Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## 4,4'-(Ethene-1,2-diyl)dipyridinium 4-[2-(pyridin-4-yl)ethenyl]pyridinium octacyanidomolybdate( V ) tetrahydrate

Xiao-Zhen Yang, ${ }^{\text {a }} \mathrm{Ai}$-Yun $\mathrm{Hu}^{\mathrm{b}}$ and Ai -Hua Yuan ${ }^{\text {b* }}$<br>${ }^{\text {a }}$ School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China, and ${ }^{\mathbf{b}}$ School of Biology and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China<br>Correspondence e-mail: aihuayuan@163.com

Received 24 January 2013; accepted 29 January 2013
Key indicators: single-crystal X-ray study; $T=291 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; $R$ factor $=0.021 ; w R$ factor $=0.052$; data-to-parameter ratio $=12.9$.

The crystal structure of the title compound, $\left(\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2}\right)$ $\left(\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{2}\right)\left[\mathrm{Mo}(\mathrm{CN})_{8}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$, consists of 4,4'-(ethene-1,2-diyl)dipyridinium and 4-[2-(pyridin-4-yl)ethenyl]pyridinium cations disordered over the same site, an $\left[\mathrm{Mo}(\mathrm{CN})_{8}\right]^{3-}$ anion and four water molecules of crystallization. The eightcoordinate $\left[\mathrm{Mo}(\mathrm{CN})_{8}\right]^{3-}$ unit exhibits a slightly distorted square-antiprismatic geometry. In the structure, the cations (crystallographic symmetry, 2) and anions (crystallographic symmetry, 222) are arranged alternately by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds, forming layers parallel to the $b c$ plane. These layers are further linked through $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds, generating a three-dimensional supramolecular network.

## Related literature

For general background to the design and construction of multi-functional materials, see: Nowicka et al. (2012); Prins et al. (2007); Sieklucka et al. (2011); Tanase et al. (2008); Zhou et al. (2012). For related structures, see: Liu et al. (2008); Qian et al. (2009).


## Experimental

Crystal data

| $\left(\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\left(\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{2}\right)\left[\mathrm{Mo}(\mathrm{CN})_{8}\right]-$ | $V=3151.8(11) \AA^{3}$ |
| :--- | :--- |
| $\quad .4 \mathrm{H}_{2} \mathrm{O}$ | $Z=4$ |
| $M_{r}=743.63$ | Mo $K \alpha$ radiation |
| Orthorhombic, $C c c a$ | $\mu=0.48 \mathrm{~mm}^{-1}$ |
| $a=12.403(3) \AA$ | $T=291 \mathrm{~K}$ |
| $b=16.534$ (3) $\AA$ | $0.18 \times 0.15 \times 0.13 \mathrm{~mm}$ |

$c=$

## Data collection

Bruker SMART APEXII diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2004)
$T_{\text {min }}=0.919, T_{\text {max }}=0.941$

## Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.021 \quad 112$ parameters
$w R\left(F^{2}\right)=0.052 \quad \mathrm{H}$-atom parameters constrained
$S=1.09$
1442 reflections

6789 measured reflections 1442 independent reflections 1388 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.016$

$$
\begin{aligned}
& \text { H-atom parameters constrained } \\
& \Delta \rho_{\max }=0.28 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.31 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Hydrogen-bond geometry ( $\AA,{ }^{\circ}$ ).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| O1-H1A $\cdots \mathrm{N} 1^{\mathrm{i}}$ | 0.85 | 2.11 | $2.9524(19)$ | 174 |
| O1-H1B $\mathrm{H}^{\mathrm{ii}}$ | 0.85 | 2.00 | $2.8195(18)$ | 162 |
| N3-H3X $\cdots \mathrm{O} 1$ | 0.89 | 1.86 | $2.7342(17)$ | 166 |

Symmetry codes: (i) $x+1, y-\frac{1}{2},-z$; (ii) $-x+\frac{1}{2},-y, z$.
Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ5039).

## References

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison,Wisconsin, USA.
Liu, W.-Y., Zhou, H. \& Yuan, A.-H. (2008). Acta Cryst. E64, m1151.
Nowicka, B., Korzeniak, T., Stefańczyk, O., Pinkowicz, D., Chorąży, S., Podgajny, R. \& Sieklucka, B. (2012). Coord. Chem. Rev. 256, 1946-1971.
Prins, F., Pasca, E., de Jongh, L. J., Kooijman, H., Spek, A. L. \& Tanase, S. (2007). Angew. Chem. Int. Ed. 46, 6081-6084.

Qian, S.-Y., Liu, W.-Y. \& Yuan, A.-H. (2009). Acta Cryst. E65, m1031-m1032. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sieklucka, B., Podgajny, R., Korzeniak, T., Nowicka, B., Pinkowicz, D. \& Kozieł, M. (2011). Eur. J. Inorg. Chem. pp. 305-326.
Tanase, S., de Jongh, L. J., Prins, F. \& Evangelisti, M. (2008). ChemPhysChem, 9, 1975-1978.
Zhou, H.-C., Long, J. F. \& Yaghi, O. M. (2012). Chem. Rev. 112, 673-674.

## supporting information

Acta Cryst. (2013). E69, m132 [doi:10.1107/S1600536813002985]

# 4,4'-(Ethene-1,2-diyl)dipyridinium 4-[2-(pyridin-4-yl)ethenyl]pyridinium octacyanidomolybdate $(\mathrm{V})$ tetrahydrate 

Xiao-Zhen Yang, Ai-Yun Hu and Ai-Hua Yuan

## S1. Comment

In the past few years, much attention has been put into the design and construction of multi-functional materials (Zhou et al., 2012). Octacyanometallates $\left[M(\mathrm{CN})_{8}\right]^{n--}(M=\mathrm{Mo}, \mathrm{W} ; n=3,4)$ with flexible coordination modes and lower symmetries have been aggressively studied recently (Nowicka et al., 2012), because these building blocks can adopt various geometries, e.g., square antiprismatic, dodecahedral or bicapped trigonal prismatic, depending on the external environments. The combination of the $\left[M(\mathrm{CN})_{8}\right]^{n-}$ precusors and the second metal centers has produced various dimensional molecular structures and the resulting materials have displayed intriguing properties (Sieklucka et al., 2011). However, the development of octacyano- and lanthanide-based assemblies has been somewhat hampered by the tendency of the lanthanide ions to adopt higher coordination numbers, their ability to easily adapt to a given environment, and in the absence of design strategies for $4 \mathrm{f}-4 \mathrm{~d} / 5 \mathrm{~d}$ networks. Recently, we used $\left[\mathrm{Mo}^{\mathrm{V}}(\mathrm{CN})_{8}\right]^{3-}$ as building block to react with the lanthanide ion $\mathrm{Ce}^{3+}$ and dpe ligand (dpe = 1,2-di(pyridin-4-yl)ethylene), in order to obtain new octacyanide-based $4 \mathrm{f} / 4$ d compound with open structure. Unfortunately, a new ion-pair compound without $\mathrm{Ce}^{3+}$ ions was isolated. The asymmetric unit of the title compound contains 4,4'-ethene-1,2-diyldipyridinium, $\left[\mathrm{H}_{2} \mathrm{dpe}\right]^{2+}$, and 4-(2-(pyridin-4yl)ethenyl)pyridinium, $[\mathrm{Hdpe}]^{+}$, cations, one $\left[\mathrm{Mo}(\mathrm{CN})_{8}\right]^{3-}$ anion, and four crystallized water molecules (Fig. 1). Both the $\left[\mathrm{H}_{2} \mathrm{dpe}\right]^{2+}$ and $[\mathrm{Hdpe}]^{+}$cations are disordered over the same site. The eight-coordinated $\left[\mathrm{Mo}(\mathrm{CN})_{8}\right]$ unit exhibits a distorted slightly square antiprismatic geometry, typical of octacyanometalates (Prins et al., 2007; Tanase et al., 2008). The average distances of Mol- C and $\mathrm{C}-\mathrm{N}$ bonds are 2.1682 and $1.156 \AA$, respectively, while the $\mathrm{Mo} 1-\mathrm{CN}$ bonds are almost linear with the maximum deviation from linearity of $3.8^{\circ}$.

In the structure, $\left[\mathrm{H}_{2} \mathrm{dpe}\right]^{2+}$ cation, $[\mathrm{Hdpe}]^{+}$cation and $\left[\mathrm{Mo}(\mathrm{CN})_{8}\right]^{3-}$ unit are arranged alternatively through N3$\mathrm{H} 3 \mathrm{X} \cdots \mathrm{O} 1$ and $\mathrm{O} 1-\mathrm{H} 1 \mathrm{~B} \cdots \mathrm{~N} 2^{v}$ (symmetric code: $(\mathrm{v})-x+1 / 2,-y, z$ ) hydrogen bonds (Table 1 ) to generate a twodimensional layer. These layers are further interlinked through $\mathrm{O} 1-\mathrm{H} 1 \mathrm{~A} \cdots \mathrm{~N}^{\mathrm{iv}}$ (symmetric code: (iv) $x+1, y-1 / 2,-z$ ) hydrogen bonds, forming a three-dimensional supramolecular network (Fig. 2). This structural feature has also been observed in related octacyanide-based compounds $\left(\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{4}\right)\left(\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{4}\right)\left[M(\mathrm{CN})_{8}\right] . n \mathrm{H}_{2} \mathrm{O}(M=\mathrm{Mo}$, W) (Qian et al., 2009; Liu et al., 2008).

## S2. Experimental

Single crystals of the title compound were prepared at room temperature by slow diffusion of a $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}(1: 1 \mathrm{v} / \mathrm{v})$ solution containing both $\mathrm{Ce}^{\text {III }}\left(\mathrm{NO}_{3}\right)_{3} .6 \mathrm{H}_{2} \mathrm{O}(0.05 \mathrm{mmol})$ and dpe $(0.15 \mathrm{mmol})$ in a $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}(1: 1 \mathrm{v} / \mathrm{v})$ solution of $\left[\mathrm{HN}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{3}\right]_{3}\left[\mathrm{Mo}^{\vee}(\mathrm{CN})_{8}\right] .4 \mathrm{H}_{2} \mathrm{O}(0.05 \mathrm{mmol})$. After four weeks, dark-blue rod-like crystals were obtained.

## S3. Refinement

All non-H atoms were refined anisotropically. The (C)H atoms were calculated at idealized positions and included in the refinement in a riding mode. The $(\mathrm{N}) \mathrm{H}$ and $(\mathrm{O}) \mathrm{H}$ atoms of water molecules were located from a difference Fourier map and refined as riding $\left[\mathrm{N}-\mathrm{H}=0.89 \AA, U(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{N}) ; \mathrm{O}-\mathrm{H}=0.85 \AA, U(\mathrm{H})=1.5 U_{\mathrm{eq}}(\mathrm{O})\right]$, with the occupancy factor of the N -bound H atoms set to. 0.75


Figure 1
The molecular structure of the title compound with thermal ellipsoids at the $30 \%$ probability level. All H atoms were removed for clarity. Symmetry codes: (i) $x,-y+1 / 2,-z+1 / 2$; (ii) $-x,-y+1 / 2, z$; (iii) $-x, y,-z+1 / 2$


## Figure 2

The three-dimensional supramolecular network of the title compound.

## 4,4'-(Ethene-1,2-diyl)dipyridinium 4-[2-(pyridin-4-yl)ethenyl]pyridinium octacyanidomolybdate(V) tetrahydrate

## Crystal data

$\left(\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\left(\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{2}\right)\left[\mathrm{Mo}(\mathrm{CN})_{8}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=743.63$
Orthorhombic, Ccca
Hall symbol: -C 2b 2bc
$a=12.403$ (3) $\AA$
$b=16.534$ (3) $\AA$
$c=15.370$ (3) $\AA$
$V=3151.8(11) \AA^{3}$
$Z=4$

## Data collection

Bruker SMART APEXII
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
phi and $\omega$ scans
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
$T_{\text {min }}=0.919, T_{\text {max }}=0.941$

## Refinement

Refinement on $F^{2}$
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.021$
$w R\left(F^{2}\right)=0.052$
$S=1.09$
1442 reflections
112 parameters
$F(000)=1524$
$D_{\mathrm{x}}=1.567 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 6602 reflections
$\theta=3.4-29.0^{\circ}$
$\mu=0.48 \mathrm{~mm}^{-1}$
$T=291 \mathrm{~K}$
Rod, dark blue
$0.18 \times 0.15 \times 0.13 \mathrm{~mm}$

6789 measured reflections
1442 independent reflections
1388 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.016$
$\theta_{\text {max }}=25.3^{\circ}, \theta_{\text {min }}=3.4^{\circ}$
$h=-14 \rightarrow 14$
$k=-15 \rightarrow 19$
$l=-18 \rightarrow 16$

0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0237 P)^{2}+4.1639 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$

$$
\begin{aligned}
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.28 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.31 \mathrm{e} \AA^{-3}
\end{aligned}
$$

## Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of $F^{2}$ against ALL reflections. The weighted $R$-factor $w R$ and goodness of fit $S$ are based on $F^{2}$, conventional $R$-factors $R$ are based on $F$, with $F$ set to zero for negative $F^{2}$. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating $R$-factors $(\mathrm{gt})$ etc. and is not relevant to the choice of reflections for refinement. $R$-factors based on $F^{2}$ are statistically about twice as large as those based on $F$, and $R$ - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $\AA^{2}$ )

|  | $x$ | $y$ | $z$ | $U_{\text {iso }} / U_{\text {eq }}$ | Occ. $(<1)$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Mo1 | 0.0000 | 0.2500 | 0.2500 | $0.01026(10)$ |  |
| O1 | $0.65008(10)$ | $-0.07739(7)$ | $-0.07004(7)$ | $0.0222(3)$ |  |
| H1A | 0.7081 | -0.0819 | -0.0991 | $0.033^{*}$ |  |
| H1B | 0.6515 | -0.1156 | -0.0330 | $0.033^{*}$ | $0.0217(3)$ |
| N1 | $-0.15776(12)$ | $0.39926(8)$ | $0.18061(8)$ | $0.0214(3)$ |  |
| N2 | $-0.12604(11)$ | $0.18087(8)$ | $0.07447(9)$ | $0.0222(3)$ | 0.75 |
| N3 | $0.61502(11)$ | $0.04861(9)$ | $0.04165(9)$ | $0.027^{*}$ |  |
| H3X | 0.6177 | 0.0114 | -0.0001 | $0.0153(3)$ |  |
| C1 | $-0.10315(12)$ | $0.34816(9)$ | $0.20714(9)$ | $0.0153(3)$ |  |
| C2 | $-0.08556(13)$ | $0.20481(9)$ | $0.13705(10)$ | $0.0226(4)$ |  |
| C3 | $0.61146(13)$ | $0.12818(10)$ | $0.02559(10)$ | $0.027^{*}$ |  |
| H3 | 0.6063 | 0.1466 | -0.0314 | $0.0197(3)$ |  |
| C4 | $0.61534(13)$ | $0.18237(10)$ | $0.09245(10)$ | $0.0171(3)$ |  |
| H4 | 0.6125 | 0.2375 | 0.0809 | $0.0212(4)$ | $0.025^{*}$ |
| C5 | $0.62366(12)$ | $0.15508(9)$ | $0.17825(10)$ | $0.0239(4)$ |  |
| C6 | $0.62332(13)$ | $0.07142(10)$ | $0.19249(11)$ | $0.029^{*}$ |  |
| H6 | 0.6258 | 0.0511 | 0.2489 | $0.0177(3)$ |  |
| C7 | $0.61929(14)$ | $0.01956(10)$ | $0.12305(11)$ | $0.021^{*}$ |  |
| H7 | 0.6195 | -0.0360 | 0.1324 |  |  |
| C8 | $0.62950(13)$ | $0.20979(10)$ | $0.25268(10)$ | 0.3078 |  |
| H8 | 0.6335 | 0.1868 |  |  |  |

Atomic displacement parameters $\left(\AA^{2}\right)$

|  | $U^{11}$ | $U^{22}$ | $U^{\beta 3}$ | $U^{12}$ | $U^{13}$ | $U^{23}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Mo1 | $0.01259(15)$ | $0.00997(14)$ | $0.00822(14)$ | 0.000 | 0.000 | 0.000 |
| O1 | $0.0281(6)$ | $0.0209(6)$ | $0.0175(6)$ | $0.0004(5)$ | $0.0046(5)$ | $-0.0005(5)$ |
| N1 | $0.0279(8)$ | $0.0213(7)$ | $0.0158(7)$ | $0.0060(6)$ | $-0.0014(6)$ | $-0.0007(6)$ |
| N2 | $0.0263(8)$ | $0.0205(7)$ | $0.0175(7)$ | $-0.0032(6)$ | $-0.0032(6)$ | $-0.0003(6)$ |
| N3 | $0.0209(7)$ | $0.0244(8)$ | $0.0213(7)$ | $0.0016(6)$ | $0.0000(6)$ | $-0.0098(6)$ |
| C1 | $0.0185(8)$ | $0.0168(8)$ | $0.0107(7)$ | $-0.0012(6)$ | $0.0010(6)$ | $-0.0029(6)$ |
| C2 | $0.0168(8)$ | $0.0125(8)$ | $0.0166(8)$ | $-0.0007(6)$ | $0.0011(7)$ | $0.0027(6)$ |


|  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| C3 | $0.0219(8)$ | $0.0295(10)$ | $0.0164(8)$ | $0.0023(7)$ | $0.0000(7)$ | $-0.0004(7)$ |
| C4 | $0.0222(8)$ | $0.0181(8)$ | $0.0188(8)$ | $0.0018(6)$ | $0.0005(7)$ | $0.0007(6)$ |
| C5 | $0.0141(7)$ | $0.0187(8)$ | $0.0186(8)$ | $0.0013(6)$ | $0.0003(6)$ | $-0.0010(6)$ |
| C6 | $0.0253(9)$ | $0.0193(8)$ | $0.0190(8)$ | $0.0005(7)$ | $-0.0006(7)$ | $0.0013(6)$ |
| C7 | $0.0255(9)$ | $0.0182(9)$ | $0.0281(9)$ | $0.0005(7)$ | $-0.0011(8)$ | $-0.0028(7)$ |
| C8 | $0.0184(8)$ | $0.0199(8)$ | $0.0149(8)$ | $0.0019(7)$ | $-0.0011(6)$ | $0.0002(6)$ |

Geometric parameters $\left({ }^{A},{ }^{\circ}\right)$

| Mo1-C2 | 2.1674 (16) | N3-C7 | 1.341 (2) |
| :---: | :---: | :---: | :---: |
| Mol-C2 ${ }^{\text {i }}$ | 2.1674 (16) | N3-H3X | 0.8896 |
| Mol-C2 ${ }^{\text {ii }}$ | 2.1674 (16) | C3-C4 | 1.364 (2) |
| Mo1-C2 ${ }^{\text {iii }}$ | 2.1674 (16) | C3-H3 | 0.9300 |
| Mol-C1 ${ }^{\text {i }}$ | 2.1690 (16) | C4-C5 | 1.398 (2) |
| Mo1-C1 ${ }^{\text {iii }}$ | 2.1690 (16) | C4-H4 | 0.9300 |
| Mo1-C1 | 2.1690 (16) | C5-C6 | 1.400 (2) |
| Mol- $\mathrm{Cl}^{\text {ii }}$ | 2.1690 (16) | C5-C8 | 1.460 (2) |
| $\mathrm{O} 1-\mathrm{H} 1 \mathrm{~A}$ | 0.8501 | C6-C7 | 1.370 (2) |
| O1-H1B | 0.8505 | C6-H6 | 0.9300 |
| N1-C1 | 1.157 (2) | C7-H7 | 0.9300 |
| N2-C2 | 1.155 (2) | C8-C8 ${ }^{\text {i }}$ | 1.332 (3) |
| N3-C3 | 1.339 (2) | C8-H8 | 0.9300 |
| C2-Mo1-C2 ${ }^{\text {i }}$ | 121.37 (8) | C1 ${ }^{\text {iii }}$-Mo1-C1 $1^{\text {ii }}$ | 107.72 (8) |
| $\mathrm{C} 2-\mathrm{Mo} 1-\mathrm{C} 2{ }^{\text {ii }}$ | 73.57 (8) | $\mathrm{C} 1-\mathrm{Mol}-\mathrm{Cl}^{\text {ii }}$ | 144.64 (8) |
| $\mathrm{C} 2-\mathrm{Mo}-\mathrm{C} 2^{\text {ii }}$ | 139.67 (8) | H1A-O1-H1B | 105.6 |
| $\mathrm{C} 2-\mathrm{Mo} 1-\mathrm{C} 2{ }^{\text {iii }}$ | 139.67 (8) | C3-N3-C7 | 121.66 (14) |
| $\mathrm{C} 2{ }^{\text {i }}-\mathrm{Mo} 1-\mathrm{C} 2{ }^{\text {iii }}$ | 73.57 (8) | C3-N3-H3X | 123.2 |
| $\mathrm{C} 2 \mathrm{ii}-\mathrm{Mol}-\mathrm{C} 2{ }^{\text {iii }}$ | 121.37 (8) | C7-N3-H3X | 115.1 |
| $\mathrm{C} 2-\mathrm{Mol}-\mathrm{Cl}^{\text {i }}$ | 72.33 (5) | N1-C1-Mo1 | 177.01 (13) |
| $\mathrm{C} 2{ }^{\mathrm{i}}-\mathrm{Mo} 1-\mathrm{Cl}^{\mathrm{i}}$ | 74.09 (6) | N2-C2-Mo1 | 176.36 (14) |
| $\mathrm{C} 2{ }^{\text {iii}}-\mathrm{Mol}-\mathrm{Cl}^{\mathrm{i}}$ | 142.18 (5) | N3-C3-C4 | 120.35 (15) |
| $\mathrm{C} 2{ }^{\text {iii- }}$ - $\mathrm{Mo} 1-\mathrm{Cl}^{\text {i }}$ | 77.74 (6) | N3-C3-H3 | 119.8 |
| $\mathrm{C} 2-\mathrm{Mo} 1-\mathrm{C} 1^{\text {iii }}$ | 142.18 (5) | C4-C3-H3 | 119.8 |
| $\mathrm{C} 2{ }^{\text {i }}-\mathrm{Mo} 1-\mathrm{Cl}^{\text {iii }}$ | 77.74 (6) | C3-C4-C5 | 120.08 (15) |
| $\mathrm{C} 2{ }^{\text {ii }}-\mathrm{Mo} 1-\mathrm{C} 1^{\text {iii }}$ | 72.33 (5) | C3-C4-H4 | 120.0 |
| $\mathrm{C} 2{ }^{\text {iii }}-\mathrm{Mo} 1-\mathrm{C} 1^{\text {iii }}$ | 74.09 (6) | C5-C4-H4 | 120.0 |
| $\mathrm{C} 1{ }^{\text {i }}-\mathrm{Mol-} \mathrm{Cl}^{\text {iii }}$ | 144.64 (8) | C4-C5-C6 | 117.78 (14) |
| C2-Mo1-C1 | 74.09 (6) | C4-C5-C8 | 122.88 (14) |
| $\mathrm{C} 2{ }^{\text {i }}-\mathrm{Mol}-\mathrm{C} 1$ | 72.33 (5) | C6-C5-C8 | 119.32 (14) |
| $\mathrm{C} 2{ }^{\text {ii }}-\mathrm{Mol}-\mathrm{C} 1$ | 77.74 (6) | C7-C6-C5 | 119.78 (15) |
| C2 ${ }^{\text {iii }}$ - $\mathrm{Mol}-\mathrm{C} 1$ | 142.18 (5) | C7-C6-H6 | 120.1 |
| $\mathrm{C} 1{ }^{\mathrm{i}}-\mathrm{Mol}-\mathrm{C} 1$ | 107.72 (8) | C5-C6-H6 | 120.1 |
| C1 ${ }^{\text {iii- }} \mathrm{Mol}-\mathrm{C} 1$ | 83.12 (8) | N3-C7-C6 | 120.27 (15) |
| C2-Mo1-C1 ${ }^{\text {ii }}$ | 77.74 (6) | N3-C7-H7 | 119.9 |
| $\mathrm{C} 2{ }^{\text {i }}-\mathrm{Mo} 1-\mathrm{C} 1^{\text {ii }}$ | 142.18 (5) | C6-C7-H7 | 119.9 |
| $\mathrm{C} 2 \mathrm{ii}-\mathrm{Mol}-\mathrm{C} 1^{\text {ii }}$ | 74.09 (6) | C8- 8 - $8-\mathrm{C} 5$ | 124.74 (18) |


| $\mathrm{C} 2 \mathrm{iii}-\mathrm{Mo} 1-\mathrm{C} 1^{\mathrm{ii}}$ | $72.33(5)$ | $\mathrm{C} 8-\mathrm{C} 8-\mathrm{H} 8$ | 117.6 |
| :--- | :--- | :--- | :--- |
| $\mathrm{C} 1^{\mathrm{i}}-\mathrm{Mo} 1-\mathrm{C} 1^{\mathrm{ii}}$ | $83.12(8)$ | $\mathrm{C} 5-\mathrm{C} 8-\mathrm{H} 8$ | 117.6 |

Symmetry codes: (i) $x,-y+1 / 2,-z+1 / 2$; (ii) $-x,-y+1 / 2, z$; (iii) $-x, y,-z+1 / 2$.

Hydrogen-bond geometry ( $A,{ }^{\circ}$ )

| $D — \mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{O} 1 — \mathrm{H} 1 A \cdots \mathrm{~N} 1^{\text {iv }}$ | 0.85 | 2.11 | $2.9524(19)$ | 174 |
| $\mathrm{O} 1 — \mathrm{H} 1 B \cdots \mathrm{~N} 2^{\text {v }}$ | 0.85 | 2.00 | $2.8195(18)$ | 162 |
| $\mathrm{~N} 3 — \mathrm{H} 3 X^{\cdots} \mathrm{O} 1$ | 0.89 | 1.86 | $2.7342(17)$ | 166 |

Symmetry codes: (iv) $x+1, y-1 / 2,-z$; (v) $-x+1 / 2,-y, z$.

