## Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## 2-(4-Oxo-3-phenyl-1,3-thiazolidin-2-ylidene)malononitrile

Ola K. Sakka, ${ }^{\text {a* }}$ Daisy H. Fleita ${ }^{\text {a }}$ and William T. A. Harrison ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, American University in Cairo, PO Box 74, New Cairo 11835, Egypt, and ${ }^{\mathbf{b}}$ Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
Correspondence e-mail: w.harrison@abdn.ac.uk
Received 16 January 2013; accepted 22 January 2013
Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; $R$ factor $=0.043 ; w R$ factor $=0.086$; data-to-parameter ratio $=13.7$.

In the title compound, $\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{OS}$, the essentially planar thiazole ring (r.m.s. deviation $=0.022 \AA$ ) forms dihedral angles of $84.88(9)$ and $1.8(3)^{\circ}$ with the phenyl ring and the $-\mathrm{C}(\mathrm{CN})_{2}$ group (r.m.s. deviation $=0.003 \AA$ ), respectively. The molecule has approximate local $C_{\mathrm{s}}$ symmetry. In the crystal, molecules are linked via $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds, forming chains propagating along [101]. The crystal studied was found to be an inversion twin with a refined 0.63 (1):0.37 (1) domain ratio.

## Related literature

For background to 1,3-thiazolidin-4-ones and their properties, see: Singh et al. (1981); Liesen et al. (2010); Kocabalkanli et al. (2001); Kumar et al. (2007). For further synthetic details, see: Mohareb et al. (2012). For a related structure, see: Pomés Hernández et al. (1996).


## Experimental

## Crystal data

$$
\begin{array}{ll}
\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{OS} & b=9.5638(6) \AA \\
M_{r}=241.27 & c=7.1651(4) \AA \\
\text { Monoclinic, } C c & \beta=104.199(4)^{\circ} \\
a=17.0305(8) \AA & V=1131.37(11) \AA^{3}
\end{array}
$$

$Z=4$
$T=298 \mathrm{~K}$
Mo $K \alpha$ radiation
$\mu=0.27 \mathrm{~mm}^{-1}$
Data collection
Nonius KappaCCD diffractometer
2136 measured reflections
2136 independent reflections
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.086$
$S=1.01$
2136 reflections
156 parameters
2 restraints

1397 reflections with $I>2 \sigma(I)$

H -atom parameters constrained
$0.20 \times 0.13 \times 0.05 \mathrm{~mm}$ $R_{\text {int }}=0.029$
$\Delta \rho_{\max }=0.17 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.18 \mathrm{e}^{-3}$
Absolute structure: Flack (1983), 835 Friedel pairs
Flack parameter: 0.37 (1)

Table 1
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{C} 10-\mathrm{H} 10 \cdots \mathrm{~N} 2^{\mathrm{i}}$ | 0.93 | 2.62 | $3.504(5)$ | 159 |
| Symmetry code: (i) $x+\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2}$. |  |  |  |  |

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski \& Minor, 1997); data reduction: DENZO (Otwinowski \& Minor, 1997), SCALEPACK and SORTAV (Blessing, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXL97.

The authors would like to thank the American University in Cairo for providing financial support to complete this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5577).

## References

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Kocabalkanli, A., Ates, A. \& Otuk, G. (2001). Arch. Pharm. Pharm. Med. Chem. 334, 35-39.
Kumar, A., Rajput, C. S. \& Bhati, S. K. (2007). Bioorg. Med. Chem. 15, 30893096.

Liesen, A. P., Aquino, T. M., Carvalho, C. S., Lima, V. T., Araujo, J. M., Lima, J. G., Faria, A. R., Melo, E. J. T., Alves, A. J., Alves, E. W., Alves, A. Q. \& Goes, A. S. (2010). Eur. J. Med. Chem. 45, 3685-3691.
Mohareb, R. M., El-Sayed, N. \& Abdelaziz, M. A. (2012). Molecules, 17, 84498463.

Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Pomés Hernández, R., Duque Rodríguez, J., Novoa de Armas, H. \& Toscano, R. A. (1996). Acta Cryst. C52, 1731-1733.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Singh, S. P., Parmar, S. S., Raman, K. \& Stenberg, V. I. (1981). Chem. Rev. 81, 175-203.

# supporting information 

Acta Cryst. (2013). E69, o350 [doi:10.1107/S160053681300216X]

## 2-(4-Oxo-3-phenyl-1,3-thiazolidin-2-ylidene)malononitrile

Ola K. Sakka, Daisy H. Fleita and William T. A. Harrison

## S1. Comment

1,3-Thiazolidin-4-ones are heterocyclic compounds that have an atom of sulfur and nitrogen at positions 1 and 3, respectively and a carbonyl group at position 4 . Their presence in penicillin was the first recognition of their occurrence in nature (Singh et al., 1981). They have found uses as antibacterial (Liesen et al., 2010), antimicrobial (Kocabalkanli et al., 2001) and anti-inflammatory agents (Kumar et al., 2007). In continuation of our studies on this family of compounds, we now report the synthesis and crystal structure of the title compound, (I).
The heterocyclic ring $(\mathrm{C} 1 / \mathrm{C} 2 / \mathrm{S} 1 / \mathrm{C} 3 / \mathrm{N} 1)$ in (I) is close to planar (r.m.s. deviation $=0.022 \AA$ ) and subtends dihedral angles with the phenyl ring and the $\mathrm{C}(\mathrm{CN})_{2}$ group (r.m.s. deviation $=0.003 \AA$ ) of 84.88 (9) and $1.8(3)^{\circ}$, respectively. An alternative analysis of the heterocyclic ring as a shallow envelope sees the S atom in the flap position displaced by 0.090 (5) $\AA$ from the other atoms (r.m.s. deviation $=0.004 \AA$ ). The molecule has approximate local $\mathrm{C}_{\mathrm{s}}$ symmetry.

There is a short intermolecular contact [2.903 (2) $\AA$ ] from the O atom of the carbonyl group to the centre of a nearby heterocyclic ring (symmetry: $x, 1-x, z-1 / 2$ ), but given the non-aromatic nature of the ring, this can hardly be regarded as a bond. No other significant intermolecular contacts occur in the crystal.

For a related structure, in which the thiazole ring was also found to be almost planar, see Pomés Hernández et al. (1996).

## S2. Experimental

To a solution of malononitrile $(0.66 \mathrm{~g}, 0.01 \mathrm{~mol})$ dissolved in dimethylformamide $(15 \mathrm{ml})$, potassium hydroxide pellets $(0.56 \mathrm{~g}, 0.01 \mathrm{~mol})$ and phenylisothiocyanate $(1.35 \mathrm{~g}, 0.01 \mathrm{~mol})$ were added. The reaction mixture was covered and stirred at room temperature overnight. $N^{\prime \prime}$-(2-chloroacetyl)-2-cyanoacetohydrazide ( $1.75 \mathrm{~g}, 0.01 \mathrm{~mol}$ ) (Mohareb et al., 2012) was stirred in the following day, and the solution was covered for another night, after which the reaction mixture was poured onto ice, neutralized with dil. HCl and the precipitated solid filtered off. Yellow blocks were obtained by slow evaporation of an ethanol solution.

## S3. Refinement

The H atoms were placed in calculated positions $\left(\mathrm{C}-\mathrm{H}=0.93-0.97 \AA\right.$ ) and refined as riding. The constraint $U_{\mathrm{iso}}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$ was applied.


## Figure 1

The molecular structure of the title compound, showing displacement ellipsoids at the $50 \%$ probability level.

## 2-(4-Oxo-3-phenyl-1,3-thiazolidin-2-ylidene)malononitrile

## Crystal data

$\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{OS}$
$M_{r}=241.27$
Monoclinic, $C c$
Hall symbol: C -2yc
$a=17.0305$ (8) $\AA$
$b=9.5638$ (6) $\AA$
$c=7.1651$ (4) $\AA$
$\beta=104.199$ (4) ${ }^{\circ}$
$V=1131.37(11) \AA^{3}$
$Z=4$
Data collection

## Nonius KappaCCD

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
$\omega$ scans
2136 measured reflections
2136 independent reflections
$F(000)=496$
$D_{\mathrm{x}}=1.416 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1133 reflections
$\theta=2.9-27.5^{\circ}$
$\mu=0.27 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Block, yellow
$0.20 \times 0.13 \times 0.05 \mathrm{~mm}$

## Refinement

Refinement on $F^{2}$
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.086$
$S=1.01$
2136 reflections
156 parameters
2 restraints

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0223 P)^{2}+0.0674 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.17 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.18 \mathrm{e} \AA^{-3}$

Extinction correction: SHELXL97 (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.008 (2)
Absolute structure: Flack (1983), 835 Friedel pairs
Absolute structure parameter: 0.37 (1)

## Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of $F^{2}$ against ALL reflections. The weighted $R$-factor $w R$ and goodness of fit $S$ are based on $F^{2}$, conventional $R$-factors $R$ are based on $F$, with $F$ set to zero for negative $F^{2}$. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating $R$-factors $(\mathrm{gt})$ etc. and is not relevant to the choice of reflections for refinement. $R$-factors based on $F^{2}$ are statistically about twice as large as those based on $F$, and $R$ - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $\AA^{2}$ )

|  | $x$ | $y$ | $z$ | $U_{\mathrm{iso}} * / U_{\mathrm{eq}}$ |
| :--- | :--- | :--- | :--- | :--- |
| C1 | $0.40086(17)$ | $0.3723(3)$ | $0.3314(5)$ | $0.0435(8)$ |
| C2 | $0.31911(18)$ | $0.3591(4)$ | $0.3709(4)$ | $0.0542(9)$ |
| H2A | 0.2827 | 0.3104 | 0.2657 | $0.065^{*}$ |
| H2B | 0.2969 | 0.4511 | 0.3830 | $0.065^{*}$ |
| C3 | $0.43425(18)$ | $0.2567(3)$ | $0.6297(4)$ | $0.0357(7)$ |
| C4 | $0.48151(17)$ | $0.1984(3)$ | $0.7933(4)$ | $0.0395(8)$ |
| C5 | $0.4414(2)$ | $0.1387(4)$ | $0.9303(5)$ | $0.0487(8)$ |
| C6 | $0.5676(2)$ | $0.1857(3)$ | $0.8434(5)$ | $0.0444(8)$ |
| C7 | $0.54465(17)$ | $0.3210(3)$ | $0.4754(4)$ | $0.0368(7)$ |
| C8 | $0.58860(18)$ | $0.4396(4)$ | $0.5395(4)$ | $0.0465(8)$ |
| H8 | 0.5650 | 0.5143 | 0.5884 | $0.056^{*}$ |
| C9 | $0.6685(2)$ | $0.4455(5)$ | $0.5297(5)$ | $0.0669(11)$ |
| H9 | 0.6994 | 0.5242 | 0.5746 | $0.080^{*}$ |
| C10 | $0.7026(2)$ | $0.3359(5)$ | $0.4543(5)$ | $0.0689(13)$ |
| H10 | 0.7563 | 0.3411 | 0.4470 | $0.083^{*}$ |
| C11 | $0.6581(2)$ | $0.2197(5)$ | $0.3901(5)$ | $0.0657(12)$ |
| H11 | 0.6816 | 0.1456 | 0.3394 | $0.079^{*}$ |
| C12 | $0.5784(2)$ | $0.2111(4)$ | $0.3998(4)$ | $0.0534(10)$ |
| H12 | 0.5480 | 0.1318 | 0.3557 | $0.064^{*}$ |
| S1 | $0.32943(5)$ | $0.26310(9)$ | $0.59038(11)$ | $0.0515(3)$ |
| O1 | $0.41623(12)$ | $0.4253(2)$ | $0.1924(3)$ | $0.0585(7)$ |
| N1 | $0.46104(13)$ | $0.3139(3)$ | $0.4828(3)$ | $0.0363(6)$ |
| N2 | $0.40992(18)$ | $0.0906(3)$ | $1.0384(5)$ | $0.0703(9)$ |
| N3 | $0.63584(18)$ | $0.1710(3)$ | $0.8969(4)$ | $0.0671(9)$ |
|  |  |  |  |  |

Atomic displacement parameters $\left(\AA^{2}\right)$

|  | $U^{11}$ | $U^{22}$ | $U^{\beta 3}$ | $U^{12}$ | $U^{13}$ | $U^{23}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| C1 | $0.0331(18)$ | $0.039(2)$ | $0.0570(19)$ | $-0.0008(15)$ | $0.0092(15)$ | $-0.0014(17)$ |
| C2 | $0.036(2)$ | $0.071(3)$ | $0.0535(19)$ | $0.0005(17)$ | $0.0065(14)$ | $0.0031(18)$ |
| C3 | $0.0287(16)$ | $0.0350(19)$ | $0.0452(17)$ | $-0.0036(15)$ | $0.0126(13)$ | $-0.0012(14)$ |
| C4 | $0.0327(18)$ | $0.042(2)$ | $0.0459(19)$ | $0.0010(14)$ | $0.0142(15)$ | $0.0074(15)$ |
| C5 | $0.0362(19)$ | $0.050(2)$ | $0.0577(19)$ | $0.0011(16)$ | $0.0074(16)$ | $0.0099(17)$ |
| C6 | $0.040(2)$ | $0.048(2)$ | $0.0461(17)$ | $-0.0002(16)$ | $0.0109(14)$ | $0.0044(17)$ |
| C7 | $0.0283(17)$ | $0.045(2)$ | $0.0386(17)$ | $-0.0005(15)$ | $0.0110(13)$ | $0.0027(15)$ |
| C8 | $0.042(2)$ | $0.051(2)$ | $0.0490(18)$ | $-0.0055(17)$ | $0.0144(14)$ | $-0.0015(16)$ |
| C9 | $0.047(2)$ | $0.095(3)$ | $0.060(2)$ | $-0.020(2)$ | $0.0139(18)$ | $0.007(2)$ |
| C10 | $0.030(2)$ | $0.122(4)$ | $0.057(2)$ | $0.003(2)$ | $0.0147(16)$ | $0.012(2)$ |
| C11 | $0.046(2)$ | $0.098(3)$ | $0.057(2)$ | $0.026(2)$ | $0.0199(19)$ | $0.003(2)$ |
| C12 | $0.049(2)$ | $0.057(3)$ | $0.052(2)$ | $0.0062(18)$ | $0.0080(17)$ | $-0.0045(15)$ |
| S1 | $0.0288(4)$ | $0.0603(6)$ | $0.0661(5)$ | $-0.0030(5)$ | $0.0131(3)$ | $0.0097(5)$ |
| O1 | $0.0528(15)$ | $0.0679(18)$ | $0.0571(13)$ | $0.0059(12)$ | $0.0178(10)$ | $0.0173(13)$ |
| N1 | $0.0280(14)$ | $0.0374(16)$ | $0.0442(14)$ | $-0.0027(11)$ | $0.0103(11)$ | $0.0005(12)$ |
| N2 | $0.0528(19)$ | $0.085(3)$ | $0.076(2)$ | $-0.0039(18)$ | $0.0208(15)$ | $0.030(2)$ |
| N3 | $0.040(2)$ | $0.092(3)$ | $0.067(2)$ | $0.0083(17)$ | $0.0091(15)$ | $0.0192(18)$ |
|  |  |  |  |  |  |  |

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

| C1-O1 | 1.202 (3) | C7-C12 | 1.372 (4) |
| :---: | :---: | :---: | :---: |
| C1-N1 | 1.412 (4) | C7-C8 | 1.374 (4) |
| C1-C2 | 1.492 (4) | C7-N1 | 1.439 (3) |
| $\mathrm{C} 2-\mathrm{S} 1$ | 1.792 (3) | C8-C9 | 1.381 (4) |
| $\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$ | 0.9700 | C8-H8 | 0.9300 |
| $\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$ | 0.9700 | C9-C10 | 1.372 (6) |
| $\mathrm{C} 3-\mathrm{N} 1$ | 1.361 (4) | C9-H9 | 0.9300 |
| C3-C4 | 1.367 (4) | C10-C11 | 1.361 (5) |
| C3-S1 | 1.739 (3) | C10-H10 | 0.9300 |
| C4-C6 | 1.426 (4) | C11-C12 | 1.378 (5) |
| C4-C5 | 1.444 (5) | C11-H11 | 0.9300 |
| C5-N2 | 1.142 (4) | C12-H12 | 0.9300 |
| C6-N3 | 1.140 (4) |  |  |
| $\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 1$ | 122.6 (3) | C7-C8-C9 | 118.7 (3) |
| $\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$ | 126.5 (3) | C7-C8-H8 | 120.7 |
| $\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$ | 110.9 (3) | C9-C8-H8 | 120.7 |
| $\mathrm{C} 1-\mathrm{C} 2-\mathrm{S} 1$ | 108.3 (2) | C10-C9-C8 | 120.5 (4) |
| $\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$ | 110.0 | C10-C9-H9 | 119.8 |
| S1-C2-H2A | 110.0 | C8-C9-H9 | 119.8 |
| $\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$ | 110.0 | C11-C10-C9 | 120.1 (4) |
| $\mathrm{S} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$ | 110.0 | C11-C10-H10 | 119.9 |
| $\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$ | 108.4 | C9-C10-H10 | 119.9 |
| N1-C3-C4 | 126.1 (3) | C10-C11-C12 | 120.4 (4) |
| N1-C3-S1 | 112.7 (2) | C10-C11-H11 | 119.8 |


| $\mathrm{C} 4-\mathrm{C} 3-\mathrm{S} 1$ | $121.2(2)$ | $\mathrm{C} 12-\mathrm{C} 11-\mathrm{H} 11$ | 119.8 |
| :--- | :--- | :--- | :--- |
| $\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 6$ | $127.1(2)$ | $\mathrm{C} 7-\mathrm{C} 12-\mathrm{C} 11$ | $119.2(4)$ |
| $\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$ | $117.8(3)$ | $\mathrm{C} 7-\mathrm{C} 12-\mathrm{H} 12$ | 120.4 |
| $\mathrm{C} 6-\mathrm{C} 4-\mathrm{C} 5$ | $115.1(3)$ | $\mathrm{C} 11-\mathrm{C} 12-\mathrm{H} 12$ | 120.4 |
| $\mathrm{~N} 2-\mathrm{C} 5-\mathrm{C} 4$ | $179.5(4)$ | $\mathrm{C} 3-\mathrm{S} 1-\mathrm{C} 2$ | $92.06(15)$ |
| $\mathrm{N} 3-\mathrm{C} 6-\mathrm{C} 4$ | $174.6(3)$ | $\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 1$ | $115.8(2)$ |
| $\mathrm{C} 12-\mathrm{C} 7-\mathrm{C} 8$ | $121.1(3)$ | $\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 7$ | $124.7(2)$ |
| $\mathrm{C} 12-\mathrm{C} 7-\mathrm{N} 1$ | $119.5(3)$ | $\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7$ | $119.4(2)$ |
| $\mathrm{C} 8-\mathrm{C} 7-\mathrm{N} 1$ | $119.3(3)$ |  |  |

Hydrogen-bond geometry ( $A,{ }^{\circ}$ )

| $D — \mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{C} 10 — \mathrm{H} 10 \cdots \mathrm{~N} 2^{\mathrm{i}}$ | 0.93 | 2.62 | $3.504(5)$ | 159 |

Symmetry code: (i) $x+1 / 2,-y+1 / 2, z-1 / 2$.

