## metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## Tris(3,4,7,8-tetramethyl-1,10-phenanthrolin-1-ium) hexacyanidocobaltate(III) pentahydrate

#### Ai-Yun Hu, Deng-Yong Yu and Ai-Hua Yuan\*

School of Biology and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China Correspondence e-mail: aihuayuan@163.com

Received 31 January 2013; accepted 5 February 2013

Key indicators: single-crystal X-ray study; T = 173 K; mean  $\sigma$ (C–C) = 0.006 Å; disorder in solvent or counterion; R factor = 0.058; wR factor = 0.155; data-to-parameter ratio = 14.0.

The structure of the title compound,  $(C_{16}H_{17}N_2)_3[Co(CN)_6]$ .-5H<sub>2</sub>O, consists of three 3,4,7,8-tetramethyl-1,10-phenanthrolin-1-ium cations, a  $[Co(CN)_6]^{3-}$  anion and five water molecules of crystallization, one of which is disordered over two sets of sites in a 0.587 (15):0.413 (15) ratio. The  $[Co(CN)_6]^{3-}$  anion exhibits an octahedral geometry. In the structure, cations and anions are linked alternatively through O-H···O, O-H···N, N-H···O and N-H···N hydrogen bonds,  $\pi$ - $\pi$  interactions [centroid-centroid distances = 3.523 (2)-4.099 (2) Å] and van der Waals forces, forming a three-dimensional supramolecular network.

#### **Related literature**

For general background to hexacyanidometallate-based compounds, see: Andruh *et al.* (2009); Tokoro & Ohkoshi (2011). For related structures, see: Qian *et al.* (2011); Shatruk *et al.* (2007).



#### **Experimental**

Crystal data

| $(C_{16}H_{17}N_2)_3[Co(CN)_6].5H_2O$ | a = 12.836(2)  |
|---------------------------------------|----------------|
| $M_r = 1017.08$                       | b = 14.458 (2) |
| Triclinic, $P\overline{1}$            | c = 16.645 (3) |

 $\alpha = 97.216 (2)^{\circ}$   $\beta = 110.934 (2)^{\circ}$   $\gamma = 112.179 (2)^{\circ}$   $V = 2547.6 (7) \text{ Å}^{3}$ Z = 2

#### Data collection

Bruker SMART APEX CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2004) T<sub>min</sub> = 0.939, T<sub>max</sub> = 0.950

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.058$   $wR(F^2) = 0.155$  S = 1.059402 reflections 671 parameters

#### Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$           | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - H \cdot \cdot \cdot A$ |
|---------------------------------------|------|-------------------------|--------------|-----------------------------|
| 01-H1A···O5'                          | 0.82 | 1.84                    | 2.616 (7)    | 157                         |
| $O1-H1A\cdots O5$                     | 0.82 | 2.02                    | 2.823 (8)    | 165                         |
| $O1 - H1B \cdot \cdot \cdot N5^{i}$   | 0.82 | 2.27                    | 3.068 (4)    | 163                         |
| $O2-H2A\cdots N3^{ii}$                | 0.82 | 2.25                    | 3.044 (4)    | 164                         |
| $O2 - H2B \cdot \cdot \cdot N3$       | 0.82 | 2.09                    | 2.901 (4)    | 169                         |
| $O3-H3A\cdots N2$                     | 0.82 | 2.11                    | 2.909 (4)    | 163                         |
| $O3-H3B\cdots O2^{ii}$                | 0.82 | 2.01                    | 2.813 (3)    | 168                         |
| $O4-H4A\cdots O3$                     | 0.82 | 1.89                    | 2.707 (3)    | 173                         |
| $O4-H4B\cdots O1$                     | 0.82 | 1.94                    | 2.735 (4)    | 164                         |
| N8−H8N···O4 <sup>iii</sup>            | 0.95 | 1.72                    | 2.636 (4)    | 161                         |
| $N9 - H9N \cdot \cdot \cdot N5^{iv}$  | 0.95 | 2.14                    | 2.919 (4)    | 138                         |
| $N11 - H11N \cdot \cdot \cdot N4^{i}$ | 0.95 | 2.11                    | 2.799 (4)    | 128                         |

Symmetry codes: (i) x, y + 1, z; (ii) -x + 1, -y + 1, -z + 1; (iii) x + 1, y, z; (iv) -x + 2, -y + 1, -z + 1.

Data collection: *SMART* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *SHELXTL*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ5042).

#### References

- Andruh, M., Costes, J. P., Diaz, C. & Gao, S. (2009). *Inorg. Chem.* 48, 3342–3359.
- Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Qian, S. Y., Zhou, H., Yuan, A. H. & Song, Y. (2011). Cryst. Growth Des. 11, 5676-5681.
- Shatruk, M., Chambers, K. E., Prosvirin, A. V. & Dunbar, K. R. (2007). Inorg. Chem. 46, 5155–5165.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tokoro, H. & Ohkoshi, S. (2011). Dalton Trans. 40, 6825-6833.

Å

Å



Mo  $K\alpha$  radiation  $\mu = 0.40 \text{ mm}^{-1}$ 

 $0.16 \times 0.15 \times 0.13 \text{ mm}$ 

19411 measured reflections

9402 independent reflections

6096 reflections with  $I > 2\sigma(I)$ 

H-atom parameters constrained

T = 173 K

 $R_{\rm int} = 0.046$ 

2 restraints

 $\Delta \rho_{\rm max} = 0.49 \ {\rm e} \ {\rm \AA}^{-3}$ 

 $\Delta \rho_{\rm min} = -0.53~{\rm e}~{\rm \AA}^{-3}$ 

# supporting information

Acta Cryst. (2013). E69, m142 [doi:10.1107/S1600536813003632]

# Tris(3,4,7,8-tetramethyl-1,10-phenanthrolin-1-ium) hexacyanidocobaltate(III) pentahydrate

### Ai-Yun Hu, Deng-Yong Yu and Ai-Hua Yuan

#### S1. Comment

In the past few years, hexacyanometallates  $[M(CN)_6]^{3-}$  (M = Fe, Co, Cr) have been employed usually as building blocks to react with the second metal ions in the presence of organic ligands, forming several types of bimetallic assemblies with various dimensional structures and interesting properties (Andruh *et al.*, 2009; Tokoro *et al.*, 2011). However, the development of hexacyano- and lanthanide-based assemblies has been somewhat hampered by the tendency of the lanthanide ions to adopt higher coordination numbers, and their ability to easily adapt to a given environment. Recently, we used the  $[Co(CN)_6]^{3-}$  presursor to react with lanthanide ion Ce<sup>3+</sup> and the chelated ligand 3,4,7,8-tetramethyl-1,10-phenanthrolin (tmphen), to construct organic-inorganic hybrid materials. Unexpectedly, a new ion-pair compound (Htmphen)<sub>3</sub>Co(CN)<sub>6</sub>.5H<sub>2</sub>O without Ce<sup>3+</sup> ions was obtained instead.

The structure of the title compound,  $(C_{16}H_{17}N_2)_3Co(CN)_6.5H_2O$ , consists of three 3,4,7,8-tetramethyl-1,10phenanthrolin-1-ium cations, a  $[Co(CN)_6]^{3-}$  anion and five water molecules of crystallization (Fig. 1). The six-coordinated  $[Co(CN)_6]^{3-}$  unit exhibits an octahedral geometry, in which the mean Co—C and C—N bond distances are 1.946 (4) Å and 1.151 (2) Å, respectively, while the Co-CN bonds are almost linear with the maximum deviation from linearity of 2.9°. The cations and anions are linked alternatively through hydrogen bonds (Table 1),  $\pi \cdots \pi$  interactions (centroid-to-centroid distances = 3.523 (2)–4.099 (2) Å) and van der Waals forces to form a three-dimensional supramolecular network (Fig. 2). The structure of the title compound is different from those of hexacyanide-based family of pentanuclear clusters { $[M(tmphen)_2]_3[M'(CN)_6]_2$ } (M = Cr, Mn, Co, Ni, Zn; M' = Co, Cr, Fe) (Shatruk *et al.*, 2007) and octacyanide-based helical chains [Ln(tmphen)\_2(DMF)\_n][M(CN)\_8].xsolvents (Ln = Sm, Pr; n = 2, 5; M = Mo, W) (Qian *et al.*, 2011) reported previously.

#### **S2. Experimental**

The title compound was prepared at room temperature by slow diffusion of an ethanol solution containing  $Ce(NO_3)_3.6H_2O$  (0.10 mmol) and 3,4,7,8-tetramethyl-1,10-phenanthrolin (0.20 mmol) into an aqueous solution of  $K_3[Co(CN)_6].H_2O$  (0.10 mmol). After two weeks, colourless plate-like crystals were obtained.

#### **S3. Refinement**

All non-hydrogen atoms were refined anisotropically. The (C)H atoms of 3,4,7,8-tetramethyl-1,10-phenanthrolin were calculated at idealized positions and included in the refinement in a riding mode. The (N)H atoms of 3,4,7,8-tetramethyl-1,10-phenanthrolin and (O)H atoms of water molecules were located from difference Fourier maps and refined as riding (N–H = 0.95 Å,  $U(H) = 1.2U_{eq}(N)$ ; O–H = 0.82 or 0.99 Å,  $U(H) = 1.5U_{eq}(O)$ ). The O5 atom was disordered over two sites in a 0.587 (15):0.413 (15) ratio, sharing the hydrogen atoms. The temperature factors of the atoms C3, C5, N3 and N5 were restrained to be nearly isotropic.



#### Figure 1

*ORTEP* diagram of the title compound, showing the 30% probability thermal motion ellipsoid. The (C)H atoms of 3,4,7,8-tetramethyl-1,10-phenanthrolin have been omitted for clarity.



#### Figure 2

The three-dimensional supramolecular network.

#### Tris(3,4,7,8-tetramethyl-1,10-phenanthrolin-1-ium) hexacyanidocobaltate(III) pentahydrate

Z = 2

F(000) = 1072

 $\theta = 2.4 - 25.6^{\circ}$ 

 $\mu = 0.40 \text{ mm}^{-1}$ 

Plate, colourless

 $0.16 \times 0.15 \times 0.13$  mm

 $\theta_{\rm max} = 25.5^{\circ}, \ \theta_{\rm min} = 1.6^{\circ}$ 

19411 measured reflections

9402 independent reflections

6096 reflections with  $I > 2\sigma(I)$ 

T = 173 K

 $R_{\rm int} = 0.046$ 

 $h = -15 \rightarrow 15$ 

 $k = -17 \rightarrow 17$ 

 $l = -20 \rightarrow 20$ 

 $D_{\rm x} = 1.326 {\rm Mg} {\rm m}^{-3}$ 

Mo *K* $\alpha$  radiation,  $\lambda = 0.71073$  Å

Cell parameters from 2791 reflections

#### Crystal data

 $\begin{array}{l} ({\rm C}_{16}{\rm H}_{17}{\rm N}_{2})_{3}[{\rm Co}({\rm CN})_{6}]\cdot{\rm 5H_{2}O}\\ M_{r}=1017.08\\ {\rm Triclinic}, P\overline{1}\\ {\rm Hall \ symbol: -P \ 1}\\ a=12.836\ (2)\ {\rm \AA}\\ b=14.458\ (2)\ {\rm \AA}\\ c=16.645\ (3)\ {\rm \AA}\\ a=97.216\ (2)^{\circ}\\ \beta=110.934\ (2)^{\circ}\\ \gamma=112.179\ (2)^{\circ}\\ V=2547.6\ (7)\ {\rm \AA}^{3} \end{array}$ 

#### Data collection

Bruker SMART APEX CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator phi and  $\omega$  scans Absorption correction: multi-scan (*SADABS*; Bruker, 2004)  $T_{\min} = 0.939, T_{\max} = 0.950$ 

#### Refinement

| Refinement on $F^2$<br>Least-squares matrix: full<br>$R[F^2 > 2\sigma(F^2)] = 0.058$ | Secondary atom site location: difference Fourier<br>map<br>Hydrogen site location: inferred from |
|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| $wR(F^2) = 0.155$                                                                    | neighbouring sites                                                                               |
| S = 1.05                                                                             | H-atom parameters constrained                                                                    |
| 9402 reflections                                                                     | $w = 1/[\sigma^2(F_o^2) + (0.0725P)^2]$                                                          |
| 671 parameters                                                                       | where $P = (F_0^2 + 2F_c^2)/3$                                                                   |
| 2 restraints                                                                         | $(\Delta/\sigma)_{\rm max} < 0.001$                                                              |
| Primary atom site location: structure-invariant                                      | $\Delta \rho_{\rm max} = 0.49 \text{ e } \text{\AA}^{-3}$                                        |
| direct methods                                                                       | $\Delta \rho_{\rm min} = -0.53 \text{ e } \text{\AA}^{-3}$                                       |

#### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F<sup>2</sup>, conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2$ sigma( $F^2$ ) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F<sup>2</sup> are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

| Fractional atomic coordinates and | isotropic or equi | ivalent isotropic disp | placement parameters $(Å^2)$ |
|-----------------------------------|-------------------|------------------------|------------------------------|
|                                   | 1 1               |                        |                              |

|     | x           | у            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1) |
|-----|-------------|--------------|--------------|-----------------------------|-----------|
| Col | 0.51825 (4) | 0.24448 (3)  | 0.26906 (3)  | 0.02730 (15)                |           |
| 01  | 0.5715 (2)  | 0.91825 (19) | 0.24394 (19) | 0.0541 (8)                  |           |
| H1A | 0.5693      | 0.9276       | 0.1959       | 0.081*                      |           |

| H1B  | 0.5740                 | 0.9659                 | 0.2782                     | 0.081*                 |
|------|------------------------|------------------------|----------------------------|------------------------|
| O2   | 0.6322 (2)             | 0.50998 (19)           | 0.61099 (15)               | 0.0434 (7)             |
| H2A  | 0.6087                 | 0.5553                 | 0.6057                     | 0.065*                 |
| H2B  | 0.5936                 | 0.4611                 | 0.5642                     | 0.065*                 |
| 03   | 0.4375 (2)             | 0.5764 (2)             | 0.26299 (17)               | 0.0476 (7)             |
| H3A  | 0.4350                 | 0.5284                 | 0.2291                     | 0.071*                 |
| H3B  | 0.4146                 | 0.5583                 | 0.3010                     | 0.071*                 |
| 04   | 0.3853 (2)             | 0.7174 (2)             | 0.18589 (19)               | 0.0585 (8)             |
| H4A  | 0.3958                 | 0.6733                 | 0.2097                     | 0.088*                 |
| H4B  | 0.4426                 | 0.7769                 | 0.2134                     | 0.088*                 |
| N1   | 0.7884(3)              | 0.4121 (2)             | 0.3205 (2)                 | 0.0377(8)              |
| N2   | 0.4217(3)              | 0.3833(2)              | 0.1708(2)                  | 0.0401(8)              |
| N3   | 0.1217(3)              | 0.3588(2)              | 0.1700(2)<br>0.4335(2)     | 0.0353(7)              |
| N4   | 0.2517(3)              | 0.0586(2)              | 0.4333(2)<br>0.21248(19)   | 0.0358(7)              |
| N5   | 0.2317(3)              | 0.0000(2)<br>0.1225(2) | 0.21240(19)<br>0.37695(19) | 0.0339(7)              |
| N6   | 0.0373(3)              | 0.1223(2)<br>0.1270(2) | 0.07693(17)                | 0.0337(7)              |
| N7   | 0.3074(3)              | 0.1270(2)              | 0.0930(2)<br>0.16078(18)   | 0.0417(3)              |
| IN / | 1.1132(2)<br>1.1715(2) | 0.3340(2)              | 0.10078(18)                | 0.0277(7)              |
| INO  | 1.1713 (2)             | 0.7221 (2)             | 0.09908 (17)               | 0.0280(7)              |
| HðN  | 1.2393                 | 0.7114                 | 0.1362                     | 0.034*                 |
| N9   | 1.0938 (2)             | 0.8048 (2)             | 0.511/2 (17)               | 0.0261 (6)             |
| H9N  | 1.1/90                 | 0.8521                 | 0.5299                     | 0.031*                 |
| NIO  | 1.1690 (3)             | 0.9788 (2)             | 0.45850 (18)               | 0.0301 (7)             |
| N11  | 0.1916 (3)             | 0.8911 (2)             | 0.27169 (19)               | 0.0337 (7)             |
| H11N | 0.1570                 | 0.9236                 | 0.2308                     | 0.040*                 |
| N12  | -0.0457 (3)            | 0.8539 (2)             | 0.16862 (18)               | 0.0309 (7)             |
| C1   | 0.6879 (3)             | 0.3501 (3)             | 0.3019 (2)                 | 0.0253 (7)             |
| C2   | 0.4557 (3)             | 0.3297 (2)             | 0.2058 (2)                 | 0.0258 (8)             |
| C3   | 0.5136 (3)             | 0.3162 (2)             | 0.3737 (2)                 | 0.0261 (8)             |
| C4   | 0.3490 (3)             | 0.1353 (3)             | 0.2331 (2)                 | 0.0262 (8)             |
| C5   | 0.5921 (3)             | 0.1661 (2)             | 0.3369 (2)                 | 0.0264 (8)             |
| C6   | 0.5133 (3)             | 0.1713 (3)             | 0.1613 (2)                 | 0.0294 (8)             |
| C7   | 1.0826 (3)             | 0.4713 (3)             | 0.1899 (2)                 | 0.0311 (8)             |
| H7   | 1.1490                 | 0.4615                 | 0.2303                     | 0.037*                 |
| C8   | 0.9595 (3)             | 0.3967 (3)             | 0.1658 (2)                 | 0.0315 (8)             |
| С9   | 0.8617 (3)             | 0.4075 (3)             | 0.1050 (2)                 | 0.0313 (8)             |
| C10  | 0.8899 (3)             | 0.4943 (3)             | 0.0708 (2)                 | 0.0261 (8)             |
| C11  | 0.7977 (3)             | 0.5151 (3)             | 0.0080 (2)                 | 0.0305 (8)             |
| H11  | 0.7116                 | 0.4669                 | -0.0147                    | 0.037*                 |
| C12  | 0.8288 (3)             | 0.6010 (3)             | -0.0200(2)                 | 0.0311 (8)             |
| H12  | 0.7642                 | 0.6120                 | -0.0611                    | 0.037*                 |
| C13  | 0.9569(3)              | 0.6759(3)              | 0.0105(2)                  | 0.0260 (8)             |
| C14  | 0.9947(3)              | 0.7681(3)              | -0.0155(2)                 | 0.0312(8)              |
| C15  | 1.1214 (3)             | 0.8357 (3)             | 0.0182(2)                  | 0.0325(8)              |
| C16  | 1 2062 (3)             | 0.8085 (3)             | 0.0748(2)                  | 0.0322(0)              |
| H16  | 1 2032 (3)             | 0.8537                 | 0.0972                     | 0.041*                 |
| C17  | 1.2751                 | 0.6550 (2)             | 0.0972                     | 0.071                  |
| C18  | 1.0173 (3)             | 0.0550(2)              | 0.0090(2)<br>0.1015(2)     | 0.0230(0)<br>0.0244(7) |
| C10  | 1.01/3(3)              | 0.3044(2)              | 0.1013(2)                  | 0.0244(7)              |
| U19  | 0.9394 (4)             | 0.3094 (3)             | 0.2078 (2)                 | 0.0410 (10)            |

| H19A        | 0.8925     | 0.3134     | 0.2423                 | 0.062*          |
|-------------|------------|------------|------------------------|-----------------|
| H19B        | 1.0207     | 0.3157     | 0.2482                 | 0.062*          |
| H19C        | 0.8918     | 0.2419     | 0.1603                 | 0.062*          |
| C20         | 0.7263 (3) | 0.3302 (3) | 0.0763 (3)             | 0.0435 (10)     |
| H20A        | 0.7233     | 0.2684     | 0.0959                 | 0.065*          |
| H20B        | 0.6799     | 0.3088     | 0.0105                 | 0.065*          |
| H20C        | 0.6884     | 0.3633     | 0.1040                 | 0.065*          |
| C21         | 0.8980 (4) | 0.7920 (3) | -0.0795(3)             | 0.0452 (10)     |
| H21A        | 0.8377     | 0 7908     | -0.0560                | 0.068*          |
| H21B        | 0.8540     | 0.7392     | -0.1387                | 0.068*          |
| H21C        | 0.9394     | 0.8614     | -0.0855                | 0.068*          |
| C22         | 1 1710 (4) | 0.9373(3)  | -0.0036(3)             | 0.000 (11)      |
| H22A        | 1 1416     | 0.9277     | -0.0690                | 0.072*          |
| H22R        | 1.1410     | 0.9227     | 0.0263                 | 0.072*          |
| H22C        | 1.1407     | 0.9836     | 0.0205                 | 0.072*          |
| C23         | 1.1407     | 0.7197(3)  | 0.5392 (2)             | 0.072           |
| U23         | 1.1296     | 0.7065     | 0.5766                 | 0.0200 (0)      |
| 1123<br>C24 | 1.1290     | 0.7003     | 0.5700                 | 0.033           |
| C24         | 0.9409(3)  | 0.0502(3)  | 0.3141(2)<br>0.4588(2) | 0.0291(8)       |
| C25         | 0.8452(3)  | 0.0099(3)  | 0.4303(2)              | 0.0290(8)       |
| C20         | 0.8779(3)  | 0.7004(3)  | 0.4303(2)<br>0.2745(2) | 0.0202(8)       |
| U27         | 0.7880 (3) | 0.7885 (5) | 0.3743 (2)             | 0.0300 (8)      |
| П27<br>С28  | 0.7014     | 0.7449     | 0.3333                 | $0.037^{\circ}$ |
| C28         | 0.8232 (3) | 0.8737 (3) | 0.3462 (2)             | 0.0303 (8)      |
| H28         | 0.7605     | 0.8918     | 0.3113                 | $0.030^{*}$     |
| C29         | 0.9525 (3) | 0.9445 (3) | 0.3/43(2)              | 0.0281 (8)      |
| C30         | 0.9927 (3) | 1.0352 (3) | 0.3466 (2)             | 0.0310 (8)      |
| C31         | 1.1196 (3) | 1.0955 (3) | 0.3763 (2)             | 0.0324 (8)      |
| C32         | 1.2021 (3) | 1.0632 (3) | 0.4316 (2)             | 0.0350 (9)      |
| H32         | 1.2892     | 1.1056     | 0.4514                 | 0.042*          |
| C33         | 1.0445 (3) | 0.9205 (3) | 0.4294 (2)             | 0.0262 (8)      |
| C34         | 1.0047 (3) | 0.8277 (3) | 0.4572 (2)             | 0.0256 (8)      |
| C35         | 0.9124 (3) | 0.5551 (3) | 0.5469 (2)             | 0.0378 (9)      |
| H35A        | 0.9911     | 0.5556     | 0.5854                 | 0.057*          |
| H35B        | 0.8626     | 0.4916     | 0.4951                 | 0.057*          |
| H35C        | 0.8651     | 0.5564     | 0.5817                 | 0.057*          |
| C36         | 0.7113 (3) | 0.5964 (3) | 0.4300 (2)             | 0.0379 (9)      |
| H36A        | 0.7061     | 0.5473     | 0.4657                 | 0.057*          |
| H36B        | 0.6723     | 0.5574     | 0.3660                 | 0.057*          |
| H36C        | 0.6673     | 0.6362     | 0.4395                 | 0.057*          |
| C37         | 0.8988 (4) | 1.0638 (3) | 0.2853 (2)             | 0.0430 (10)     |
| H37A        | 0.9414     | 1.1364     | 0.2860                 | 0.065*          |
| H37B        | 0.8346     | 1.0565     | 0.3062                 | 0.065*          |
| H37C        | 0.8591     | 1.0171     | 0.2237                 | 0.065*          |
| C38         | 1.1727 (4) | 1.1939 (3) | 0.3510 (3)             | 0.0439 (10)     |
| H38A        | 1.1478     | 1.1756     | 0.2860                 | 0.066*          |
| H38B        | 1.2644     | 1.2284     | 0.3839                 | 0.066*          |
| H38C        | 1.1405     | 1.2415     | 0.3668                 | 0.066*          |
| C39         | 0.3131 (3) | 0.9164 (3) | 0.3214 (2)             | 0.0360 (9)      |

| H39  | 0.3773      | 0.9788     | 0.3237     | 0.043*      |            |
|------|-------------|------------|------------|-------------|------------|
| C40  | 0.3438 (3)  | 0.8516 (3) | 0.3688 (2) | 0.0368 (9)  |            |
| C41  | 0.2516 (3)  | 0.7609 (3) | 0.3660 (2) | 0.0317 (8)  |            |
| C42  | 0.1219 (3)  | 0.7367 (3) | 0.3140 (2) | 0.0309 (8)  |            |
| C43  | 0.0205 (3)  | 0.6466 (3) | 0.3087 (2) | 0.0318 (8)  |            |
| H43  | 0.0366      | 0.5994     | 0.3404     | 0.038*      |            |
| C44  | -0.1032 (4) | 0.6266 (3) | 0.2572 (2) | 0.0330 (9)  |            |
| H44  | -0.1703     | 0.5663     | 0.2548     | 0.040*      |            |
| C45  | -0.1296 (3) | 0.6947 (3) | 0.2088 (2) | 0.0309 (8)  |            |
| C46  | -0.2560 (3) | 0.6764 (3) | 0.1541 (2) | 0.0360 (9)  |            |
| C47  | -0.2714 (3) | 0.7463 (3) | 0.1094 (2) | 0.0347 (9)  |            |
| C48  | -0.1634 (4) | 0.8334 (3) | 0.1188 (2) | 0.0375 (9)  |            |
| H48  | -0.1763     | 0.8811     | 0.0868     | 0.045*      |            |
| C49  | -0.0317 (3) | 0.7835 (3) | 0.2123 (2) | 0.0287 (8)  |            |
| C50  | 0.0968 (3)  | 0.8043 (2) | 0.2669 (2) | 0.0255 (8)  |            |
| C51  | 0.4817 (4)  | 0.8833 (3) | 0.4242 (3) | 0.0543 (12) |            |
| H51A | 0.4982      | 0.8859     | 0.4868     | 0.081*      |            |
| H51B | 0.5327      | 0.9524     | 0.4221     | 0.081*      |            |
| H51C | 0.5032      | 0.8318     | 0.3992     | 0.081*      |            |
| C52  | 0.2805 (4)  | 0.6868 (3) | 0.4130 (3) | 0.0490 (11) |            |
| H52A | 0.3684      | 0.7030     | 0.4307     | 0.074*      |            |
| H52B | 0.2263      | 0.6150     | 0.3724     | 0.074*      |            |
| H52C | 0.2660      | 0.6935     | 0.4669     | 0.074*      |            |
| C53  | -0.3644 (4) | 0.5837 (3) | 0.1475 (3) | 0.0545 (12) |            |
| H53A | -0.3694     | 0.5928     | 0.2052     | 0.082*      |            |
| H53B | -0.3539     | 0.5209     | 0.1334     | 0.082*      |            |
| H53C | -0.4416     | 0.5762     | 0.0997     | 0.082*      |            |
| C54  | -0.3971 (4) | 0.7352 (3) | 0.0503 (3) | 0.0563 (12) |            |
| H54A | -0.4462     | 0.6666     | 0.0043     | 0.084*      |            |
| H54B | -0.3868     | 0.7905     | 0.0210     | 0.084*      |            |
| H54C | -0.4407     | 0.7411     | 0.0870     | 0.084*      |            |
| O5   | 0.6090 (10) | 0.9793 (6) | 0.0979 (3) | 0.068 (3)   | 0.587 (15) |
| O5′  | 0.4980 (14) | 0.9293 (7) | 0.0788 (5) | 0.057 (4)   | 0.413 (15) |
| H5A  | 0.5472      | 1.0060     | 0.0968     | 0.086*      |            |
| H5B  | 0.5442      | 0.9160     | 0.0461     | 0.086*      |            |
|      |             |            |            |             |            |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$    | $U^{13}$    | $U^{23}$    |
|-----|-------------|-------------|-------------|-------------|-------------|-------------|
| Col | 0.0261 (3)  | 0.0243 (3)  | 0.0291 (3)  | 0.0111 (2)  | 0.0102 (2)  | 0.0079 (2)  |
| 01  | 0.0565 (19) | 0.0345 (16) | 0.0607 (19) | 0.0151 (14) | 0.0237 (15) | 0.0061 (14) |
| O2  | 0.0562 (18) | 0.0448 (16) | 0.0354 (15) | 0.0327 (14) | 0.0168 (13) | 0.0109 (12) |
| O3  | 0.0563 (18) | 0.0501 (17) | 0.0472 (17) | 0.0315 (15) | 0.0239 (14) | 0.0215 (14) |
| O4  | 0.0308 (15) | 0.0395 (16) | 0.081 (2)   | 0.0111 (13) | 0.0029 (15) | 0.0265 (16) |
| N1  | 0.0292 (18) | 0.0346 (18) | 0.0413 (19) | 0.0100 (16) | 0.0124 (16) | 0.0105 (15) |
| N2  | 0.0347 (18) | 0.0395 (19) | 0.049 (2)   | 0.0226 (16) | 0.0125 (16) | 0.0211 (16) |
| N3  | 0.0436 (19) | 0.0335 (18) | 0.0297 (17) | 0.0197 (16) | 0.0162 (15) | 0.0055 (14) |
| N4  | 0.0308 (18) | 0.0282 (18) | 0.0392 (19) | 0.0074 (15) | 0.0132 (15) | 0.0079 (15) |
|     |             |             |             |             |             |             |

| N5  | 0.0273 (16) | 0.0311 (17) | 0.0393 (18) | 0.0139 (14) | 0.0087 (14) | 0.0146 (15) |
|-----|-------------|-------------|-------------|-------------|-------------|-------------|
| N6  | 0.051 (2)   | 0.0357 (19) | 0.0380 (19) | 0.0159 (17) | 0.0244 (17) | 0.0066 (16) |
| N7  | 0.0252 (16) | 0.0272 (16) | 0.0298 (16) | 0.0143 (14) | 0.0093 (13) | 0.0069 (13) |
| N8  | 0.0251 (16) | 0.0278 (16) | 0.0271 (16) | 0.0114 (14) | 0.0084 (13) | 0.0073 (13) |
| N9  | 0.0208 (15) | 0.0272 (16) | 0.0240 (15) | 0.0075 (13) | 0.0077 (12) | 0.0049 (13) |
| N10 | 0.0252 (16) | 0.0287 (17) | 0.0318 (17) | 0.0102 (14) | 0.0113 (14) | 0.0051 (14) |
| N11 | 0.0371 (18) | 0.0330 (17) | 0.0316 (17) | 0.0150 (15) | 0.0155 (15) | 0.0132 (14) |
| N12 | 0.0335 (17) | 0.0268 (16) | 0.0329 (17) | 0.0134 (14) | 0.0151 (14) | 0.0102 (14) |
| C1  | 0.028 (2)   | 0.0218 (19) | 0.0249 (18) | 0.0144 (17) | 0.0078 (16) | 0.0068 (15) |
| C2  | 0.0192 (18) | 0.0230 (18) | 0.0268 (19) | 0.0056 (15) | 0.0071 (15) | 0.0035 (16) |
| C3  | 0.0210 (18) | 0.0200 (18) | 0.031 (2)   | 0.0078 (15) | 0.0056 (16) | 0.0110 (16) |
| C4  | 0.028 (2)   | 0.0246 (19) | 0.0243 (19) | 0.0119 (17) | 0.0090 (16) | 0.0099 (15) |
| C5  | 0.0226 (18) | 0.0226 (18) | 0.0246 (18) | 0.0050 (15) | 0.0084 (15) | 0.0013 (15) |
| C6  | 0.0255 (19) | 0.0230 (19) | 0.037 (2)   | 0.0084 (16) | 0.0134 (17) | 0.0116 (17) |
| C7  | 0.038 (2)   | 0.034 (2)   | 0.0273 (19) | 0.0232 (18) | 0.0132 (17) | 0.0095 (17) |
| C8  | 0.046 (2)   | 0.029 (2)   | 0.028 (2)   | 0.0211 (19) | 0.0204 (18) | 0.0092 (16) |
| C9  | 0.038 (2)   | 0.0253 (19) | 0.032 (2)   | 0.0120 (17) | 0.0213 (18) | 0.0062 (16) |
| C10 | 0.0301 (19) | 0.0281 (19) | 0.0214 (17) | 0.0137 (16) | 0.0134 (15) | 0.0041 (15) |
| C11 | 0.0258 (19) | 0.035 (2)   | 0.0267 (19) | 0.0114 (17) | 0.0119 (16) | 0.0035 (16) |
| C12 | 0.030 (2)   | 0.042 (2)   | 0.0250 (19) | 0.0196 (18) | 0.0122 (16) | 0.0104 (17) |
| C13 | 0.031 (2)   | 0.0270 (19) | 0.0223 (18) | 0.0144 (16) | 0.0132 (16) | 0.0052 (15) |
| C14 | 0.041 (2)   | 0.034 (2)   | 0.0258 (19) | 0.0215 (19) | 0.0170 (17) | 0.0094 (16) |
| C15 | 0.045 (2)   | 0.026 (2)   | 0.027 (2)   | 0.0145 (18) | 0.0172 (18) | 0.0076 (16) |
| C16 | 0.030 (2)   | 0.027 (2)   | 0.034 (2)   | 0.0043 (17) | 0.0133 (17) | 0.0031 (17) |
| C17 | 0.029 (2)   | 0.0240 (19) | 0.0202 (17) | 0.0103 (16) | 0.0115 (15) | 0.0025 (15) |
| C18 | 0.0309 (19) | 0.0248 (18) | 0.0221 (18) | 0.0151 (16) | 0.0145 (16) | 0.0044 (15) |
| C19 | 0.055 (3)   | 0.037 (2)   | 0.040 (2)   | 0.023 (2)   | 0.024 (2)   | 0.0150 (19) |
| C20 | 0.037 (2)   | 0.043 (2)   | 0.051 (3)   | 0.013 (2)   | 0.024 (2)   | 0.019 (2)   |
| C21 | 0.054 (3)   | 0.046 (2)   | 0.048 (2)   | 0.030 (2)   | 0.023 (2)   | 0.027 (2)   |
| C22 | 0.057 (3)   | 0.031 (2)   | 0.044 (2)   | 0.013 (2)   | 0.017 (2)   | 0.0133 (19) |
| C23 | 0.028 (2)   | 0.032 (2)   | 0.0253 (19) | 0.0151 (17) | 0.0095 (16) | 0.0079 (16) |
| C24 | 0.030(2)    | 0.031 (2)   | 0.0238 (19) | 0.0128 (17) | 0.0129 (16) | 0.0045 (16) |
| C25 | 0.030 (2)   | 0.030 (2)   | 0.0238 (18) | 0.0121 (17) | 0.0117 (16) | 0.0036 (15) |
| C26 | 0.0244 (19) | 0.031 (2)   | 0.0226 (18) | 0.0118 (16) | 0.0114 (15) | 0.0037 (15) |
| C27 | 0.0224 (19) | 0.034 (2)   | 0.033 (2)   | 0.0103 (16) | 0.0137 (16) | 0.0047 (17) |
| C28 | 0.032 (2)   | 0.036 (2)   | 0.0268 (19) | 0.0204 (18) | 0.0120 (16) | 0.0082 (16) |
| C29 | 0.031 (2)   | 0.033 (2)   | 0.0231 (18) | 0.0172 (17) | 0.0136 (16) | 0.0024 (16) |
| C30 | 0.043 (2)   | 0.031 (2)   | 0.0263 (19) | 0.0218 (19) | 0.0191 (18) | 0.0062 (16) |
| C31 | 0.040 (2)   | 0.029 (2)   | 0.032 (2)   | 0.0168 (18) | 0.0201 (18) | 0.0069 (16) |
| C32 | 0.030 (2)   | 0.031 (2)   | 0.038 (2)   | 0.0079 (17) | 0.0165 (18) | 0.0057 (18) |
| C33 | 0.0263 (19) | 0.0286 (19) | 0.0243 (18) | 0.0120 (16) | 0.0132 (15) | 0.0052 (15) |
| C34 | 0.0256 (19) | 0.029 (2)   | 0.0210 (18) | 0.0140 (16) | 0.0094 (15) | 0.0026 (15) |
| C35 | 0.038 (2)   | 0.034 (2)   | 0.037 (2)   | 0.0132 (18) | 0.0143 (18) | 0.0162 (18) |
| C36 | 0.032 (2)   | 0.035 (2)   | 0.040 (2)   | 0.0110 (18) | 0.0131 (18) | 0.0139 (18) |
| C37 | 0.048 (3)   | 0.040 (2)   | 0.045 (2)   | 0.025 (2)   | 0.017 (2)   | 0.0172 (19) |
| C38 | 0.052 (3)   | 0.037 (2)   | 0.056 (3)   | 0.022 (2)   | 0.033 (2)   | 0.020 (2)   |
| C39 | 0.032 (2)   | 0.039 (2)   | 0.031 (2)   | 0.0140 (18) | 0.0110 (18) | 0.0086 (18) |
| C40 | 0.038 (2)   | 0.045 (2)   | 0.030(2)    | 0.022 (2)   | 0.0145 (18) | 0.0094 (18) |

# supporting information

| C41 | 0.043 (2)  | 0.030 (2)   | 0.0228 (19) | 0.0201 (19) | 0.0131 (17) | 0.0053 (16)  |  |
|-----|------------|-------------|-------------|-------------|-------------|--------------|--|
| C42 | 0.048 (2)  | 0.028 (2)   | 0.0258 (19) | 0.0223 (18) | 0.0198 (18) | 0.0102 (16)  |  |
| C43 | 0.050 (2)  | 0.0225 (19) | 0.031 (2)   | 0.0163 (18) | 0.0248 (19) | 0.0128 (16)  |  |
| C44 | 0.048 (2)  | 0.0243 (19) | 0.032 (2)   | 0.0157 (18) | 0.0243 (19) | 0.0091 (16)  |  |
| C45 | 0.038 (2)  | 0.0246 (19) | 0.033 (2)   | 0.0118 (17) | 0.0221 (18) | 0.0054 (16)  |  |
| C46 | 0.037 (2)  | 0.037 (2)   | 0.034 (2)   | 0.0156 (19) | 0.0181 (18) | 0.0045 (18)  |  |
| C47 | 0.030 (2)  | 0.037 (2)   | 0.029 (2)   | 0.0129 (18) | 0.0106 (17) | -0.0029 (17) |  |
| C48 | 0.047 (2)  | 0.041 (2)   | 0.032 (2)   | 0.028 (2)   | 0.0154 (19) | 0.0151 (18)  |  |
| C49 | 0.039 (2)  | 0.0254 (19) | 0.0269 (19) | 0.0171 (17) | 0.0171 (17) | 0.0077 (16)  |  |
| C50 | 0.032 (2)  | 0.0208 (18) | 0.0228 (18) | 0.0085 (16) | 0.0156 (16) | 0.0026 (15)  |  |
| C51 | 0.037 (2)  | 0.067 (3)   | 0.055 (3)   | 0.026 (2)   | 0.013 (2)   | 0.021 (2)    |  |
| C52 | 0.052 (3)  | 0.044 (2)   | 0.048 (3)   | 0.027 (2)   | 0.012 (2)   | 0.016 (2)    |  |
| C53 | 0.039 (2)  | 0.055 (3)   | 0.058 (3)   | 0.012 (2)   | 0.023 (2)   | 0.008 (2)    |  |
| C54 | 0.054 (3)  | 0.066 (3)   | 0.053 (3)   | 0.035 (3)   | 0.020 (2)   | 0.019 (2)    |  |
| 05  | 0.095 (8)  | 0.081 (5)   | 0.038 (3)   | 0.064 (6)   | 0.017 (3)   | 0.010 (3)    |  |
| O5′ | 0.106 (11) | 0.038 (5)   | 0.049 (5)   | 0.040 (6)   | 0.047 (6)   | 0.018 (4)    |  |
|     |            |             |             |             |             |              |  |

Geometric parameters (Å, °)

| Co1—C6  | 1.932 (4) | С23—Н23  | 0.9500    |
|---------|-----------|----------|-----------|
| Co1—C2  | 1.934 (3) | C24—C25  | 1.400 (4) |
| Co1—C3  | 1.944 (4) | C24—C35  | 1.507 (5) |
| Co1—C1  | 1.950 (4) | C25—C26  | 1.413 (5) |
| Co1—C4  | 1.953 (4) | C25—C36  | 1.489 (5) |
| Co1—C5  | 1.956 (3) | C26—C34  | 1.403 (4) |
| O1—H1A  | 0.8198    | C26—C27  | 1.429 (5) |
| O1—H1B  | 0.8201    | C27—C28  | 1.354 (5) |
| O2—H2A  | 0.8200    | C27—H27  | 0.9500    |
| O2—H2B  | 0.8201    | C28—C29  | 1.436 (5) |
| ОЗ—НЗА  | 0.8196    | C28—H28  | 0.9500    |
| ОЗ—НЗВ  | 0.8198    | C29—C33  | 1.403 (4) |
| O4—H4A  | 0.8198    | C29—C30  | 1.419 (5) |
| O4—H4B  | 0.8200    | C30—C31  | 1.379 (5) |
| N1—C1   | 1.155 (4) | C30—C37  | 1.506 (5) |
| N2-C2   | 1.148 (4) | C31—C32  | 1.405 (5) |
| N3—C3   | 1.156 (4) | C31—C38  | 1.513 (5) |
| N4—C4   | 1.143 (4) | С32—Н32  | 0.9500    |
| N5—C5   | 1.148 (4) | C33—C34  | 1.444 (5) |
| N6-C6   | 1.158 (4) | C35—H35A | 0.9800    |
| N7—C7   | 1.322 (4) | C35—H35B | 0.9800    |
| N7—C18  | 1.349 (4) | С35—Н35С | 0.9800    |
| N8—C16  | 1.326 (4) | C36—H36A | 0.9800    |
| N8—C17  | 1.358 (4) | C36—H36B | 0.9800    |
| N8—H8N  | 0.9499    | C36—H36C | 0.9800    |
| N9—C23  | 1.334 (4) | С37—Н37А | 0.9800    |
| N9—C34  | 1.364 (4) | С37—Н37В | 0.9800    |
| N9—H9N  | 0.9500    | С37—Н37С | 0.9800    |
| N10—C32 | 1.324 (4) | C38—H38A | 0.9800    |
|         |           |          |           |

| N10—C33                 | 1.351 (4)            | C38—H38B                   | 0.9800               |
|-------------------------|----------------------|----------------------------|----------------------|
| N11—C50                 | 1.347 (4)            | C38—H38C                   | 0.9800               |
| N11—C39                 | 1.349 (4)            | C39—C40                    | 1.379 (5)            |
| N11—H11N                | 0.9497               | C39—H39                    | 0.9500               |
| N12—C48                 | 1.328 (4)            | C40—C41                    | 1.376 (5)            |
| N12—C49                 | 1.351 (4)            | C40—C51                    | 1.520 (5)            |
| C7—C8                   | 1.404 (5)            | C41—C42                    | 1.448 (5)            |
| С7—Н7                   | 0.9500               | C41—C52                    | 1 483 (5)            |
| C8 - C9                 | 1,380(5)             | C42 - C50                  | 1.103(0)<br>1.387(4) |
| C8-C19                  | 1.500(5)<br>1.501(5) | $C_{42} - C_{43}$          | 1.307(1)<br>1.417(5) |
| $C_{0}$ $C_{10}$        | 1.301(5)<br>1.420(5) | $C_{43}$ $C_{44}$          | 1.417(5)<br>1.400(5) |
| $C_{P}$ $C_{20}$        | 1.420(5)             | C/3 H/3                    | 0.9500               |
| $C_{2} = C_{2} = C_{2}$ | 1.310(3)             | C43 - 1143                 | 1.411(5)             |
| C10 - C18               | 1.400(4)             | C44 - C43                  | 1.411(3)             |
|                         | 1.432 (4)            | C44—H44                    | 0.9300               |
|                         | 1.350 (5)            | C45—C49                    | 1.394 (3)            |
|                         | 0.9500               | C45—C46                    | 1.445 (5)            |
| C12—C13                 | 1.434 (4)            | C46—C47                    | 1.359 (5)            |
| С12—Н12                 | 0.9500               | C46—C53                    | 1.481 (5)            |
| C13—C17                 | 1.402 (4)            | C47—C48                    | 1.417 (5)            |
| C13—C14                 | 1.416 (5)            | C47—C54                    | 1.492 (5)            |
| C14—C15                 | 1.388 (5)            | C48—H48                    | 0.9500               |
| C14—C21                 | 1.505 (5)            | C49—C50                    | 1.458 (5)            |
| C15—C16                 | 1.382 (5)            | C51—H51A                   | 0.9800               |
| C15—C22                 | 1.512 (5)            | C51—H51B                   | 0.9800               |
| C16—H16                 | 0.9500               | C51—H51C                   | 0.9800               |
| C17—C18                 | 1.443 (4)            | C52—H52A                   | 0.9800               |
| C19—H19A                | 0.9800               | C52—H52B                   | 0.9800               |
| C19—H19B                | 0.9800               | C52—H52C                   | 0.9800               |
| С19—Н19С                | 0.9800               | C53—H53A                   | 0.9800               |
| C20—H20A                | 0.9800               | C53—H53B                   | 0.9800               |
| C20—H20B                | 0.9800               | C53—H53C                   | 0.9800               |
| C20—H20C                | 0.9800               | C54—H54A                   | 0.9800               |
| C21—H21A                | 0.9800               | C54—H54B                   | 0.9800               |
| C21—H21B                | 0.9800               | C54—H54C                   | 0.9800               |
| C21_H21C                | 0.9800               | 05                         | 1,0000               |
| C22_H22A                | 0.9800               | 05—H5R                     | 0.0030               |
| C22 H22R                | 0.9800               | 05' H5A                    | 0.9955               |
| C22—H22C                | 0.9800               | 05' H5R                    | 0.9855               |
| C22—II22C               | 1 295 (5)            | 05—II5B                    | 0.9807               |
| 023-024                 | 1.385 (5)            |                            |                      |
| C6—Co1—C2               | 90.88 (13)           | C28—C27—H27                | 119.1                |
| C6—Co1—C3               | 176.86 (14)          | С26—С27—Н27                | 119.1                |
| C2—Co1—C3               | 87.28 (13)           | C27—C28—C29                | 121.9 (3)            |
| C6—Co1—C1               | 90.03 (14)           | C27—C28—H28                | 119.1                |
| C2—Co1—C1               | 88.46 (13)           | C29—C28—H28                | 119.1                |
| C3—Co1—C1               | 92.46 (13)           | C33—C29—C30                | 117.9 (3)            |
| C6—Co1—C4               | 87.95 (13)           | C33—C29—C28                | 1187(3)              |
| C2-Co1-C4               | 92.18 (13)           | $C_{30}$ $C_{29}$ $C_{28}$ | 123 5 (3)            |
|                         | /=(1.)               |                            |                      |

| C3—Co1—C4                  | 89.57 (13)        | C31—C30—C29                   | 118.3 (3)            |
|----------------------------|-------------------|-------------------------------|----------------------|
| C1—Co1—C4                  | 177.90 (14)       | C31—C30—C37                   | 121.1 (3)            |
| C6—Co1—C5                  | 90.10 (13)        | C29—C30—C37                   | 120.6 (3)            |
| C2—Co1—C5                  | 176.33 (14)       | C30—C31—C32                   | 118.3 (3)            |
| C3—Co1—C5                  | 91.90 (13)        | $C_{30}$ $C_{31}$ $C_{38}$    | 122.7(3)             |
| C1 - Co1 - C5              | 88.00(13)         | $C_{32} = C_{31} = C_{38}$    | 1190(3)              |
| C4-Co1-C5                  | 91 39 (13)        | N10-C32-C31                   | 125.6(3)             |
| H1A-O1-H1B                 | 115.0             | N10-C32-H32                   | 117.2                |
| $H^2A = \Omega^2 = H^2B$   | 111.5             | $C_{31}$ $C_{32}$ $H_{32}$    | 117.2                |
| $H_{3A} = O_{3} = H_{3B}$  | 112.9             | N10-C33-C29                   | 117.2<br>124 3 (3)   |
| H4A - O4 - H4B             | 112.9             | N10_C33_C34                   | 127.3(3)             |
| $C7$ _N7_C18               | 116.3 (3)         | $C_{29}$ $C_{33}$ $C_{34}$    | 117.5(3)<br>118.4(3) |
| $C_{16} = 10^{-10} = 0.13$ | 110.3(3)          | $N_{2} = C_{2} = C_{2}$       | 110.7(3)             |
| C16 N8 H8N                 | 121.2 (3)         | N9 - C34 - C33                | 118.9(3)             |
| $C_{10}$ Ng HgN            | 124.5             | $C_{26} C_{24} C_{23}$        | 110.0(3)<br>122.5(3) |
| $C_1 = 100 = 1101$         | 124.3<br>122.2(2) | $C_{20} = C_{34} = C_{35}$    | 122.5 (3)            |
| $C_{23} = 109 = C_{34}$    | 122.2 (3)         | $C_{24} = C_{35} = H_{35} R$  | 109.5                |
| $C_{23}$ NO HON            | 120.5             | $C_{24} = C_{33} = H_{35B}$   | 109.5                |
| $C_{22}$ N10 $C_{22}$      | 117.3<br>115.7(2) | пээд—Сээ—пээв<br>Сэд Сээ ЦээС | 109.5                |
| $C_{52}$ N11 C20           | 113.7(3)          | U24—C35—П35С                  | 109.5                |
| $C_{50}$ N11 H11N          | 122.5 (3)         | H35A-C35-H35C                 | 109.5                |
| C30_N11_H11N               | 108.2             | ПЗЭВ—СЭЗ—ПЭЭС<br>СЭ5—СЭС—НЭСА | 109.5                |
| C39—N11—H11N               | 129.0             | $C_{25} = C_{30} = H_{30}A$   | 109.5                |
| C48—N12—C49                | 115.3 (3)         | C25—C36—H36B                  | 109.5                |
| NI = CI = CoI              | 1/9.3 (3)         | H36A-C36-H36B                 | 109.5                |
| $N_2 = C_2 = C_0 I$        | 1/7.6 (3)         | C25—C36—H36C                  | 109.5                |
| N3-C3-C01                  | 1/7.1 (3)         | H36A—C36—H36C                 | 109.5                |
| N4-C4-C01                  | 1/7.3 (3)         | H36B-C36-H36C                 | 109.5                |
| N5—C5—Col                  | 177.5 (3)         | $C_{30} - C_{37} - H_{37} A$  | 109.5                |
| N6-C6-C01                  | 1/8.4 (3)         | C30—C37—H37B                  | 109.5                |
| N/C/C8                     | 125.0 (3)         | H37A—C37—H37B                 | 109.5                |
| N7—C7—H7                   | 117.5             | С30—С37—Н37С                  | 109.5                |
| C8—C7—H7                   | 117.5             | H37A—C37—H37C                 | 109.5                |
| C9—C8—C7                   | 118.4 (3)         | Н37В—С37—Н37С                 | 109.5                |
| C9—C8—C19                  | 122.6 (3)         | C31—C38—H38A                  | 109.5                |
| C7—C8—C19                  | 118.9 (3)         | C31—C38—H38B                  | 109.5                |
| C8—C9—C10                  | 118.6 (3)         | H38A—C38—H38B                 | 109.5                |
| C8—C9—C20                  | 121.3 (3)         | C31—C38—H38C                  | 109.5                |
| C10—C9—C20                 | 120.1 (3)         | H38A—C38—H38C                 | 109.5                |
| C18—C10—C9                 | 117.3 (3)         | H38B—C38—H38C                 | 109.5                |
| C18—C10—C11                | 118.4 (3)         | N11—C39—C40                   | 119.9 (4)            |
| C9—C10—C11                 | 124.3 (3)         | N11—C39—H39                   | 120.1                |
| C12—C11—C10                | 122.2 (3)         | С40—С39—Н39                   | 120.1                |
| C12—C11—H11                | 118.9             | C41—C40—C39                   | 120.6 (3)            |
| C10-C11-H11                | 118.9             | C41—C40—C51                   | 121.2 (3)            |
| C11—C12—C13                | 121.7 (3)         | C39—C40—C51                   | 118.1 (4)            |
| C11—C12—H12                | 119.2             | C40—C41—C42                   | 118.5 (3)            |
| C13—C12—H12                | 119.2             | C40—C41—C52                   | 122.4 (3)            |
| C17—C13—C14                | 119.1 (3)         | C42—C41—C52                   | 119.1 (3)            |

| C17—C13—C12                | 116.9 (3)              | C50—C42—C43                        | 119.1 (3)            |
|----------------------------|------------------------|------------------------------------|----------------------|
| C14—C13—C12                | 124.0 (3)              | C50—C42—C41                        | 118.2 (3)            |
| C15—C14—C13                | 119.4 (3)              | C43—C42—C41                        | 122.7 (3)            |
| C15—C14—C21                | 120.4 (3)              | C44—C43—C42                        | 120.4 (3)            |
| C13—C14—C21                | 120.2 (3)              | C44—C43—H43                        | 119.8                |
| C16—C15—C14                | 118.0 (3)              | C42—C43—H43                        | 119.8                |
| C16—C15—C22                | 118.6 (3)              | C43—C44—C45                        | 120.9 (3)            |
| C14—C15—C22                | 123.4 (3)              | C43—C44—H44                        | 119.5                |
| N8—C16—C15                 | 122.9 (3)              | C45—C44—H44                        | 119.5                |
| N8—C16—H16                 | 118.5                  | C49—C45—C44                        | 119.9 (3)            |
| C15—C16—H16                | 118.5                  | C49—C45—C46                        | 117.4 (3)            |
| N8—C17—C13                 | 119.3 (3)              | C44—C45—C46                        | 122.7 (3)            |
| N8-C17-C18                 | 118.4 (3)              | C47—C46—C45                        | 118.1 (3)            |
| $C_{13}$ $C_{17}$ $C_{18}$ | 122.3 (3)              | C47 - C46 - C53                    | 1217(4)              |
| N7-C18-C10                 | 1242(3)                | $C_{45} - C_{46} - C_{53}$         | 120.2(3)             |
| N7-C18-C17                 | 1172(3)                | $C_{46}$ $C_{47}$ $C_{48}$         | 120.2(3)<br>1187(3)  |
| $C_{10}$ $C_{18}$ $C_{17}$ | 117.2(3)<br>118 5 (3)  | $C_{46} - C_{47} - C_{54}$         | $122 \ 9 \ (4)$      |
| $C_{10} = C_{10} = C_{17}$ | 100.5                  | $C_{+0} = C_{+7} = C_{54}$         | 122.9(4)             |
| C8 C10 H10P                | 109.5                  | $V_{40} = C_{47} = C_{54}$         | 110.4(4)<br>125.4(2) |
|                            | 109.5                  | N12 - C40 - C47                    | 125.4 (5)            |
| HI9A - CI9 - HI9B          | 109.5                  | N12-C48-H48                        | 117.2                |
|                            | 109.5                  | C47 - C48 - H48                    | 117.5                |
| H19A—C19—H19C              | 109.5                  | N12-C49-C45                        | 125.1 (3)            |
| H19B—C19—H19C              | 109.5                  | N12—C49—C50                        | 116.1 (3)            |
| C9—C20—H20A                | 109.5                  | C45—C49—C50                        | 118.8 (3)            |
| С9—С20—Н20В                | 109.5                  | N11—C50—C42                        | 120.2 (3)            |
| H20A—C20—H20B              | 109.5                  | N11—C50—C49                        | 118.9 (3)            |
| C9—C20—H20C                | 109.5                  | C42—C50—C49                        | 120.9 (3)            |
| H20A—C20—H20C              | 109.5                  | C40—C51—H51A                       | 109.5                |
| H20B—C20—H20C              | 109.5                  | C40—C51—H51B                       | 109.5                |
| C14—C21—H21A               | 109.5                  | H51A—C51—H51B                      | 109.5                |
| C14—C21—H21B               | 109.5                  | C40—C51—H51C                       | 109.5                |
| H21A—C21—H21B              | 109.5                  | H51A—C51—H51C                      | 109.5                |
| C14—C21—H21C               | 109.5                  | H51B—C51—H51C                      | 109.5                |
| H21A—C21—H21C              | 109.5                  | C41—C52—H52A                       | 109.5                |
| H21B—C21—H21C              | 109.5                  | C41—C52—H52B                       | 109.5                |
| C15—C22—H22A               | 109.5                  | H52A—C52—H52B                      | 109.5                |
| C15—C22—H22B               | 109.5                  | C41—C52—H52C                       | 109.5                |
| H22A—C22—H22B              | 109.5                  | H52A—C52—H52C                      | 109.5                |
| C15—C22—H22C               | 109.5                  | H52B—C52—H52C                      | 109.5                |
| H22A—C22—H22C              | 109.5                  | С46—С53—Н53А                       | 109.5                |
| H22B-C22-H22C              | 109.5                  | C46—C53—H53B                       | 109.5                |
| N9_C23_C24                 | 121 3 (3)              | H53A_C53_H53B                      | 109.5                |
| N9_C23_H23                 | 119.4                  | $C_{46} - C_{53} - H_{53}C$        | 109.5                |
| C24_C23_H23                | 119.4                  | Н53А_С53_Н53С                      | 109.5                |
| $C_{24} = C_{25} = 1125$   | 110.1 (3)              | H53R C53 H52C                      | 109.5                |
| $C_{23} = C_{24} = C_{23}$ | 119.1(3)<br>110 $A(2)$ | C47 C54 H54A                       | 109.5                |
| $C_{23} = C_{24} = C_{33}$ | 117.4(3)<br>121.5(2)   | C47 C54 U54P                       | 109.3                |
| $C_{23} = C_{24} = C_{33}$ | 121.3(3)               | $U_{4} = U_{34} = U_{54} = U_{54}$ | 109.3                |
| U24-U25-U20                | 118.8 (3)              | пэ4А—Сэ4—нэ4В                      | 109.5                |

# supporting information

| C24—C25—C36 | 120.6 (3) | C47—C54—H54C  | 109.5 |  |
|-------------|-----------|---------------|-------|--|
| C26—C25—C36 | 120.6 (3) | H54A—C54—H54C | 109.5 |  |
| C34—C26—C25 | 119.6 (3) | H54B—C54—H54C | 109.5 |  |
| C34—C26—C27 | 116.9 (3) | H5A—O5—H5B    | 92.3  |  |
| C25—C26—C27 | 123.5 (3) | H5A—O5′—H5B   | 93.6  |  |
| C28—C27—C26 | 121.7 (3) |               |       |  |

Hydrogen-bond geometry (Å, °)

| D—H···A                              | <i>D</i> —Н | H···A | $D \cdots A$ | D—H··· $A$ |
|--------------------------------------|-------------|-------|--------------|------------|
| 01—H1A····O5′                        | 0.82        | 1.84  | 2.616 (7)    | 157        |
| O1—H1A···O5                          | 0.82        | 2.02  | 2.823 (8)    | 165        |
| $O1$ — $H1B$ ···· $N5^{i}$           | 0.82        | 2.27  | 3.068 (4)    | 163        |
| O2—H2A···N3 <sup>ii</sup>            | 0.82        | 2.25  | 3.044 (4)    | 164        |
| O2—H2 <i>B</i> ⋯N3                   | 0.82        | 2.09  | 2.901 (4)    | 169        |
| O3—H3 <i>A</i> ···N2                 | 0.82        | 2.11  | 2.909 (4)    | 163        |
| O3—H3 <i>B</i> ···O2 <sup>ii</sup>   | 0.82        | 2.01  | 2.813 (3)    | 168        |
| O4—H4 <i>A</i> ···O3                 | 0.82        | 1.89  | 2.707 (3)    | 173        |
| O4—H4 <i>B</i> …O1                   | 0.82        | 1.94  | 2.735 (4)    | 164        |
| N8—H8 <i>N</i> ····O4 <sup>iii</sup> | 0.95        | 1.72  | 2.636 (4)    | 161        |
| N9—H9 <i>N</i> ····N5 <sup>iv</sup>  | 0.95        | 2.14  | 2.919 (4)    | 138        |
| N11—H11 $N$ ····N4 <sup>i</sup>      | 0.95        | 2.11  | 2.799 (4)    | 128        |
|                                      |             |       |              |            |

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) -*x*+1, -*y*+1, -*z*+1; (iii) *x*+1, *y*, *z*; (iv) -*x*+2, -*y*+1, -*z*+1.