000
N1	$0.0437(8)$	$0.0333(7)$	$0.0296(8)$	$-0.0070(6)$	$-0.0062(7)$	$0.0078(6)$
N1A	$0.0357(15)$	$0.0223(11)$	$0.0222(14)$	0.0000	0.0000	0.0000
N1B	$0.0291(14)$	$0.0221(12)$	$0.0324(16)$	0.0000	0.0000	0.0000
N2	$0.0259(9)$	$0.0259(8)$	$0.0270(10)$	0.0000	0.0000	$-0.0017(8)$
N2A	$0.0530(19)$	$0.0234(13)$	$0.0385(18)$	0.0000	0.0000	0.0000
N2B	$0.0355(15)$	$0.0209(12)$	$0.051(2)$	0.0000	0.0000	0.0000
C1A	$0.074(2)$	$0.0299(13)$	$0.057(2)$	0.0000	0.0000	$-0.0100(13)$
C1B	$0.0459(16)$	$0.0292(12)$	$0.079(2)$	$-0.0094(11)$	0.0000	0.0000
C2A	$0.0265(15)$	$0.0234(13)$	$0.0341(19)$	0.0000	0.0000	0.0000
C2B	$0.0277(15)$	$0.0242(13)$	$0.0272(17)$	0.0000	0.0000	0.0000
C3A	$0.0422(13)$	$0.0266(10)$	$0.0256(12)$	0.0000	0.0000	$-0.0049(9)$
C3B	$0.0227(10)$	$0.0283(10)$	$0.0445(15)$	$-0.0022(8)$	0.0000	0.0000
C4A	$0.0450(13)$	$0.0274(10)$	$0.0209(12)$	0.0000	0.0000	$0.0016(9)$
C4B	$0.0242(11)$	$0.0287(10)$	$0.0411(14)$	$0.0036(8)$	0.0000	0.0000

Geometric parameters $\left({ }^{A},{ }^{\circ}\right)$

$\mathrm{Co}-\mathrm{N} 1$	$2.1764(19)$	$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	$1.405(3)$
$\mathrm{Co}-\mathrm{N} 1 \mathrm{~A}$	$2.110(3)$	$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}^{\mathrm{i}}$	$1.405(3)$
$\mathrm{Co}-\mathrm{N} 1 \mathrm{~B}$	$2.135(3)$	$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}$	$1.410(3)$
$\mathrm{Co}-\mathrm{N} 1^{\mathrm{i}}$	$2.1764(19)$	$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}^{\mathrm{i}}$	$1.410(3)$
$\mathrm{Co}-\mathrm{N} 1^{\mathrm{ii}}$	$2.1764(19)$	$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	$1.380(3)$
$\mathrm{Co}-\mathrm{N} 1^{\mathrm{iii}}$	$2.1764(19)$	$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}$	$1.366(3)$
$\mathrm{N} 1-\mathrm{N} 2$	$1.1716(16)$	$\mathrm{C} 1 \mathrm{~A}-\mathrm{H} 1 \mathrm{~A} 1$	0.9600
$\mathrm{~N} 1 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	$1.342(3)$	$\mathrm{C} 1 \mathrm{~A}-\mathrm{H} 1 \mathrm{~A} 2$	0.9600
$\mathrm{~N} 1 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}^{\mathrm{i}}$	$1.342(3)$	$\mathrm{C} 1 \mathrm{~A}-\mathrm{H} 1 \mathrm{~A} 3$	0.9600
$\mathrm{~N} 1 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}$	$1.341(3)$	$\mathrm{C} 1 \mathrm{~B}-\mathrm{H} 1 \mathrm{~B} 1$	0.9600

N1B-C4B ${ }^{\text {i }}$	1.340 (3)
N2A-C1A	1.437 (3)
N2A-C2A	1.359 (4)
$\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}^{\mathrm{i}}$	1.437 (3)
N2B-C1B	1.442 (3)
N2B-C2B	1.352 (4)
$\mathrm{N} 2 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}^{\text {i }}$	1.442 (3)
N1-Co-N1A	90.32 (4)
N1-Co-N1B	89.68 (4)
$\mathrm{N} 1-\mathrm{Co}-\mathrm{Nl}^{1}$	179.36 (5)
$\mathrm{N} 1-\mathrm{Co}-\mathrm{N} 1^{\text {ii }}$	89.29 (6)
$\mathrm{N} 1-\mathrm{Co}-\mathrm{N} 1^{\text {iii }}$	90.70 (6)
N1A-Co-N1B	180.00
$\mathrm{N} 1{ }^{\mathrm{i}}-\mathrm{Co}-\mathrm{N} 1 \mathrm{~A}$	90.32 (4)
$\mathrm{N} 1 \mathrm{ii}-\mathrm{Co}-\mathrm{N} 1 \mathrm{~A}$	90.32 (4)
N1 ${ }^{\text {iii- }} \mathrm{Co}-\mathrm{N} 1 \mathrm{~A}$	90.32 (4)
N1- ${ }^{\text {i }}$ - -N 1 B	89.68 (4)
$\mathrm{N} 1{ }^{\text {ii }}-\mathrm{Co}-\mathrm{N} 1 \mathrm{~B}$	89.68 (4)
$\mathrm{N} 1^{\text {iii }}$ - $\mathrm{Co}-\mathrm{N} 1 \mathrm{~B}$	89.68 (4)
$\mathrm{N} 1{ }^{\text {i }}-\mathrm{Co}-\mathrm{N}^{\text {ii }}$	90.70 (6)
$\mathrm{N} 1{ }^{\text {i }}$ - $\mathrm{Co}-\mathrm{N} 1^{\text {iii }}$	89.29 (6)
$\mathrm{N} 1{ }^{\text {ii }}-\mathrm{Co}-\mathrm{N} 1{ }^{\text {iii }}$	179.36 (5)
$\mathrm{Co}-\mathrm{N} 1-\mathrm{N} 2$	122.14 (12)
$\mathrm{Co}-\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	121.91 (14)
Co-N1A-C4A ${ }^{\text {i }}$	121.91 (14)
$\mathrm{C} 4 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}^{\text {i }}$	116.2 (2)
$\mathrm{Co}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}$	122.30 (13)
$\mathrm{Co}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}^{\text {i }}$	122.32 (13)
$\mathrm{C} 4 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}^{\text {i }}$	115.4 (2)
$\mathrm{N} 1-\mathrm{N} 2-\mathrm{N} 1^{\text {iv }}$	177.8 (2)
C1A-N2A-C2A	121.37 (14)
$\mathrm{C} 1 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}^{\text {i }}$	117.3 (2)
$\mathrm{C} 1 \mathrm{~A}^{\mathrm{i}}-\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	121.37 (14)
C1B-N2B-C2B	121.00 (14)
$\mathrm{C} 1 \mathrm{~B}-\mathrm{N} 2 \mathrm{~B}-\mathrm{C}^{\text {B }}{ }^{\text {i }}$	118.0 (2)
$\mathrm{C} 1 \mathrm{~B}^{\mathrm{i}}-\mathrm{N} 2 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}$	121.00 (14)
$\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	122.17 (14)

C1B-H1B2	0.9600
C1B-H1B3	0.9600
C3A-H3A	0.9300
C3B-H3B	0.9300
C4A-H4A	0.9300
C4B-H4B	0.9300

$\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C}_{3} \mathrm{~A}^{\mathrm{i}}$	$122.17(14)$
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}^{\mathrm{i}}$	$115.7(2)$
$\mathrm{N} 2 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}$	$122.39(13)$
$\mathrm{N} 2 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C}_{3} \mathrm{~B}^{\mathrm{i}}$	$122.39(13)$
$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C}_{3} \mathrm{~B}^{\mathrm{i}}$	$115.2(2)$
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	$120.1(3)$
$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}$	$120.00(19)$
$\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	$124.0(3)$

109.00
109.00
109.00
109.00
109.00
109.00
110.00
109.00
109.00
109.00
109.00
109.00
120.00
120.00
120.00
120.00
118.00
118.00
118.00
118.00

Symmetry codes: (i) $-x+1, y,-z+1 / 2$; (ii) $x, y,-z+1 / 2$; (iii) $-x+1, y, z$; (iv) $x,-y+1,-z$.

