

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-[3-Methoxy-5-(pyrimidin-2-yl)phenyl]pyrimidine

Jiena Hu,^a Yang Wu,^a* Dengging Zhang,^a* Xianying Li^b and Wusong Jin^a

^aCollege of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Road, Songjiang, Shanghai 201620, People's Republic of China, and ^bSchool of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Songjiang, Shanghai 201620, People's Republic of China

Correspondence e-mail: wsjin@dhu.edu.cn, dqzhang@dhu.edu.cn

Received 17 January 2013; accepted 27 January 2013

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.044; wR factor = 0.123; data-to-parameter ratio = 13.5.

The title compound, C₁₅H₁₂N₄O, was synthesized by a standard Suzuki cross-coupling reaction. The terminal pyrimidine rings are rotated at dihedral angles of 12.06 (4) and $-13.13 (4)^{\circ}$ with respect to the central benzene ring. In the crystal, the molecules are connected by two kinds of C- $H \cdots N$ hydrogen bonds, forming zigzag chains along the *c* axis. Weak π - π interactions between the benzene and one of the pyrimidine rings are also found and stack the molecules along the *b* axis [centroid–centroid distance = 4.112(3) Å].

Related literature

For general background to the chemistry of tridentate NCN ligands, see: Pugh & Danopoulos (2007); Wu et al. (2009, 2012); Williams (2009); Wang et al. (2010). For the synthesis of the title compound, see: Avitia et al. (2011); Wakioka et al. (2010); Cardenas & Echavarren (1999).

Experimental

Crystal data

C ₁₅ H ₁₂ N ₄ O	V = 2518.0 (3) Å ³
$M_r = 264.29$	Z = 8
Orthorhombic, Pbca	Mo $K\alpha$ radiation
a = 11.3779 (8) Å	$\mu = 0.09 \text{ mm}^{-1}$
b = 8.0954 (6) Å	T = 293 K
c = 27.3371 (18) Å	$0.28 \times 0.21 \times 0.07 \text{ mm}$
· · · ·	

Data collection

Bruker SMART CCD area-detector	14088 measured reflections
diffractometer	2461 independent reflections
Absorption correction: multi-scan	2059 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2000)	$R_{\rm int} = 0.030$
$T_{\rm min} = 0.800, \ T_{\rm max} = 1.000$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.044$	182 parameters
$wR(F^2) = 0.123$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.16 \text{ e } \text{\AA}^{-3}$
2461 reflections	$\Delta \rho_{\min} = -0.21 \text{ e } \text{\AA}^{-3}$

Table 1

H	lyd	rogen-	bond	geometry	(A,	°).
---	-----	--------	------	----------	-----	-----

D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
0.93 0.96	2.69 2.69	3.597 (2) 3.547 (2)	166 149
	<i>D</i> -Н 0.93 0.96	D−H H···A 0.93 2.69 0.96 2.69	D-H H···A D···A 0.93 2.69 3.597 (2) 0.96 2.69 3.547 (2)

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by STCSM (12JC1400200).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5297).

References

- Avitia, B., MacIntosh, E., Muhia, S. & Kelson, E. (2011). Tetrahedron Lett. 52, 1631-1634.
- Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cardenas, D. J. & Echavarren, A. M. (1999). Organometallics, 18, 3337-3341. Pugh, D. & Danopoulos, A. A. (2007). Coord. Chem. Rev. 251, 610-641.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Wakioka, M., Ikegami, M. & Ozawa, F. (2010). Macromolecules, 43, 6980-

6985

Wang, Z., Turner, E., Mahoney, V., Madakuni, S., Groy, T. & Li, A. (2010). Inorg. Chem. 49, 11276-11286.

Williams, J. A. G. (2009). Chem. Soc. Rev. 38, 1783-1801.

- Wu, L. Y., Hao, X. Q., Xu, Y. X., Jia, M. Q., Wang, Y. N., Gong, J. F. & Song, M. P. (2009). Organometallics, 28, 3369-3380.
- Wu, Y., Xie, D., Zhang, D., Li, X. & Jin, W. (2012). Acta Cryst. E68, m1210m1211.

supporting information

Acta Cryst. (2013). E69, o333 [doi:10.1107/S1600536813002663]

2-[3-Methoxy-5-(pyrimidin-2-yl)phenyl]pyrimidine

Jiena Hu, Yang Wu, Dengqing Zhang, Xianying Li and Wusong Jin

S1. Comment

Pincer compounds have extensive applications in the coordination chemistry and material science (Pugh & Danopoulos, 2007). The most widely-used pincer ligand is terpyridine. Meanwhile, some tridentate NCN ligands with similar structures to terpyridine have also been reported (Williams, 2009; Wang *et al.*, 2010; Wu *et al.*, 2009). As part of our ongoing studies in this field (Wu *et al.*, 2012), we report here the crystal structure of a new pincer compound 1,3-di(pyrimin-2-yl)-5-methoxybenzene.

The molecular structure of the title compound is shown in Figure 1. The three aryl rings of the title compound are not coplanar, but dihedral angles of 12.06 (4)° and -13.13 (4)° are found between the terminal pyrimidine rings and central phenyl ring, respectively. In the crystal, intermolecular C9–H8…N4 and C15–H15B…N3 hydrogen bonds (Table 1) form zig-zag chains along c. The molecules stack along the b axis in such a way that the same pyrimidine-phenyl segment of two neighboring molecules overlap in opposite directions with a centroid-centroid distance of 4.112 (3) Å.

S2. Experimental

The compound was prepared using methods described in the literature (Avitia *et al.*, 2011; Wakioka *et al.*, 2010; Cardenas & Echavarren, 1999). A mixture of 1,3-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-methoxybenzene (600 mg, 1.67 mmol), 2-bromopyrimidine (800 mg, 5.03 mmol), K₂CO₃ aq (2.0 *M*, 8.40 ml) and Pd(PPh₃)₄ (390 mg, 0.251 mmol) in toluene (30 ml) was stirred at 110°C for 48 h under an argon atmosphere. After cooling to room temperature, the reaction mixture was poured into water, and extracted with CH₂Cl₂. The combined organic phase was washed with water and dried over anhydrous magnesium sulfate. After filtration and evaporation, the residue was purified with flash column chromatography (SiO₂, eluted with CH₂Cl₂/petroleum ether = 1:5) to obtain the 1,3-di(pyrimidin-2yl)-5-methoxybenzene as a white powder (353 mg) in 80% yield. ¹H NMR (400 MHz, CDCl₃) δ 9.16 (s, 1H), 8.83 (d, *J* = 4.8 Hz, 4H), 8.14 (d, *J* = 1.5 Hz, 2H), 7.20 (t, *J* = 4.8 Hz, 2H), 3.99 (s, 3H). ¹³C NMR(100 MHz, CDCl₃) δ 164.30, 160.51, 157.23, 139.36, 120.85, 119.32, 115.95, 55.74. MS(EI): m/*z*= 263.95. A single-crystal was obtained by slow evaporation of an acetonitrile solution of the title compound.

S3. Refinement

All H atoms were placed geometrically and treated as riding on their parent atoms with C—H = 0.96 (methyl) Å [U iso (H) = 1.5U eq (C)], and C—H = 0.93 (aromatic) Å [U iso (H) = 1.2U eq (C)].

Figure 2

A view of the unit-cell contents of the title compound along the b axis.

2-[3-Methoxy-5-(pyrimidin-2-yl)phenyl]pyrimidine

Crystal data	
$C_{15}H_{12}N_4O$	
11 2(120	

$M_r = 264.29$
Orthorhombic, Pbca
Hall symbol: -P 2ac 2ab
<i>a</i> = 11.3779 (8) Å
<i>b</i> = 8.0954 (6) Å
<i>c</i> = 27.3371 (18) Å
$V = 2518.0(3) \text{ Å}^3$
Z = 8

F(000) = 1104 $D_x = 1.394 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4404 reflections $\theta = 4.7-56.5^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 293 KPrismatic, colourless $0.28 \times 0.21 \times 0.07 \text{ mm}$ Data collection

Bruker SMART CCD area-detector	14088 measured reflections
diffractometer	2461 independent reflections
Radiation source: fine-focus sealed tube	2059 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int} = 0.030$
φ and ω scans	$\theta_{max} = 26.0^{\circ}, \theta_{min} = 1.5^{\circ}$
Absorption correction: multi-scan	$h = -14 \rightarrow 12$
(<i>SADABS</i> ; Bruker, 2000)	$k = -8 \rightarrow 9$
$T_{\min} = 0.800, T_{\max} = 1.000$	$l = -33 \rightarrow 31$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.044$	Hydrogen site location: inferred from
$wR(F^2) = 0.123$	neighbouring sites
S = 1.04	H-atom parameters constrained
2461 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0665P)^2 + 0.4657P]$
182 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} = 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.16 \text{ e } \text{Å}^{-3}$
direct methods	$\Delta\rho_{min} = -0.21 \text{ e } \text{Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	1.03793 (11)	0.23473 (17)	0.28017 (4)	0.0556 (4)	
N2	1.20879 (9)	0.20037 (16)	0.32842 (4)	0.0508 (3)	
N3	0.65549 (10)	-0.04972 (17)	0.43132 (4)	0.0550(3)	
N4	0.65653 (10)	0.05619 (16)	0.35048 (4)	0.0519 (3)	
01	1.07030 (9)	-0.16817 (14)	0.46649 (3)	0.0572 (3)	
C1	1.02113 (12)	-0.07963 (17)	0.42928 (4)	0.0434 (3)	
C2	0.89954 (12)	-0.07835 (17)	0.42817 (5)	0.0444 (3)	
H2	0.8574	-0.1340	0.4522	0.053*	
C3	0.84023 (11)	0.00505 (16)	0.39159 (4)	0.0394 (3)	
C4	0.90336 (11)	0.08851 (16)	0.35561 (4)	0.0387 (3)	
H4	0.8639	0.1440	0.3308	0.046*	
C5	1.02519 (11)	0.08866 (16)	0.35693 (4)	0.0380 (3)	
C6	1.08424 (11)	0.00412 (16)	0.39390 (4)	0.0415 (3)	
H6	1.1660	0.0040	0.3948	0.050*	
C7	1.09451 (11)	0.17957 (16)	0.31955 (4)	0.0392 (3)	
C8	1.10177 (14)	0.3194 (2)	0.24815 (6)	0.0609 (4)	

H8	1.0644	0.3616	0.2206	0.073*	
С9	1.21922 (13)	0.3476 (2)	0.25355 (6)	0.0554 (4)	
H9	1.2626	0.4064	0.2306	0.067*	
C10	1.26891 (12)	0.2841 (2)	0.29482 (6)	0.0567 (4)	
H10	1.3490	0.3001	0.2998	0.068*	
C11	0.70953 (11)	0.00467 (17)	0.39113 (4)	0.0417 (3)	
C12	0.53848 (13)	-0.0495 (2)	0.43016 (6)	0.0627 (5)	
H12	0.4977	-0.0875	0.4574	0.075*	
C13	0.47587 (13)	0.0040 (2)	0.39070 (6)	0.0609 (4)	
H13	0.3941	0.0056	0.3907	0.073*	
C14	0.53930 (13)	0.0549 (2)	0.35126 (6)	0.0589 (4)	
H14	0.4991	0.0905	0.3236	0.071*	
C15	1.19460 (14)	-0.1760 (2)	0.46883 (6)	0.0639 (5)	
H15A	1.2246	-0.2221	0.4390	0.096*	
H15B	1.2177	-0.2443	0.4959	0.096*	
H15C	1.2258	-0.0668	0.4732	0.096*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0475 (6)	0.0735 (9)	0.0457 (6)	-0.0099 (6)	-0.0043 (5)	0.0165 (6)
N2	0.0395 (6)	0.0582 (8)	0.0548 (7)	-0.0046 (5)	-0.0003(5)	0.0092 (6)
N3	0.0450 (7)	0.0736 (9)	0.0466 (7)	-0.0109 (6)	0.0072 (5)	-0.0010 (6)
N4	0.0403 (6)	0.0610 (8)	0.0542 (7)	0.0031 (5)	0.0002 (5)	0.0046 (6)
01	0.0531 (6)	0.0696 (7)	0.0491 (6)	0.0027 (5)	-0.0065 (4)	0.0201 (5)
C1	0.0468 (7)	0.0460 (8)	0.0375 (6)	0.0020 (6)	-0.0027 (5)	0.0030 (6)
C2	0.0463 (8)	0.0490 (8)	0.0378 (6)	-0.0033 (6)	0.0050 (5)	0.0046 (6)
C3	0.0387 (7)	0.0411 (7)	0.0383 (6)	-0.0012 (5)	0.0021 (5)	-0.0037 (5)
C4	0.0395 (7)	0.0415 (7)	0.0352 (6)	0.0008 (5)	-0.0013 (5)	0.0001 (5)
C5	0.0387 (7)	0.0395 (7)	0.0357 (6)	-0.0010 (5)	0.0012 (5)	-0.0027 (5)
C6	0.0359 (6)	0.0472 (8)	0.0414 (7)	0.0001 (5)	-0.0014 (5)	-0.0003 (6)
C7	0.0380 (6)	0.0410 (7)	0.0385 (6)	-0.0010 (5)	0.0006 (5)	-0.0021 (5)
C8	0.0611 (9)	0.0768 (11)	0.0449 (8)	-0.0123 (8)	-0.0027 (7)	0.0170 (8)
C9	0.0587 (9)	0.0581 (9)	0.0495 (8)	-0.0128 (7)	0.0122 (6)	0.0053 (7)
C10	0.0397 (7)	0.0626 (10)	0.0677 (10)	-0.0083 (7)	0.0078 (6)	0.0072 (8)
C11	0.0400 (7)	0.0425 (7)	0.0426 (7)	-0.0017 (5)	0.0036 (5)	-0.0050 (6)
C12	0.0465 (8)	0.0834 (12)	0.0582 (9)	-0.0140 (8)	0.0140 (7)	-0.0097 (8)
C13	0.0356 (7)	0.0702 (11)	0.0768 (11)	-0.0021 (7)	0.0063 (7)	-0.0170 (9)
C14	0.0416 (8)	0.0652 (10)	0.0699 (10)	0.0051 (7)	-0.0055 (7)	-0.0001 (8)
C15	0.0553 (9)	0.0735 (11)	0.0628 (9)	0.0086 (8)	-0.0128 (7)	0.0178 (8)

Geometric parameters (Å, °)

N1—C8	1.3280 (18)	C4—H4	0.9300
N1—C7	1.3316 (17)	C5—C6	1.3934 (17)
N2—C10	1.3310 (18)	С5—С7	1.4859 (17)
N2—C7	1.3333 (16)	С6—Н6	0.9300
N3—C12	1.3317 (19)	C8—C9	1.364 (2)

N3—C11	1.3338 (16)	С8—Н8	0.9300
N4—C11	1.3311 (17)	C9—C10	1.363 (2)
N4—C14	1.3340 (18)	С9—Н9	0.9300
01—C1	1.3643 (15)	C10—H10	0.9300
O1—C15	1.4171 (18)	C12—C13	1.363 (2)
C1—C6	1.3821 (18)	C12—H12	0.9300
C1—C2	1.3838 (18)	C13—C14	1.361 (2)
C2—C3	1.3826 (18)	С13—Н13	0.9300
C2—H2	0.9300	C14—H14	0.9300
C3—C4	1.3928 (17)	С15—Н15А	0.9600
C3—C11	1.4872 (18)	C15—H15B	0.9600
C4—C5	1.3867 (17)	C15—H15C	0.9600
	1.5007 (17)		0.9000
C8—N1—C7	116.21 (12)	N1—C8—H8	118.3
C10—N2—C7	116.10 (12)	С9—С8—Н8	118.3
C12—N3—C11	116.16 (13)	C10—C9—C8	115.66 (13)
C11—N4—C14	115.93 (12)	С10—С9—Н9	122.2
C1—O1—C15	117.79 (11)	С8—С9—Н9	122.2
O1—C1—C6	124.49 (12)	N2—C10—C9	123.39 (13)
O1—C1—C2	115.47 (11)	N2-C10-H10	118.3
C6—C1—C2	120.03 (11)	C9—C10—H10	118.3
C3—C2—C1	120.49 (12)	N4—C11—N3	125.60 (12)
C3—C2—H2	119.8	N4—C11—C3	117.35 (11)
C1—C2—H2	119.8	N3—C11—C3	117.04 (11)
C2—C3—C4	119.74 (12)	N3—C12—C13	122.78 (14)
C2—C3—C11	119.55 (11)	N3—C12—H12	118.6
C4—C3—C11	120.71 (11)	С13—С12—Н12	118.6
C5—C4—C3	119.83 (11)	C14—C13—C12	116.48 (14)
C5—C4—H4	120.1	C14—C13—H13	121.8
C3—C4—H4	120.1	С12—С13—Н13	121.8
C4—C5—C6	120.04 (11)	N4—C14—C13	123.02 (15)
C4—C5—C7	120.87 (11)	N4—C14—H14	118.5
C6—C5—C7	119.09 (11)	C13—C14—H14	118.5
C1—C6—C5	119.87 (12)	O1—C15—H15A	109.5
С1—С6—Н6	120.1	O1—C15—H15B	109.5
С5—С6—Н6	120.1	H15A—C15—H15B	109.5
N1—C7—N2	125.18 (12)	O1—C15—H15C	109.5
N1—C7—C5	117.74 (11)	H15A—C15—H15C	109.5
N2—C7—C5	117.07 (11)	H15B—C15—H15C	109.5
N1—C8—C9	123.44 (14)		
C15—O1—C1—C6	-0.5 (2)	C6—C5—C7—N1	168.58 (12)
C15—O1—C1—C2	178.92 (13)	C4—C5—C7—N2	167.50 (12)
O1—C1—C2—C3	-178.88 (12)	C6—C5—C7—N2	-11.89 (18)
C6—C1—C2—C3	0.6 (2)	C7—N1—C8—C9	1.4 (2)
C1—C2—C3—C4	-0.05 (19)	N1-C8-C9-C10	-0.6 (3)
C1—C2—C3—C11	179.97 (12)	C7—N2—C10—C9	0.5 (2)
C2—C3—C4—C5	-0.56 (18)	C8—C9—C10—N2	-0.4 (2)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$179.41 (11) \\ 0.63 (18) \\ -178.76 (11) \\ 178.91 (12) \\ -0.52 (19) \\ -0.10 (18) \\ 179.31 (12) \\ -1.3 (2) \\ 178.20 (13) \\ 0.4 (2) \\ -179.09 (13) \\ \end{array}$	C14—N4—C11—N3 C14—N4—C11—C3 C12—N3—C11—N4 C12—N3—C11—C3 C2—C3—C11—N4 C4—C3—C11—N4 C2—C3—C11—N4 C4—C3—C11—N3 C4—C3—C11—N3 C11—N3—C12—C13 N3—C12—C13—C14	$\begin{array}{c} 1.3 (2) \\ -179.78 (13) \\ -0.9 (2) \\ -179.84 (13) \\ -166.49 (13) \\ 13.54 (18) \\ 12.55 (18) \\ -167.43 (12) \\ -0.5 (2) \\ 1.4 (3) \\ -0.2 (2) \end{array}$
C10—N2—C7—N1 C10—N2—C7—C5 C4—C5—C7—N1	0.4 (2) -179.09 (13) -12.03 (18)	N3-C12-C13-C14 C11-N4-C14-C13 C12-C13-C14-N4	-0.2(2) -1.0(2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C9—H9…N4 ⁱ	0.93	2.69	3.597 (2)	166
C15—H15 <i>B</i> ····N3 ⁱⁱ	0.96	2.69	3.547 (2)	149

Symmetry codes: (i) -x+2, y+1/2, -z+1/2; (ii) x+1/2, -y-1/2, -z+1.