Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

N-(4-Bromophenyl)acetamide: a new polymorph

Jerry P. Jasinski, ${ }^{\text {a* }}$ Curtis J. Guild, ${ }^{\text {a }}$ H. S. Yathirajan, ${ }^{\text {b }}$ B. Narayana ${ }^{c}$ and S. Samshuddin ${ }^{c}$
${ }^{\text {a }}$ Department of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, ${ }^{\text {b }}$ Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and ${ }^{\text {c }}$ Department of Studies in Chemistry, Mangalore University, Mangalagangotri, 574 199, India
Correspondence e-mail: jjasinski@keene.edu

Received 24 February 2013; accepted 25 February 2013

Key indicators: single-crystal X-ray study; $T=173 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.033 ; w R$ factor $=0.073$; data-to-parameter ratio $=26.6$.

A new polymorph of the title compound, $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{BrNO}$, has been determined at 173 K in the space group $P 2_{1} / c$. The previous room-temperature structure was reported to crystallize in the orthorhombic space group Pna_{1} [Andreetti et al. (1968). Acta Cryst. B24, 1195-1198]. In the crystal, molecules are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds forming chains along [010]. Weak $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions are also present.

Related literature

For 2-arylacetamides, see: Mijin \& Marinkovic (2006); Mijin et al. (2008) and for amides, see: Wu et al. $(2008,2010)$. For the structure of the orthorhombic polymorph, see: Andreetti et al. (1968). For related structures, see: Praveen et al. (2011a,b,c). For standard bond lengths, see: Allen et al. (1987).

Experimental

Crystal data
$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{BrNO}$

$$
\begin{aligned}
& b=9.3876(11) \AA \AA \\
& c=14.4434(14) \AA \\
& \beta=117.750(4)^{\circ}
\end{aligned}
$$

$$
V=806.96(15) \AA^{3}
$$

$Z=4$

$T=173 \mathrm{~K}$
Mo $K \alpha$ radiation
$\mu=5.03 \mathrm{~mm}^{-1}$
$0.32 \times 0.22 \times 0.18 \mathrm{~mm}$

Data collection

Oxford Diffraction Xcalibur (Eos, Gemini) diffractometer
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction 2010) $T_{\text {min }}=0.296, T_{\text {max }}=0.465$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033 \quad 101$ parameters
$w R\left(F^{2}\right)=0.073$
$S=1.04$
2689 reflections

H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.54 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.44 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).
Cg 1 is the centroid of the $\mathrm{C} 3-\mathrm{C} 8$ ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	0.89	2.00	$2.885(2)$	174
$\mathrm{C} 1-\mathrm{H} 1 B \cdots{ }^{\mathrm{i}} \cdots 1^{\mathrm{ii}}$	0.98	2.84	$3.761(3)$	157

Symmetry codes: (i) $-x+1, y+\frac{1}{2},-z+\frac{1}{2}$; (ii) $x+1, y, z$.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

BN thanks the UGC, New Delhi, and the Government of India for the purchase of chemicals through the SAP-DRS-Phase-1 programme and a BSR one-time grant. JPJ acknowledges the NSF-MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2566).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Andreetti, G. D., Cavalca, L., Domiano, P. \& Musatti, A. (1968). Acta Cryst. B24, 1195-1198.
Mijin, D. \& Marinkovic, A. (2006). Synth. Commun. 36, 193-198.
Mijin, D. Z., Prascevic, M. \& Petrovic, S. D. (2008). J. Serb. Chem. Soc. 73, 945950.

Oxford Diffraction (2010). CrysAlis $P R O$ and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
Praveen, A. S., Jasinski, J. P., Golen, J. A., Narayana, B. \& Yathirajan, H. S. (2011b). Acta Cryst. E67, o2604.
Praveen, A. S., Jasinski, J. P., Golen, J. A., Narayana, B. \& Yathirajan, H. S. (2011c). Acta Cryst. E67, o1826.
Praveen, A. S., Jasinski, J. P., Golen, J. A., Yathirajan, H. S. \& Narayana, B. (2011a). Acta Cryst. E67, o2602-o2603.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Wu, W.-N., Cheng, F.-X., Yan, L. \& Tang, N. (2008). J. Coord. Chem. 61, 22072215.

Wu, W.-N., Wang, Y., Zhang, A.-Y., Zhao, R.-Q. \& Wang, Q.-F. (2010). Acta Cryst. E66, m288.

supporting information

Acta Cryst. (2013). E69, o461 [doi:10.1107/S1600536813005448]

\mathbf{N}-(4-Bromophenyl)acetamide: a new polymorph

Jerry P. Jasinski, Curtis J. Guild, H. S. Yathirajan, B. Narayana and S. Samshuddin

S1. Comment

Substituted 2-arylacetamides are very interesting compounds because of their structural similarity to the lateral chain of natural benzyl penicillin (Mijin et al., 2006, 2008). Amides are also used as ligands due to their excellent coordination abilities (Wu et al., 2008, 2010). The room temperature crystal structure of the title compound was reported without hydrogen atom coordinates in the orthorhombic space group Pna2 (Andreetti et al., 1968). We report herein on the crystal structure of the monoclinic polymorph that crystallized in space group $\mathrm{P} 2_{1} / \mathrm{c}$.
The molecular structure of the title compound is illustrated in Fig. 1. Bond lengths are in normal ranges (Allen et al., 1987) but show slight changes from those reported for some similar acetamide derivatives viz., N-(4-chloro-1,3-benzo-thiazol-2-yl)-2-(3-methylphenyl)acetamide monohydrate (Praveen et al., 2011a), N-(3-chloro-4-fluorophenyl)-2,2-diphenylacetamide (Praveen et al., 2011b) and N-(3-chloro-4-fluorophenyl)-2-(naphthalen-1-yl)acetamide (Praveen et al., 2011c). The differences observed are primarily in the acetamide and bromophenyl regions [C1-C2 1.501 (3) \AA versus 1.53 (4) \AA; N1-C2 1.347 (2) \AA versus 1.30 (3) \AA; N1-C3 1.401 (2) \AA versus 1.44 (3) \AA and C6-Br 1.8907 (19) versus 1.91 (1) Å].

In the crystal, molecules are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds forming chains along [010] [Table 1 and Fig. 2]. Weak $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions are also present (Table 1) and contribute to the crystal packing stability.

S2. Experimental

4-Bromo aniline ($0.172 \mathrm{~g}, 1 \mathrm{mmol}$) was dissolved in acetic acid (20 ml) and refluxed for 4 h . The solution was then cooled and poured into 100 ml of ice-cold water with stirring. The precipitate obtained was filtered, washed with water and dried. Block-like yellow crystals were grown from a solution in ethyl acetate by slow evaporation of the solvent (M.p.: 430 K).

S3. Refinement

The NH H atom was located in a difference Fourier map and refined as a riding atom: $\mathrm{N}-\mathrm{H}=0.89 \AA$ with $\mathrm{U}_{\text {iso }}(\mathrm{H})=$ $1.2 \mathrm{U}_{\mathrm{eq}}(\mathrm{N})$. The C -bound H atoms were placed in calculated positions and refined as riding atoms: $\mathrm{C}-\mathrm{H}=0.95 \AA(\mathrm{CH})$ and $0.98 \AA\left(\mathrm{CH}_{3}\right)$ with $\mathrm{U}_{\text {iso }}(\mathrm{H})=1.2 \mathrm{U}_{\mathrm{eq}}(\mathrm{C})$ for CH H atoms and $=1.5 \mathrm{U}_{\mathrm{eq}}(\mathrm{C})$ for $\mathrm{CH}_{3} \mathrm{H}$ atoms.

supporting information

Figure 1
The molecular structure of the title molecule, showing the atom labelling. Displacement ellipsoids are drawn at the 50\% probability level.

Figure 2
The crystal packing diagram of the title compound viewed along the c axis. Dashed lines indicate $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds linking the molecules into chains along [010]. C-bound H atoms have been omitted for clarity.

N-(4-Bromophenyl)acetamide

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{BrNO}$

$M_{r}=214.06$
Monoclinic, $P 2{ }_{1} / c$
Hall symbol: -P 2ybc
$a=6.7250$ (7) Å
$b=9.3876$ (11) \AA
$c=14.4434$ (14) \AA
$\beta=117.750(4)^{\circ}$

$$
\begin{aligned}
& V=806.96(15) \AA^{3} \\
& Z=4 \\
& F(000)=424 \\
& D_{\mathrm{x}}=1.762 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 3269 \text { reflections } \\
& \theta=3.4-32.3^{\circ} \\
& \mu=5.03 \mathrm{~mm}^{-1}
\end{aligned}
$$

$T=173 \mathrm{~K}$
Block, yellow

Data collection

Oxford Diffraction Xcalibur (Eos, Gemini) diffractometer
Radiation source: Enhance (Mo) X-ray Source
Graphite monochromator
Detector resolution: 16.1500 pixels mm^{-1}
ω scans
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction 2010)
$T_{\text {min }}=0.296, T_{\text {max }}=0.465$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.073$
$S=1.04$
2689 reflections
101 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
$0.32 \times 0.22 \times 0.18 \mathrm{~mm}$

10902 measured reflections
2689 independent reflections
2099 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.035$
$\theta_{\text {max }}=32.3^{\circ}, \theta_{\text {min }}=3.4^{\circ}$
$h=-9 \rightarrow 9$
$k=-13 \rightarrow 13$
$l=-20 \rightarrow 19$

```
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
\(w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0329 P)^{2}+0.1779 P\right]\)
where \(P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3\)
\((\Delta / \sigma)_{\text {max }}=0.001\)
\(\Delta \rho_{\text {max }}=0.54\) e \(\AA^{-3}\)
\(\Delta \rho_{\text {min }}=-0.44 \mathrm{e}^{-3}\)
```


Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Br1	$-0.12616(4)$	$0.70900(2)$	$0.493749(17)$	$0.03329(8)$
O1	$0.4333(2)$	$0.63844(14)$	$0.19611(11)$	$0.0286(3)$
N1	$0.3872(3)$	$0.85329(15)$	$0.25584(12)$	$0.0212(3)$
H1	0.4358	0.9432	0.2658	0.025^{*}
C1	$0.5678(4)$	$0.8449(2)$	$0.14665(17)$	$0.0283(4)$
H1A	0.5162	0.8041	0.0767	0.042^{*}
H1B	0.7312	0.8344	0.1869	0.042^{*}
H1C	0.5281	0.9462	0.1404	0.042^{*}
C2	$0.4570(3)$	$0.76819(19)$	$0.20162(15)$	$0.0213(4)$
C3	$0.2696(3)$	$0.81333(18)$	$0.31030(14)$	$0.0199(3)$
C4	$0.2647(3)$	$0.91062(19)$	$0.38173(15)$	$0.0240(4)$
H4	0.3428	0.9985	0.3931	0.029^{*}
C5	$0.1473(3)$	$0.8806(2)$	$0.43633(16)$	$0.0265(4)$
H5	0.1435	0.9475	0.4849	0.032^{*}

C6				
C7	$0.0351(3)$	$0.7520(2)$	$0.41948(15)$	$0.0233(4)$
H7	$0.0369(3)$	$0.6541(2)$	$0.34821(15)$	$0.0247(4)$
C8	-0.0407	0.5662	0.3374	0.030^{*}
H8	$0.1522(3)$	$0.68544(19)$	$0.29313(15)$	$0.0235(4)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	$U^{\beta 3}$	U^{12}	U^{13}	U^{23}
Br1	$0.03360(13)$	$0.03978(14)$	$0.03455(13)$	$-0.00199(9)$	$0.02264(10)$	$0.00392(9)$
O1	$0.0383(8)$	$0.0163(6)$	$0.0388(8)$	$0.0038(6)$	$0.0242(7)$	$-0.0003(5)$
N1	$0.0257(8)$	$0.0132(7)$	$0.0290(8)$	$-0.0018(6)$	$0.0163(7)$	$-0.0016(6)$
C1	$0.0328(11)$	$0.0252(9)$	$0.0350(11)$	$0.0002(8)$	$0.0226(9)$	$-0.0001(8)$
C2	$0.0214(9)$	$0.0189(9)$	$0.0260(9)$	$0.0025(7)$	$0.0129(7)$	$0.0009(7)$
C3	$0.0207(9)$	$0.0161(8)$	$0.0237(9)$	$0.0028(6)$	$0.0109(7)$	$0.0020(6)$
C4	$0.0296(10)$	$0.0159(8)$	$0.0288(10)$	$-0.0009(7)$	$0.0157(8)$	$-0.0008(7)$
C5	$0.0331(11)$	$0.0219(9)$	$0.0285(10)$	$0.0009(8)$	$0.0176(9)$	$-0.0028(7)$
C6	$0.0213(9)$	$0.0263(9)$	$0.0239(9)$	$0.0019(7)$	$0.0119(8)$	$0.0050(7)$
C7	$0.0239(9)$	$0.0204(8)$	$0.0301(10)$	$-0.0038(7)$	$0.0129(8)$	$-0.0001(7)$
C8	$0.0257(9)$	$0.0182(8)$	$0.0281(10)$	$-0.0014(7)$	$0.0138(8)$	$-0.0027(7)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

Br1-C6	1.8906 (19)	C3-C8	1.394 (2)
O1-C2	1.226 (2)	C4-C5	1.380 (3)
N1-C2	1.347 (2)	C4-H4	0.9500
N1-C3	1.401 (2)	C5-C6	1.384 (3)
N1-H1	0.8922	C5-H5	0.9500
C1-C2	1.501 (3)	C6-C7	1.384 (3)
C1-H1A	0.9800	C7-C8	1.377 (3)
C1-H1B	0.9800	C7-H7	0.9500
C1-H1C	0.9800	C8-H8	0.9500
C3-C4	1.390 (2)		
C2-N1-C3	127.45 (15)	C5-C4-C3	120.52 (17)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{H} 1$	117.0	C5-C4-H4	119.7
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{H} 1$	115.1	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	119.7
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.5	C4-C5-C6	119.17 (17)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5	C4-C5-H5	120.4
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5	C6-C5-H5	120.4
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5	C5-C6-C7	121.18 (18)
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5	C5-C6-Br1	119.76 (15)
$\mathrm{H} 1 \mathrm{~B}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5	C7-C6-Br1	119.06 (15)
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{N} 1$	123.83 (17)	C8-C7-C6	119.33 (18)
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 1$	121.58 (17)	C8-C7-H7	120.3
N1-C2-C1	114.59 (16)	C6-C7-H7	120.3
C4-C3-C8	119.39 (18)	C7-C8-C3	120.39 (18)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{N} 1$	117.09 (16)	C7-C8-H8	119.8

$\mathrm{C} 8-\mathrm{C} 3-\mathrm{N} 1$	$123.46(17)$	$\mathrm{C} 3-\mathrm{C} 8-\mathrm{H} 8$	119.8
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 2-\mathrm{O} 1$	$-3.1(3)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$-0.7(3)$
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$	$176.68(18)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{Br} 1$	$179.88(15)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 4$	$164.06(18)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$0.0(3)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 8$	$-18.6(3)$	$\mathrm{Br} 1-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$179.37(15)$
$\mathrm{C} 8-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$0.8(3)$	$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 3$	$1.2(3)$
$\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$178.23(17)$	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 8-\mathrm{C} 7$	$-1.6(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$0.3(3)$	$\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 8-\mathrm{C} 7$	$-178.81(18)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)
Cg 1 is the centroid of the $\mathrm{C} 3-\mathrm{C} 8$ ring.

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \cdots \mathrm{O} 1^{\mathrm{i}}$	0.89	2.00	$2.885(2)$	174
$\mathrm{C} 1 — \mathrm{H} 1 B \cdots C g 1^{\mathrm{ii}}$	0.98	2.84	$3.761(3)$	157

Symmetry codes: (i) $-x+1, y+1 / 2,-z+1 / 2$; (ii) $x+1, y, z$.

