# organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# Tetraethylammonium toluene-4-sulfonate

#### Diana Malgorzata Brus, Justyna Czyrko and Krzysztof Brzezinski\*

Institute of Chemistry, University of Bialystok, Hurtowa 1, 15-399 Bialystok, Poland Correspondence e-mail: k.brzezinski@uwb.edu.pl

Received 24 January 2013; accepted 29 January 2013

Key indicators: single-crystal X-ray study; T = 100 K; mean  $\sigma$ (C–C) = 0.005 Å; disorder in main residue; R factor = 0.076; wR factor = 0.163; data-to-parameter ratio = 15.5.

There are two tetraethylammonium cations and two toluene-4-sulfate anions in the asymmetric unit of the title salt,  $C_8H_{20}N^+ \cdot C_7H_7O_3S^-$ . One of the anions is disordered over two positions, with refined occupancies of 0.447 (3) and 0.553 (3). In the crystal, the cations and anions are linked by  $C-H\cdots O$ hydrogen bonds, forming ribbons along [101]. The ribbons are linked *via*  $C-H\cdots O$  hydrogen bonds, forming a twodimensional network lying parallel to (101).

#### **Related literature**

For the preparation of tetraethylammonium toluene-4-sulfonate from ethyl 4-toluenesulfonate and triethylamine, see: Baizer (1964). For its application as a phase-transfer catalyst, see: Cerveau *et al.* (2002) or as the supporting electrolyte, see: Adachi *et al.* (1979); Wynne & Street (1985); Yoshida *et al.* (1986); Wong & Moeller (1993); Ben *et al.* (2011).

**Experimental** 

Crystal data  $C_8H_{20}N^+ \cdot C_7H_7O_3S^ M_r = 301.21$ Monoclinic,  $P2_1/n$ a = 16.8771 (3) Å

b = 7.53713 (16) Å c = 26.2404 (6) Å  $\beta = 97.2938 (18)^{\circ}$  $V = 3310.90 (12) \text{ Å}^{3}$  Z = 8Mo  $K\alpha$  radiation  $\mu = 0.20 \text{ mm}^{-1}$ 

#### Data collection

Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer Absorption correction: multi-scan (*CrysAlis PRO*; Agilent, 2011)  $T_{\rm min} = 0.771, T_{\rm max} = 1.000$ 

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.076$  $wR(F^2) = 0.163$ S = 1.196276 reflections 406 parameters T = 100 K $0.8 \times 0.6 \times 0.3 \text{ mm}$ 

6276 measured reflections 6276 independent reflections 5477 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.050$ 

82 restraints H-atom parameters constrained  $\Delta \rho_{max} = 0.46$  e Å<sup>-3</sup>  $\Delta \rho_{min} = -0.50$  e Å<sup>-3</sup>

| Table 1       |          | _   |     |
|---------------|----------|-----|-----|
| Hydrogen-bond | geometry | (Å, | °). |

| $D - H \cdot \cdot \cdot A$            | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|----------------------------------------|------|-------------------------|--------------|--------------------------------------|
| $C6B - H6B \cdots O23$                 | 0.95 | 2.57                    | 3.351 (6)    | 140                                  |
| $C31 - H31B \cdot \cdot \cdot O3B^{i}$ | 0.99 | 2.49                    | 3.344 (4)    | 145                                  |
| C33-H33A···O2B                         | 0.99 | 2.47                    | 3.354 (4)    | 148                                  |
| $C35-H35A\cdots O22^{ii}$              | 0.99 | 2.42                    | 3.228 (4)    | 138                                  |
| C36−H36C···O3B <sup>iii</sup>          | 0.98 | 2.58                    | 3.544 (4)    | 169                                  |
| C43−H43B···O22                         | 0.99 | 2.44                    | 3.269 (4)    | 141                                  |
| $C45 - H45A \cdots O2B$                | 0.99 | 2.53                    | 3.367 (4)    | 142                                  |
| $C47 - H47A \cdots O3B^{i}$            | 0.99 | 2.57                    | 3.440 (4)    | 147                                  |
| $C48-H48B\cdots O22^{iv}$              | 0.98 | 2.58                    | 3.562 (4)    | 175                                  |

Symmetry codes: (i) x, y + 1, z; (ii)  $x + \frac{1}{2}, -y + \frac{3}{2}, z + \frac{1}{2}$ ; (iii)  $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{3}{2}$ ; (iv) -x, -y + 1, -z + 1.

Data collection: *CrysAlis PRO* (Agilent, 2011); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXD* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *SHELXL97*.

The X-ray diffractometer was funded by the EFRD as part of the Operational Programme Development of Eastern Poland 2007–2013, project POPW.01.03.00–20-034/09–00.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2445).

#### References

- Adachi, T., Iwasaki, T., Inoue, I. & Miyoshi, M. (1979). J. Org. Chem. 44, 1404–1409.
- Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.
- Baizer, M. M. (1964). J. Electrochem. Soc. 111, 215-222.
- Ben, T., Shi, K., Cui, Y., Pei, C., Zuo, Y., Guo, H., Zhang, D., Xu, J., Deng, F., Tian, Z. & Qiu, S. (2011). J. Mater. Chem. 21, 18208–18214.
- Cerveau, G., Chappellet, S., Corriu, R. J. P., Dabiens, B. & Le Bideau, J. (2002). Organometallics, **21**, 1560–1564.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wong, P. L. & Moeller, D. K. (1993). J. Am. Chem. Soc. 115, 11434-11445.
- Wynne, K. J. & Street, G. B. (1985). Macromolecules, 18, 2361-2368.
- Yoshida, J., Muraki, K., Funahashi, H. & Kawabata, N. (1986). J. Org. Chem. 51, 3996–4000.



# supporting information

Acta Cryst. (2013). E69, o324 [doi:10.1107/S1600536813002961]

# Tetraethylammonium toluene-4-sulfonate

## Diana Malgorzata Brus, Justyna Czyrko and Krzysztof Brzezinski

#### S1. Comment

Tetraethylammonium toluene-4-sulfonate is applied as the phase-transfer catalyst in the preparation of bis-silanetriols (Cerveau *et al.*, 2002). The compound is also widely used in electrochemistry as the supporting electrolyte (Wynne *et al.*, 1985; Yoshida *et al.*, 1986; Wong *et al.*, 1993; Ben *et al.*, 2011), because it could be easly removed from the reaction by the extraction with water (Adachi *et al.*, 1979).

The asymmetric unit contains two tetraethylammonium cations and two toluene-4-sulfate anions (Fig. 1). One of the toluene-4-sulfate ions is disordered and is modeled in the two locations. The occupancy of two major positions in the final model is refined to 0.447 (3) and 0.553 (3). Within the crystal lattice the columns of cations and anions are formed along b and ac directions (Figs. 2 and 3, respectively).

#### S2. Experimental

The title compound was prepared according to the procedure described by Baizer (1964). Briefly, ethyl toluene-4-sulfonate (200 g, 1.0 mole) was dissolved in 100 mL of anhydrous ethanol and triethylamine was added (101 g, 1.0 mole). The reaction mixture was stirred and heated under reflux for 6 h. The excess of triethylamine and ethanol was removed *in vacuo*. The crude product was washed several times with a dry ethylether and recrystallized from ethanol.

### **S3. Refinement**

The disordered toluene-4-sulfate anion is modeled at the two locations with geometric (FLAT instruction) and dispacement parameter (SIMU instruction) restraints and with AFIX 66, EADP and EXYZ constraints. Seven reflections for which I(obs) and I(calc) differed more then 10 times SigmaW were ommited from the refinement. All H atoms were initially located in electron density difference maps. Hydrogen atoms were constrained to idealised positions with C—H distances fixed at 0.95–0.99 Å and  $1.5U_{eq}(C)$  for methyl hydrogen atoms and  $1.2U_{eq}(C)$  for others.



### Figure 1

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. For clarity, only more populated location of the disordered anion (B) is shown.



### Figure 2

Crystal packing viewed along b direction. For clarity, hydrogen atoms are ommited.



#### Figure 3

Crystal packing viewed along ac direction. For clarity, hydrogen atoms are ommited.

#### Tetraethylammonium toluene-4-sulfonate

Crystal data

C<sub>8</sub>H<sub>20</sub>N<sup>+</sup>·C<sub>7</sub>H<sub>7</sub>O<sub>3</sub>S<sup>-</sup>  $M_r = 301.21$ Monoclinic,  $P2_1/n$ Hall symbol: -P 2yn a = 16.8771 (3) Å b = 7.53713 (16) Å c = 26.2404 (6) Å  $\beta = 97.2938$  (18)° V = 3310.90 (12) Å<sup>3</sup> Z = 8

#### Data collection

Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer Radiation source: SuperNova (Mo) X-ray Source Mirror monochromator Detector resolution: 10.4052 pixels mm<sup>-1</sup> ω scans Absorption correction: multi-scan (*CrysAlis PRO*; Agilent, 2011)

#### Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.076$  $wR(F^2) = 0.163$ S = 1.196276 reflections 406 parameters 82 restraints Primary atom site location: structure-invariant direct methods F(000) = 1312  $D_x = 1.209 \text{ Mg m}^{-3}$ Mo K\alpha radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9780 reflections  $\theta = 2.6-25.6^{\circ}$   $\mu = 0.20 \text{ mm}^{-1}$  T = 100 KPlate, colourless  $0.8 \times 0.6 \times 0.3 \text{ mm}$ 

 $T_{\min} = 0.771, T_{\max} = 1.000$ 6276 measured reflections 6276 independent reflections 5477 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.050$  $\theta_{\max} = 25.7^{\circ}, \theta_{\min} = 2.7^{\circ}$  $h = -20 \rightarrow 20$  $k = 0 \rightarrow 9$  $l = 0 \rightarrow 31$ 

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained  $w = 1/[\sigma^2(F_o^2) + (0.0161P)^2 + 13.1727P]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} < 0.001$  $\Delta\rho_{max} = 0.46$  e Å<sup>-3</sup>  $\Delta\rho_{min} = -0.50$  e Å<sup>-3</sup>

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

|      | x            | у            | Z            | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1) |
|------|--------------|--------------|--------------|-----------------------------|-----------|
| C1A  | 0.4305 (4)   | 0.3064 (10)  | 0.48865 (18) | 0.0178 (18)                 | 0.447 (3) |
| C2A  | 0.4856 (3)   | 0.3393 (9)   | 0.5316 (2)   | 0.0227 (19)                 | 0.447 (3) |
| H2A  | 0.5390       | 0.3704       | 0.5276       | 0.027*                      | 0.447 (3) |
| C3A  | 0.4626 (4)   | 0.3266 (9)   | 0.58052 (18) | 0.0182 (18)                 | 0.447 (3) |
| H3A  | 0.5002       | 0.3491       | 0.6099       | 0.022*                      | 0.447 (3) |
| C4A  | 0.3845 (4)   | 0.2811 (15)  | 0.5864 (3)   | 0.019 (4)                   | 0.447 (3) |
| C5A  | 0.3293 (3)   | 0.2482 (18)  | 0.5434 (4)   | 0.0163 (8)                  | 0.447 (3) |
| H5A  | 0.2760       | 0.2171       | 0.5475       | 0.020*                      | 0.447 (3) |
| C6A  | 0.3524 (3)   | 0.2609 (15)  | 0.4946 (3)   | 0.017 (4)                   | 0.447 (3) |
| H6A  | 0.3147       | 0.2384       | 0.4652       | 0.021*                      | 0.447 (3) |
| C7A  | 0.4550 (6)   | 0.3225 (15)  | 0.4349 (4)   | 0.032 (2)                   | 0.447 (3) |
| H7AA | 0.4883       | 0.2208       | 0.4281       | 0.048*                      | 0.447 (3) |
| H7AB | 0.4853       | 0.4324       | 0.4324       | 0.048*                      | 0.447 (3) |
| H7AC | 0.4071       | 0.3248       | 0.4095       | 0.048*                      | 0.447 (3) |
| O1A  | 0.41953 (15) | 0.2857 (4)   | 0.68544 (10) | 0.0208 (6)                  | 0.447 (3) |
| O2A  | 0.29813 (16) | 0.4298 (3)   | 0.64542 (10) | 0.0208 (6)                  | 0.447 (3) |
| O3A  | 0.30363 (16) | 0.1087 (3)   | 0.65189 (10) | 0.0208 (6)                  | 0.447 (3) |
| S1A  | 0.34859 (5)  | 0.27202 (12) | 0.64777 (3)  | 0.0152 (2)                  | 0.447 (3) |
| C1B  | 0.4338 (4)   | 0.1902 (9)   | 0.49086 (17) | 0.0330 (19)                 | 0.553 (3) |
| C2B  | 0.4878 (3)   | 0.1764 (9)   | 0.5353 (2)   | 0.039 (2)                   | 0.553 (3) |
| H2B  | 0.5421       | 0.1482       | 0.5330       | 0.047*                      | 0.553 (3) |
| C3B  | 0.4624 (3)   | 0.2038 (10)  | 0.58303 (17) | 0.033 (2)                   | 0.553 (3) |
| H3B  | 0.4993       | 0.1943       | 0.6134       | 0.039*                      | 0.553 (3) |
| C4B  | 0.3829 (4)   | 0.2450 (13)  | 0.5863 (2)   | 0.016 (3)                   | 0.553 (3) |
| C5B  | 0.3289 (3)   | 0.2588 (15)  | 0.5419 (3)   | 0.0163 (8)                  | 0.55      |
| H5B  | 0.2746       | 0.2870       | 0.5442       | 0.020*                      | 0.553 (3) |
| C6B  | 0.3543 (3)   | 0.2314 (13)  | 0.4942 (2)   | 0.027 (4)                   | 0.553 (3) |
| H6B  | 0.3174       | 0.2409       | 0.4638       | 0.033*                      | 0.553 (3) |
| C7B  | 0.4610 (6)   | 0.1629 (15)  | 0.4382 (3)   | 0.046 (2)                   | 0.553 (3) |
| H7BA | 0.4996       | 0.0651       | 0.4399       | 0.069*                      | 0.553 (3) |
| H7BB | 0.4863       | 0.2717       | 0.4277       | 0.069*                      | 0.553 (3) |
| H7BC | 0.4148       | 0.1342       | 0.4130       | 0.069*                      | 0.553 (3) |
| O1B  | 0.41953 (15) | 0.2857 (4)   | 0.68544 (10) | 0.0208 (6)                  | 0.55      |
| O2B  | 0.29813 (16) | 0.4298 (3)   | 0.64542 (10) | 0.0208 (6)                  | 0.55      |
| O3B  | 0.30363 (16) | 0.1087 (3)   | 0.65189 (10) | 0.0208 (6)                  | 0.55      |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

| S1B            | 0.34859 (5)                             | 0.27202 (12) | 0.64777 (3)  | 0.0152 (2)  | 0.55 |
|----------------|-----------------------------------------|--------------|--------------|-------------|------|
| C41            | 0.1861 (2)                              | 0.9052 (5)   | 0.48107 (14) | 0.0197 (8)  |      |
| H41A           | 0.2323                                  | 0.9814       | 0.4935       | 0.024*      |      |
| H41B           | 0.1387                                  | 0.9830       | 0.4741       | 0.024*      |      |
| C42            | 0.2016 (3)                              | 0.8186 (6)   | 0.43110 (15) | 0.0294 (10) |      |
| H42A           | 0.2035                                  | 0.9099       | 0.4047       | 0.044*      |      |
| H42B           | 0.1586                                  | 0.7344       | 0.4200       | 0.044*      |      |
| H42C           | 0.2528                                  | 0.7555       | 0.4363       | 0.044*      |      |
| C43            | 0.0994 (2)                              | 0.6613 (5)   | 0.50777 (14) | 0.0198 (8)  |      |
| H43A           | 0.0908                                  | 0.5841       | 0.5371       | 0.024*      |      |
| H43B           | 0.1105                                  | 0.5834       | 0.4791       | 0.024*      |      |
| C44            | 0.0231 (2)                              | 0.7642 (5)   | 0.49120 (15) | 0.0233 (8)  |      |
| H44A           | 0.0298                                  | 0.8362       | 0.4609       | 0.035*      |      |
| H44B           | 0.0115                                  | 0.8419       | 0 5193       | 0.035*      |      |
| H44C           | -0.0212                                 | 0.6810       | 0.4827       | 0.035*      |      |
| C45            | 0.0212<br>0.2424(2)                     | 0.6505 (5)   | 0.53511(14)  | 0.0196 (8)  |      |
| U45<br>H45Δ    | 0.2424(2)<br>0.2318                     | 0.5717       | 0.5637       | 0.024*      |      |
| 114JA<br>11450 | 0.2318                                  | 0.5740       | 0.5037       | 0.024       |      |
| 1145D<br>C46   | 0.2437<br>0.3226 (2)                    | 0.3749       | 0.5040       | 0.024       |      |
| U40            | 0.3220 (2)                              | 0.7390 (0)   | 0.54957 (17) | 0.0284 (9)  |      |
| П40А<br>1146D  | 0.3301                                  | 0.8090       | 0.5204       | 0.043       |      |
|                | 0.3030                                  | 0.0490       | 0.5385       | 0.043*      |      |
| H40C           | 0.5197                                  | 0.81/8       | 0.5791       | $0.043^{+}$ |      |
| C4/            | 0.1613 (2)                              | 0.8873 (5)   | 0.57032(13)  | 0.01/5 (8)  |      |
| H47A           | 0.2102                                  | 0.9586       | 0.5/98       | 0.021*      |      |
| H4/B           | 0.1166                                  | 0.9710       | 0.5610       | 0.021*      |      |
| C48            | 0.1444 (2)                              | 0.7823 (5)   | 0.61699 (14) | 0.0194 (8)  |      |
| H48A           | 0.1860                                  | 0.6922       | 0.6250       | 0.029*      |      |
| H48B           | 0.0922                                  | 0.7243       | 0.6098       | 0.029*      |      |
| H48C           | 0.1441                                  | 0.8626       | 0.6463       | 0.029*      |      |
| N41            | 0.17227 (17)                            | 0.7763 (4)   | 0.52337 (11) | 0.0143 (6)  |      |
| C31            | 0.4385 (2)                              | 0.8762 (5)   | 0.72905 (13) | 0.0171 (8)  |      |
| H31A           | 0.4868                                  | 0.9464       | 0.7413       | 0.021*      |      |
| H31B           | 0.3936                                  | 0.9605       | 0.7214       | 0.021*      |      |
| C32            | 0.4520 (3)                              | 0.7833 (6)   | 0.67967 (15) | 0.0260 (9)  |      |
| H32A           | 0.5004                                  | 0.7105       | 0.6857       | 0.039*      |      |
| H32B           | 0.4583                                  | 0.8720       | 0.6532       | 0.039*      |      |
| H32C           | 0.4061                                  | 0.7074       | 0.6682       | 0.039*      |      |
| C33            | 0.3440 (2)                              | 0.6490 (5)   | 0.75647 (13) | 0.0148 (7)  |      |
| H33A           | 0.3527                                  | 0.5692       | 0.7277       | 0.018*      |      |
| H33B           | 0.3333                                  | 0.5737       | 0.7858       | 0.018*      |      |
| C34            | 0.2712 (2)                              | 0.7617 (5)   | 0.74017 (14) | 0.0178 (8)  |      |
| H34A           | 0.2599                                  | 0.8362       | 0.7690       | 0.027*      |      |
| H34B           | 0.2252                                  | 0.6848       | 0.7296       | 0.027*      |      |
| H34C           | 0.2811                                  | 0.8374       | 0.7113       | 0.027*      |      |
| C35            | 0.4117 (2)                              | 0.8715 (5)   | 0.81795 (13) | 0.0174 (8)  |      |
| H35A           | 0.4618                                  | 0.9397       | 0.8264       | 0.021*      |      |
| H35B           | 0.3684                                  | 0.9580       | 0.8080       | 0.021*      |      |
| C36            | 0.3941 (2)                              | 0.7765 (5)   | 0.86586 (14) | 0.0196 (8)  |      |
| ~~~            | ··· / · · · · · · · · · · · · · · · · · |              |              | U.U.I.V (U) |      |

| H36A | 0.3916       | 0.8629       | 0.8935       | 0.029*      |
|------|--------------|--------------|--------------|-------------|
| H36B | 0.4364       | 0.6901       | 0.8763       | 0.029*      |
| H36C | 0.3427       | 0.7149       | 0.8589       | 0.029*      |
| C37  | 0.4863 (2)   | 0.6190 (5)   | 0.78468 (15) | 0.0181 (8)  |
| H37A | 0.4884       | 0.5427       | 0.7542       | 0.022*      |
| H37B | 0.4723       | 0.5424       | 0.8129       | 0.022*      |
| C38  | 0.5688 (2)   | 0.6967 (6)   | 0.80046 (17) | 0.0284 (9)  |
| H38A | 0.5670       | 0.7768       | 0.8297       | 0.043*      |
| H38B | 0.5858       | 0.7628       | 0.7716       | 0.043*      |
| H38C | 0.6068       | 0.6006       | 0.8103       | 0.043*      |
| N31  | 0.42024 (17) | 0.7550 (4)   | 0.77214 (11) | 0.0140 (6)  |
| C21  | 0.1825 (2)   | 0.3831 (5)   | 0.24019 (15) | 0.0222 (8)  |
| C22  | 0.1070 (2)   | 0.3169 (5)   | 0.24493 (14) | 0.0173 (8)  |
| H22  | 0.0717       | 0.2895       | 0.2148       | 0.021*      |
| C23  | 0.0824 (2)   | 0.2902 (5)   | 0.29249 (14) | 0.0156 (7)  |
| H23  | 0.0303       | 0.2460       | 0.2947       | 0.019*      |
| C24  | 0.1334 (2)   | 0.3274 (4)   | 0.33731 (14) | 0.0140 (7)  |
| C25  | 0.2094 (2)   | 0.3924 (5)   | 0.33320 (15) | 0.0204 (8)  |
| H25  | 0.2450       | 0.4174       | 0.3633       | 0.025*      |
| C26  | 0.2332 (2)   | 0.4210 (6)   | 0.28522 (16) | 0.0264 (9)  |
| H26  | 0.2849       | 0.4672       | 0.2829       | 0.032*      |
| C27  | 0.2089 (3)   | 0.4133 (6)   | 0.18794 (16) | 0.0331 (10) |
| H27A | 0.1626       | 0.4449       | 0.1633       | 0.050*      |
| H27B | 0.2333       | 0.3046       | 0.1766       | 0.050*      |
| H27C | 0.2481       | 0.5100       | 0.1901       | 0.050*      |
| O21  | 0.05965 (16) | 0.1235 (3)   | 0.39491 (10) | 0.0215 (6)  |
| O22  | 0.04246 (15) | 0.4433 (3)   | 0.40172 (9)  | 0.0194 (6)  |
| O23  | 0.16880 (16) | 0.3076 (4)   | 0.43637 (10) | 0.0235 (6)  |
| S21  | 0.09844 (5)  | 0.29743 (12) | 0.39789 (3)  | 0.0154 (2)  |
|      |              |              |              |             |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| C1A | 0.019 (4)   | 0.016 (4)   | 0.019 (4)   | 0.009 (4)    | 0.005 (3)    | 0.004 (4)    |
| C2A | 0.015 (4)   | 0.033 (5)   | 0.021 (4)   | 0.002 (4)    | 0.005 (3)    | -0.003 (4)   |
| C3A | 0.016 (4)   | 0.010 (4)   | 0.027 (5)   | 0.004 (3)    | -0.005 (3)   | -0.002 (4)   |
| C4A | 0.022 (7)   | 0.019 (6)   | 0.015 (7)   | -0.003 (4)   | -0.003 (5)   | -0.005 (4)   |
| C5A | 0.0181 (18) | 0.012 (2)   | 0.019 (2)   | -0.0004 (14) | 0.0032 (15)  | 0.0023 (15)  |
| C6A | 0.023 (8)   | 0.014 (5)   | 0.011 (7)   | 0.008 (5)    | -0.008 (6)   | -0.001 (4)   |
| C7A | 0.030 (5)   | 0.051 (7)   | 0.018 (5)   | 0.003 (5)    | 0.014 (4)    | 0.006 (4)    |
| O1A | 0.0218 (14) | 0.0225 (14) | 0.0168 (13) | 0.0000 (11)  | -0.0033 (11) | 0.0001 (11)  |
| O2A | 0.0254 (14) | 0.0151 (13) | 0.0217 (14) | 0.0038 (11)  | 0.0027 (11)  | 0.0016 (11)  |
| O3A | 0.0260 (14) | 0.0123 (13) | 0.0239 (14) | -0.0019 (11) | 0.0020 (11)  | -0.0002 (11) |
| S1A | 0.0177 (5)  | 0.0139 (4)  | 0.0137 (5)  | 0.0012 (3)   | 0.0005 (3)   | 0.0003 (3)   |
| C1B | 0.038 (5)   | 0.035 (5)   | 0.027 (4)   | -0.012 (4)   | 0.009 (3)    | -0.008 (4)   |
| C2B | 0.025 (4)   | 0.060 (6)   | 0.034 (5)   | -0.002 (4)   | 0.006 (3)    | -0.005 (4)   |
| C3B | 0.018 (4)   | 0.059 (6)   | 0.020 (4)   | 0.002 (4)    | 0.000 (3)    | 0.003 (4)    |
| C4B | 0.019 (6)   | 0.010 (4)   | 0.019 (6)   | 0.000 (3)    | 0.003 (4)    | 0.008 (3)    |
|     |             |             |             |              |              |              |

| C5B | 0.0181 (18) | 0.012 (2)   | 0.019 (2)   | -0.0004 (14) | 0.0032 (15)  | 0.0023 (15)  |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| C6B | 0.034 (8)   | 0.024 (5)   | 0.025 (8)   | -0.013 (5)   | 0.008 (6)    | 0.000 (4)    |
| C7B | 0.042 (5)   | 0.070 (7)   | 0.029 (5)   | -0.009 (5)   | 0.012 (4)    | -0.009 (5)   |
| O1B | 0.0218 (14) | 0.0225 (14) | 0.0168 (13) | 0.0000 (11)  | -0.0033 (11) | 0.0001 (11)  |
| O2B | 0.0254 (14) | 0.0151 (13) | 0.0217 (14) | 0.0038 (11)  | 0.0027 (11)  | 0.0016 (11)  |
| O3B | 0.0260 (14) | 0.0123 (13) | 0.0239 (14) | -0.0019 (11) | 0.0020 (11)  | -0.0002 (11) |
| S1B | 0.0177 (5)  | 0.0139 (4)  | 0.0137 (5)  | 0.0012 (3)   | 0.0005 (3)   | 0.0003 (3)   |
| C41 | 0.0232 (19) | 0.0195 (19) | 0.0164 (19) | 0.0010 (16)  | 0.0024 (15)  | 0.0068 (15)  |
| C42 | 0.039 (2)   | 0.032 (2)   | 0.019 (2)   | 0.0084 (19)  | 0.0101 (18)  | 0.0072 (17)  |
| C43 | 0.0232 (19) | 0.0184 (19) | 0.0166 (19) | -0.0037 (16) | -0.0019 (15) | -0.0031 (15) |
| C44 | 0.0212 (19) | 0.027 (2)   | 0.020 (2)   | -0.0043 (16) | -0.0015 (15) | -0.0027 (16) |
| C45 | 0.0230 (19) | 0.0193 (19) | 0.0165 (19) | 0.0055 (16)  | 0.0029 (15)  | 0.0014 (15)  |
| C46 | 0.019 (2)   | 0.030 (2)   | 0.036 (2)   | 0.0045 (17)  | -0.0011 (17) | 0.0095 (19)  |
| C47 | 0.0221 (19) | 0.0155 (18) | 0.0141 (18) | 0.0006 (15)  | -0.0005 (14) | -0.0023 (14) |
| C48 | 0.026 (2)   | 0.0190 (19) | 0.0135 (18) | 0.0012 (16)  | 0.0025 (15)  | -0.0004 (15) |
| N41 | 0.0164 (15) | 0.0150 (15) | 0.0112 (15) | 0.0019 (12)  | 0.0000 (12)  | 0.0002 (12)  |
| C31 | 0.0194 (18) | 0.0154 (18) | 0.0161 (18) | -0.0038 (14) | 0.0008 (14)  | 0.0052 (14)  |
| C32 | 0.034 (2)   | 0.027 (2)   | 0.019 (2)   | -0.0003 (18) | 0.0076 (17)  | 0.0053 (17)  |
| C33 | 0.0171 (17) | 0.0138 (17) | 0.0131 (17) | -0.0049 (14) | 0.0003 (14)  | -0.0016 (14) |
| C34 | 0.0153 (17) | 0.0177 (19) | 0.0197 (19) | -0.0031 (14) | -0.0003 (14) | 0.0022 (15)  |
| C35 | 0.0247 (19) | 0.0124 (17) | 0.0138 (18) | -0.0006 (15) | -0.0022 (14) | -0.0035 (14) |
| C36 | 0.025 (2)   | 0.0194 (19) | 0.0134 (18) | -0.0016 (16) | 0.0002 (15)  | -0.0023 (15) |
| C37 | 0.0175 (18) | 0.0132 (18) | 0.023 (2)   | 0.0022 (14)  | -0.0009 (15) | 0.0030 (15)  |
| C38 | 0.020 (2)   | 0.024 (2)   | 0.039 (3)   | -0.0002 (17) | -0.0049 (18) | 0.0075 (19)  |
| N31 | 0.0175 (15) | 0.0100 (14) | 0.0139 (15) | -0.0013 (12) | -0.0013 (12) | -0.0005 (12) |
| C21 | 0.024 (2)   | 0.0189 (19) | 0.026 (2)   | 0.0070 (16)  | 0.0124 (16)  | 0.0057 (16)  |
| C22 | 0.0203 (18) | 0.0142 (18) | 0.0168 (18) | 0.0034 (15)  | 0.0004 (14)  | -0.0006 (14) |
| C23 | 0.0152 (17) | 0.0109 (17) | 0.0205 (19) | -0.0004 (14) | 0.0020 (14)  | -0.0003 (14) |
| C24 | 0.0150 (17) | 0.0085 (16) | 0.0189 (18) | 0.0041 (13)  | 0.0034 (14)  | -0.0017 (13) |
| C25 | 0.0157 (18) | 0.022 (2)   | 0.023 (2)   | 0.0026 (15)  | -0.0009 (15) | -0.0019 (16) |
| C26 | 0.0158 (18) | 0.031 (2)   | 0.034 (2)   | -0.0025 (16) | 0.0065 (16)  | 0.0013 (18)  |
| C27 | 0.033 (2)   | 0.041 (3)   | 0.028 (2)   | 0.004 (2)    | 0.0165 (19)  | 0.007 (2)    |
| O21 | 0.0262 (14) | 0.0200 (14) | 0.0192 (14) | -0.0025 (11) | 0.0066 (11)  | 0.0029 (11)  |
| O22 | 0.0215 (13) | 0.0209 (14) | 0.0155 (13) | 0.0042 (11)  | 0.0016 (10)  | -0.0017 (11) |
| O23 | 0.0229 (14) | 0.0278 (15) | 0.0179 (14) | 0.0058 (12)  | -0.0043 (11) | 0.0020 (11)  |
| S21 | 0.0169 (4)  | 0.0156 (4)  | 0.0132 (4)  | 0.0035 (3)   | -0.0005 (3)  | 0.0005 (3)   |
|     |             |             |             |              |              |              |

Geometric parameters (Å, °)

| C1A—C2A | 1.3900     | C47—C48  | 1.515 (5) |  |
|---------|------------|----------|-----------|--|
| C1AC6A  | 1.3900     | C47—N41  | 1.520 (4) |  |
| C1A—C7A | 1.525 (10) | C47—H47A | 0.9900    |  |
| C2A—C3A | 1.3900     | C47—H47B | 0.9900    |  |
| C2A—H2A | 0.9500     | C48—H48A | 0.9800    |  |
| C3A—C4A | 1.3900     | C48—H48B | 0.9800    |  |
| СЗА—НЗА | 0.9500     | C48—H48C | 0.9800    |  |
| C4A—C5A | 1.3900     | C31—N31  | 1.515 (4) |  |
| C4A—S1A | 1.792 (5)  | C31—C32  | 1.516 (5) |  |
|         |            |          |           |  |

| C5A—C6A             | 1.3900               | C31—H31A          | 0.9900               |
|---------------------|----------------------|-------------------|----------------------|
| С5А—Н5А             | 0.9500               | C31—H31B          | 0.9900               |
| C6A—H6A             | 0.9500               | C32—H32A          | 0.9800               |
| C7A—H7AA            | 0 9800               | C32—H32B          | 0 9800               |
| C7A—H7AB            | 0.9800               | $C_{32}$ H32D     | 0.9800               |
| C7A - H7AC          | 0.9800               | $C_{33}$ $C_{34}$ | 1.511(5)             |
| 014 $11/100$        | 1 456 (3)            | $C_{33}$ N31      | 1.511(3)<br>1.526(4) |
| $O_{2A} = S_{1A}$   | 1.450 (3)            | C33 H33A          | 0.0000               |
| $O_2A = S_1A$       | 1.400(3)<br>1.457(3) | C33 H33P          | 0.9900               |
| C1P C2P             | 1.457 (5)            | C24 H24A          | 0.9900               |
| C1B - C2B           | 1.3900               | $C_{24}$ $H_{24}$ | 0.9800               |
|                     | 1.5900               | C24 H24C          | 0.9800               |
|                     | 1.526 (9)            | C34—H34C          | 0.9800               |
| C2B—C3B             | 1.3900               | C35—C36           | 1.509 (5)            |
| C2B—H2B             | 0.9500               | C35—N31           | 1.510 (4)            |
| C3B—C4B             | 1.3900               | С35—Н35А          | 0.9900               |
| СЗВ—НЗВ             | 0.9500               | C35—H35B          | 0.9900               |
| C4B—C5B             | 1.3900               | С36—Н36А          | 0.9800               |
| C5B—C6B             | 1.3900               | С36—Н36В          | 0.9800               |
| C5B—H5B             | 0.9500               | C36—H36C          | 0.9800               |
| C6B—H6B             | 0.9500               | C37—N31           | 1.519 (4)            |
| С7В—Н7ВА            | 0.9800               | C37—C38           | 1.518 (5)            |
| C7B—H7BB            | 0.9800               | С37—Н37А          | 0.9900               |
| C7B—H7BC            | 0.9800               | С37—Н37В          | 0.9900               |
| C41—N41             | 1.516 (4)            | C38—H38A          | 0.9800               |
| C41—C42             | 1.517 (5)            | C38—H38B          | 0.9800               |
| C41—H41A            | 0.9900               | C38—H38C          | 0.9800               |
| C41—H41B            | 0.9900               | C21—C22           | 1.389 (5)            |
| C42—H42A            | 0.9800               | C21—C26           | 1.397 (6)            |
| C42—H42B            | 0.9800               | C21—C27           | 1.512 (5)            |
| C42—H42C            | 0.9800               | C22—C23           | 1.379 (5)            |
| C43—N41             | 1.517 (5)            | C22—H22           | 0.9500               |
| C43—C44             | 1.519 (5)            | C23—C24           | 1.395 (5)            |
| C43—H43A            | 0.9900               | C23—H23           | 0.9500               |
| C43—H43B            | 0.9900               | $C_{24}$ $C_{25}$ | 1 389 (5)            |
| C44—H44A            | 0.9800               | $C_{24}$ $S_{21}$ | 1.369(3)<br>1 779(4) |
| C44—H44B            | 0.9800               | $C_{24} = 521$    | 1.775 (4)            |
| C44—H44C            | 0.9800               | C25 C20           | 0.9500               |
| $C_{45}$ $C_{46}$   | 1 515 (5)            | C26 H26           | 0.9500               |
| C45 N41             | 1.515(3)<br>1.517(4) | C27 H27A          | 0.9500               |
| $C_{45}$ $H_{45A}$  | 0.0000               | $C_2 / - H_2 / A$ | 0.9800               |
| C45 = H45R          | 0.9900               | $C_2/-n_2/B$      | 0.9800               |
| С45—Н45В            | 0.9900               | $C_2/-H_2/C$      | 0.9800               |
| С40—П40А<br>С4(Ц4(D | 0.9800               | 022 521           | 1.403(3)             |
|                     | 0.9800               | 022               | 1.401 (3)            |
| C46—H46C            | 0.9800               | 023—S21           | 1.460 (3)            |
| C2A—C1A—C6A         | 120.0                | H48A—C48—H48C     | 109.5                |
| C2A—C1A—C7A         | 120.3 (6)            | H48B—C48—H48C     | 109.5                |
| C6A—C1A—C7A         | 119.7 (6)            | C41—N41—C43       | 111.3 (3)            |

| C3A—C2A—C1A                                  | 120.0       | C41—N41—C45                                          | 111.1 (3)          |
|----------------------------------------------|-------------|------------------------------------------------------|--------------------|
| C3A—C2A—H2A                                  | 120.0       | C43—N41—C45                                          | 106.4 (3)          |
| C1A—C2A—H2A                                  | 120.0       | C41—N41—C47                                          | 106.7 (3)          |
| C2A—C3A—C4A                                  | 120.0       | C43—N41—C47                                          | 110.8 (3)          |
| С2А—С3А—НЗА                                  | 120.0       | C45—N41—C47                                          | 110.6 (3)          |
| С4А—С3А—НЗА                                  | 120.0       | N31—C31—C32                                          | 115.2 (3)          |
| C5A—C4A—C3A                                  | 120.0       | N31—C31—H31A                                         | 108.5              |
| C5A—C4A—S1A                                  | 117.0 (5)   | С32—С31—Н31А                                         | 108.5              |
| C3A—C4A—S1A                                  | 122.9 (5)   | N31—C31—H31B                                         | 108.5              |
| C4A—C5A—C6A                                  | 120.0       | С32—С31—Н31В                                         | 108.5              |
| С4А—С5А—Н5А                                  | 120.0       | H31A—C31—H31B                                        | 107.5              |
| С6А—С5А—Н5А                                  | 120.0       | C31—C32—H32A                                         | 109.5              |
| C5A - C6A - C1A                              | 120.0       | C31—C32—H32B                                         | 109.5              |
| C5A—C6A—H6A                                  | 120.0       | H32A—C32—H32B                                        | 109.5              |
| C1A - C6A - H6A                              | 120.0       | $C_{31} - C_{32} - H_{32}C_{32}$                     | 109.5              |
| 01A = S1A = 03A                              | 113 61 (16) | $H_{32A} - C_{32} - H_{32C}$                         | 109.5              |
| 014 - S14 - 024                              | 113 33 (16) | $H_{32B} = C_{32} = H_{32C}$                         | 109.5              |
| 034 - S14 - 024                              | 112 64 (15) | $C_{34}$ $C_{33}$ $N_{31}$                           | 107.3<br>114 2 (3) |
| 014 $14$ $-C44$                              | 105.4(3)    | $C_{34}$ $C_{33}$ $H_{33}$                           | 108 7              |
| $O_{3A}$ S1A C4A                             | 109.7(3)    | N31 C33 H33A                                         | 108.7              |
| 03A = 51A = C4A                              | 109.7 (4)   | $C_{34}$ $C_{33}$ $H_{33B}$                          | 108.7              |
| $C_{2R} = C_{1R} = C_{4R}$                   | 120.0       | N31 C33 H33B                                         | 108.7              |
| $C_{2B}$ $C_{1B}$ $C_{7B}$                   | 120.6 (5)   | H22A C22 H22P                                        | 107.6              |
| $C_{2B}$ $C_{1B}$ $C_{7B}$                   | 120.0(5)    | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 107.0              |
| $C_{0B}$ $C_{1B}$ $C_{1B}$ $C_{1B}$          | 119.4 (3)   | $C_{33} = C_{34} = H_{34} R_{34}$                    | 109.5              |
| $C_{2B}$ $C_{2B}$ $C_{2B}$ $C_{2B}$ $C_{2B}$ | 120.0       | $C_{33}$ — $C_{34}$ — $H_{34B}$                      | 109.5              |
| $C_{3}B = C_{2}B = H_{2}B$                   | 120.0       | $H_{34A} - C_{34} - H_{34B}$                         | 109.5              |
| CIB - C2B - H2B                              | 120.0       | U24A C24 H24C                                        | 109.5              |
| C4B = C3B = C2B                              | 120.0       | H34A - C34 - H34C                                    | 109.5              |
| C4B - C3B - H3B                              | 120.0       | H34B - C34 - H34C                                    | 109.5              |
| $C_2B = C_3B = H_3B$                         | 120.0       | $C_{36} = C_{35} = N_{31}$                           | 115.8 (3)          |
| C3B—C4B—C5B                                  | 120.0       | C36—C35—H35A                                         | 108.3              |
| C6B—C5B—C4B                                  | 120.0       | N31—C35—H35A                                         | 108.3              |
| С6В—С5В—Н5В                                  | 120.0       | С36—С35—Н35В                                         | 108.3              |
| C4B—C5B—H5B                                  | 120.0       | N31—C35—H35B                                         | 108.3              |
| C5B—C6B—C1B                                  | 120.0       | H35A—C35—H35B                                        | 107.4              |
| C5B—C6B—H6B                                  | 120.0       | С35—С36—Н36А                                         | 109.5              |
| C1B—C6B—H6B                                  | 120.0       | С35—С36—Н36В                                         | 109.5              |
| C1B—C7B—H7BA                                 | 109.5       | H36A—C36—H36B                                        | 109.5              |
| C1B—C7B—H7BB                                 | 109.5       | С35—С36—Н36С                                         | 109.5              |
| H7BA—C7B—H7BB                                | 109.5       | H36A—C36—H36C                                        | 109.5              |
| C1B—C7B—H7BC                                 | 109.5       | H36B—C36—H36C                                        | 109.5              |
| Н7ВА—С7В—Н7ВС                                | 109.5       | N31—C37—C38                                          | 114.9 (3)          |
| H7BB—C7B—H7BC                                | 109.5       | N31—C37—H37A                                         | 108.5              |
| N41—C41—C42                                  | 114.6 (3)   | С38—С37—Н37А                                         | 108.5              |
| N41—C41—H41A                                 | 108.6       | N31—C37—H37B                                         | 108.5              |
| C42—C41—H41A                                 | 108.6       | С38—С37—Н37В                                         | 108.5              |
| N41—C41—H41B                                 | 108.6       | Н37А—С37—Н37В                                        | 107.5              |
| C42—C41—H41B                                 | 108.6       | C37—C38—H38A                                         | 109.5              |

| H41A—C41—H41B | 107.6     | С37—С38—Н38В  | 109.5       |
|---------------|-----------|---------------|-------------|
| C41—C42—H42A  | 109.5     | H38A—C38—H38B | 109.5       |
| C41—C42—H42B  | 109.5     | С37—С38—Н38С  | 109.5       |
| H42A—C42—H42B | 109.5     | H38A—C38—H38C | 109.5       |
| C41—C42—H42C  | 109.5     | H38B—C38—H38C | 109.5       |
| H42A—C42—H42C | 109.5     | C35—N31—C31   | 107.0 (3)   |
| H42B—C42—H42C | 109.5     | C35—N31—C37   | 111.2 (3)   |
| N41—C43—C44   | 114.4 (3) | C31—N31—C37   | 110.8 (3)   |
| N41—C43—H43A  | 108.6     | C35—N31—C33   | 110.9 (3)   |
| C44—C43—H43A  | 108.6     | C31—N31—C33   | 111.0 (3)   |
| N41—C43—H43B  | 108.6     | C37—N31—C33   | 106.0 (3)   |
| C44—C43—H43B  | 108.6     | C22—C21—C26   | 117.9 (3)   |
| H43A—C43—H43B | 107.6     | C22—C21—C27   | 121.0 (4)   |
| C43—C44—H44A  | 109.5     | C26—C21—C27   | 121.2 (4)   |
| C43—C44—H44B  | 109.5     | C23—C22—C21   | 121.2 (3)   |
| H44A—C44—H44B | 109.5     | C23—C22—H22   | 119.4       |
| C43—C44—H44C  | 109.5     | C21—C22—H22   | 119.4       |
| H44A—C44—H44C | 109.5     | C22—C23—C24   | 120.6 (3)   |
| H44B—C44—H44C | 109.5     | С22—С23—Н23   | 119.7       |
| C46—C45—N41   | 115.0 (3) | С24—С23—Н23   | 119.7       |
| C46—C45—H45A  | 108.5     | C25—C24—C23   | 118.8 (3)   |
| N41—C45—H45A  | 108.5     | C25—C24—S21   | 121.9 (3)   |
| C46—C45—H45B  | 108.5     | C23—C24—S21   | 119.3 (3)   |
| N41—C45—H45B  | 108.5     | C26—C25—C24   | 120.1 (3)   |
| H45A—C45—H45B | 107.5     | С26—С25—Н25   | 119.9       |
| C45—C46—H46A  | 109.5     | С24—С25—Н25   | 119.9       |
| C45—C46—H46B  | 109.5     | C25—C26—C21   | 121.3 (4)   |
| H46A—C46—H46B | 109.5     | С25—С26—Н26   | 119.3       |
| C45—C46—H46C  | 109.5     | C21—C26—H26   | 119.3       |
| H46A—C46—H46C | 109.5     | С21—С27—Н27А  | 109.5       |
| H46B—C46—H46C | 109.5     | С21—С27—Н27В  | 109.5       |
| C48—C47—N41   | 115.0 (3) | H27A—C27—H27B | 109.5       |
| C48—C47—H47A  | 108.5     | С21—С27—Н27С  | 109.5       |
| N41—C47—H47A  | 108.5     | H27A—C27—H27C | 109.5       |
| C48—C47—H47B  | 108.5     | H27B—C27—H27C | 109.5       |
| N41—C47—H47B  | 108.5     | O23—S21—O22   | 112.92 (16) |
| H47A—C47—H47B | 107.5     | O23—S21—O21   | 113.78 (16) |
| C47—C48—H48A  | 109.5     | O22—S21—O21   | 112.88 (16) |
| C47—C48—H48B  | 109.5     | O23—S21—C24   | 106.16 (16) |
| H48A—C48—H48B | 109.5     | O22—S21—C24   | 104.88 (15) |
| C47—C48—H48C  | 109.5     | O21—S21—C24   | 105.23 (16) |

## Hydrogen-bond geometry (Å, °)

| D—H···A                         | D—H  | H···A | D····A    | <i>D</i> —H··· <i>A</i> |
|---------------------------------|------|-------|-----------|-------------------------|
| С6В—Н6В…О23                     | 0.95 | 2.57  | 3.351 (6) | 140                     |
| C31—H31 $B$ ···O3 $B^{i}$       | 0.99 | 2.49  | 3.344 (4) | 145                     |
| C33—H33 <i>A</i> ···O2 <i>B</i> | 0.99 | 2.47  | 3.354 (4) | 148                     |

# supporting information

| C35—H35A···O22 <sup>ii</sup>                   | 0.99 | 2.42 | 3.228 (4) | 138 |
|------------------------------------------------|------|------|-----------|-----|
| C36—H36 <i>C</i> ···O3 <i>B</i> <sup>iii</sup> | 0.98 | 2.58 | 3.544 (4) | 169 |
| C43—H43 <i>B</i> ···O22                        | 0.99 | 2.44 | 3.269 (4) | 141 |
| C45—H45 <i>A</i> ···O2 <i>B</i>                | 0.99 | 2.53 | 3.367 (4) | 142 |
| C47—H47 $A$ ···O3 $B^{i}$                      | 0.99 | 2.57 | 3.440 (4) | 147 |
| C48—H48 <i>B</i> ···O22 <sup>iv</sup>          | 0.98 | 2.58 | 3.562 (4) | 175 |

Symmetry codes: (i) x, y+1, z; (ii) x+1/2, -y+3/2, z+1/2; (iii) -x+1/2, y+1/2, -z+3/2; (iv) -x, -y+1, -z+1.