Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Diaquabis{5-(pyridin-2-yl- κN)-3-[4-(pyridin-4-yl)phenyl]-1*H*-1,2,4-triazol-1ido- κN^{1} }cobalt(II)

Bin Li

Advanced Material Institute of Research, Department of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250013, People's Republic of China Correspondence e-mail: libin_qlnu@yahoo.com.cn

Received 29 January 2013; accepted 31 January 2013

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.005 Å; R factor = 0.046; wR factor = 0.139; data-to-parameter ratio = 11.8.

In the centrosymmetic title complex, $[Co(C_{18}H_{12}N_5)_2(H_2O)_2]$, the Co^{II} ion is coordinated by two *N*,*N'*-bidentate 5-(pyridin-2-yl)-3-[4-(pyridin-4-yl)phenyl]-1*H*-1,2,4-triazol-1-ide ligands and two water molecules in a *trans*-CoO₂N₄ coordination geometry. In the ligand, the dihedral angles between the triazole ring and its adjacent pyridine and benzene rings are 5.57 (14) and 6.89 (16)°, respectively. In the crystal, molecules are linked by O-H···N hydrogen bonds, generating a three-dimensional network.

Related literature

For background to coordination complexes, see: Li *et al.* (2007); Zhang *et al.* (2012*a,b*); Fan *et al.* (2013).

V = 1529.4 (3) Å³

Mo $K\alpha$ radiation

 $0.12 \times 0.10 \times 0.08 \; \mathrm{mm}$

10448 measured reflections

2703 independent reflections

2227 reflections with $I > 2\sigma(I)$

 $\mu = 0.62 \text{ mm}^-$

T = 296 K

 $R_{\rm int} = 0.030$

Z = 2

Experimental

Crystal data

$$\begin{split} & [\text{Co}(\text{C}_{18}\text{H}_{12}\text{N}_{5})_2(\text{H}_2\text{O})_2] \\ & M_r = 691.61 \\ & \text{Monoclinic, } P_{2_1}/c \\ & a = 13.2407 \ (17) \text{ Å} \\ & b = 11.9355 \ (16) \text{ Å} \\ & c = 9.8644 \ (13) \text{ Å} \\ & \beta = 101.158 \ (1)^\circ \end{split}$$

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2001) *T*_{min} = 0.930, *T*_{max} = 0.953

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.046$	H atoms treated by a mixture of
$wR(F^2) = 0.139$	independent and constrained
S = 1.00	refinement
2703 reflections	$\Delta \rho_{\rm max} = 1.05 \text{ e } \text{\AA}^{-3}$
229 parameters	$\Delta \rho_{\rm min} = -0.39 \text{ e } \text{\AA}^{-3}$
3 restraints	

Table 1

```
Selected bond lengths (Å).
```

Co1-N2	2.057 (2)	Co1-O1	2.181 (2)
Co1-N1	2.130 (2)		

Table 2

Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1-H1W \cdots N4^{i}$	0.82 (1)	1.98 (1)	2.783 (3)	168 (4)
$O1 - H2W \cdot \cdot \cdot N5^{ii}$	0.82 (1)	2.46 (3)	3.196 (4)	150 (5)

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT-Plus* (Bruker, 2001); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB7033).

References

- Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Fan, L. M., Zhang, X. T., Li, D. C., Sun, D., Zhang, W. & Dou, J. M. (2013). CrystEngComm, 15, 349–355.
- Li, F. Y., Qu, X. S. & Qiu, Y. F. (2007). Cryst. Res. Technol. 42, 1036–1043. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Zhang, X. T., Li, B., Zhao, X., Sun, D., Li, D. C. & Dou, J. M. (2012b). CrystEngComm, 14, 2053–2061.
- Zhang, X. T., Sun, D., Li, B., Fan, L. M., Li, B. & Wei, P. H. (2012a). Cryst. Growth Des. 12, 3845–3848.

supporting information

Acta Cryst. (2013). E69, m141 [doi:10.1107/S1600536813003243]

Diaquabis{5-(pyridin-2-yl- κN)-3-[4-(pyridin-4-yl)phenyl]-1*H*-1,2,4-triazol-1-ido- κN^1 }cobalt(II)

Bin Li

S1. Comment

The design and synthesis of coordination complexes have attracted upsurging research interest not only because of their appealing structural and topological novelty but also owing to their tremendous potential applications in gas storage, microelectronics, ion exchange, chemical separations, nonlinear optics and heterogeneous catalysis. (Li *et al.*, 2007; Zhang *et al.*, 2012*a,b*; Fan *et al.*, 2013). Here, we report one new compound: Co(H₂O)₂(C₁₈H₁₂N₅)₂, obtained from the solvothermal reaction of 2-(3-(4-(pyridin-4- yl)phenyl)-1H-1,2,4-triazol-5-yl)pyridine and cobalt chloride.

The title compound, Co(H₂O)₂(C₁₈H₁₂N₅)₂, consists of of a half of Co(II), a half of depornated 2-(3-(4-(pyridin-4-yl)phenyl)-1H-1,2,4-triazol-5-yl)pyridine, and one associated water molecule. Co(1) owns a distorted octahedral coordination geometry, completed by four N atoms from two depornated 2-(3-(4-(pyridin-4-yl)phenyl)-1H-1,2,4-triazol-5-yl)pyridine and two O atoms from two water molecules (Figure 1). The Co—O distance is 2.181 (2) Å. The Co —N distances are varying from 2.057 (2)—2.130 (2) Å. O—H···N hydrogen bonding in the packing diagram leads to a consolidation of the structure (Fig. 2; Table 2).

S2. Experimental

A mixture of 2-(3-(4-(pyridin-4- yl)phenyl)-1H-1,2,4-triazol-5-yl)pyridine (0.20 mmol, 0.060 g), cobalt(II) nitrate hexahydrate (0.40 mmol, 0.116 g), NaOH (0.20 mmol, 0.008 g) and 12 ml H₂O was placed in a Teflon-lined stainless steel vessel, heated to 170 C for 3 days, followed by slow cooling (a descent rate of 10 C/h) to room temperature. Red blocks were obtained. Anal. Calc. for $C_{36}H_{28}CoN_{10}O_2$: C 65.52, H 4.08, N 20.25%; Found: C 65.45, H 4.02, N 20.22%.

S3. Refinement

All hydrogen atoms bound to carbon were refined using a riding model with distance C—H = 0.93 Å, $U_{iso} = 1.2U_{eq}$ (C) for aromatic atoms. The H atoms of the water molecule were located from difference density maps and were refined with d(O-H) = 0.83 (2) Å, and with a fixed U_{iso} of 0.80 Å².

Figure 1

The title compound with displacement ellipsoids drawn at the 30% probability level. Unlabelled atoms are generated by the symmetry operation (1-x, -y, -z).

Figure 2

The crystal packing of the title compound, displayed with hydrogen bonds as dashed lines.

$Diaquabis \{5-(pyridin-2-yl-\kappa N)-3-[4-(pyridin-4-yl)phenyl]-1H-1,2,4-triazol-1-ido-\kappa N^{1} \} cobalt (II)$

Crystal data	
$[Co(C_{18}H_{12}N_5)_2(H_2O)_2]$ $M_r = 691.61$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 13.2407 (17) Å b = 11.9355 (16) Å c = 9.8644 (13) Å $\beta = 101.158 (1)^{\circ}$ $V = 1529.4 (3) \text{ Å}^3$ Z = 2	F(000) = 714 $D_x = 1.502 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3600 reflections $\theta = 2.3-26.5^{\circ}$ $\mu = 0.62 \text{ mm}^{-1}$ T = 296 K Block, red $0.12 \times 0.10 \times 0.08 \text{ mm}$
Data collection	
Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2001) $T_{\min} = 0.930, T_{\max} = 0.953$	10448 measured reflections 2703 independent reflections 2227 reflections with $I > 2\sigma(I)$ $R_{int} = 0.030$ $\theta_{max} = 25.0^{\circ}, \theta_{min} = 2.3^{\circ}$ $h = -15 \rightarrow 15$ $k = -13 \rightarrow 14$ $l = -11 \rightarrow 11$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.046$	Hydrogen site location: inferred from
$wR(F^2) = 0.139$	neighbouring sites
S = 1.00	H atoms treated by a mixture of independent
2703 reflections	and constrained refinement
229 parameters	$w = 1/[\sigma^2(F_o^2) + (0.084P)^2 + 1.4448P]$
3 restraints	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.016$
direct methods	$\Delta \rho_{\rm max} = 1.05 \text{ e} \text{ Å}^{-3}$
	$\Delta \rho_{\rm min} = -0.39 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	r	1/	7	I]. */ I]	
<u></u>	A 274((2)	<i>y</i>	0.12(7.(2))		
	0.3/46 (2)	0.2081 (2)	-0.1267 (3)	0.0338(7)	
H1	0.3430	0.1589	-0.1950	0.041*	
C2	0.3481 (2)	0.3190 (3)	-0.1381 (3)	0.0399 (7)	
H2	0.2998	0.3446	-0.2131	0.048*	
C3	0.3941 (3)	0.3920 (3)	-0.0371 (3)	0.0417 (8)	
H3	0.3774	0.4677	-0.0429	0.050*	
C4	0.4652 (2)	0.3519 (2)	0.0731 (3)	0.0364 (7)	
H4	0.4965	0.3999	0.1430	0.044*	
C5	0.4892 (2)	0.2395 (2)	0.0780 (3)	0.0269 (6)	
C6	0.5661 (2)	0.1858 (2)	0.1853 (3)	0.0272 (6)	
C7	0.6826 (2)	0.1420 (2)	0.3514 (3)	0.0297 (6)	
C8	0.7641 (2)	0.1417 (3)	0.4764 (3)	0.0338 (7)	
C9	0.7837 (2)	0.2303 (3)	0.5675 (3)	0.0433 (8)	
H9	0.7434	0.2946	0.5518	0.052*	
C10	0.8626 (3)	0.2249 (3)	0.6818 (3)	0.0478 (9)	
H10	0.8741	0.2858	0.7416	0.057*	
C11	0.9247 (2)	0.1313 (3)	0.7094 (3)	0.0421 (8)	
C12	0.9022 (3)	0.0412 (3)	0.6208 (4)	0.0563 (10)	
H12	0.9412	-0.0238	0.6380	0.068*	
C13	0.8234 (3)	0.0457 (3)	0.5078 (4)	0.0522 (9)	
H13	0.8095	-0.0169	0.4510	0.063*	
C14	1.0128 (2)	0.1248 (3)	0.8284 (3)	0.0467 (8)	
C15	1.0235 (4)	0.1889 (6)	0.9427 (5)	0.112 (2)	
H15	0.9742	0.2425	0.9511	0.134*	

C16	1.1092 (4)	0.1743 (7)	1.0485 (5)	0.120 (3)	
H16	1.1146	0.2213	1.1248	0.144*	
C17	1.1763 (4)	0.0477 (5)	0.9319 (5)	0.0846 (15)	
H17	1.2307	0.0008	0.9225	0.102*	
C18	1.0955 (3)	0.0567 (4)	0.8218 (5)	0.0771 (14)	
H18	1.0967	0.0162	0.7416	0.093*	
Col	0.5000	0.0000	0.0000	0.0298 (2)	
N1	0.44390 (18)	0.16760 (19)	-0.0215 (2)	0.0289 (5)	
N2	0.58648 (18)	0.07828 (19)	0.1693 (2)	0.0320 (6)	
N3	0.66303 (19)	0.0488 (2)	0.2766 (2)	0.0349 (6)	
N4	0.62453 (18)	0.23101 (19)	0.2988 (2)	0.0292 (5)	
N5	1.1817 (3)	0.1015 (4)	1.0501 (3)	0.0734 (11)	
01	0.38664 (16)	-0.04573 (19)	0.1239 (2)	0.0397 (5)	
H1W	0.374 (3)	-0.1106 (9)	0.143 (4)	0.080*	
H2W	0.343 (2)	0.000 (2)	0.137 (5)	0.080*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
C1	0.0342 (16)	0.0313 (15)	0.0302 (15)	-0.0007 (13)	-0.0078 (12)	-0.0025 (12)
C2	0.0414 (18)	0.0360 (17)	0.0355 (16)	0.0070 (14)	-0.0091 (13)	0.0047 (13)
C3	0.0509 (19)	0.0282 (16)	0.0403 (17)	0.0097 (14)	-0.0055 (15)	0.0020 (13)
C4	0.0434 (18)	0.0278 (15)	0.0326 (15)	-0.0004 (13)	-0.0061 (13)	-0.0049 (12)
C5	0.0279 (14)	0.0255 (14)	0.0247 (14)	-0.0014 (11)	-0.0013 (11)	-0.0008 (11)
C6	0.0281 (14)	0.0240 (14)	0.0263 (13)	-0.0018 (11)	-0.0031 (11)	-0.0011 (11)
C7	0.0290 (15)	0.0313 (15)	0.0249 (13)	-0.0009 (12)	-0.0040 (11)	-0.0001 (12)
C8	0.0297 (15)	0.0365 (16)	0.0299 (15)	0.0003 (13)	-0.0072 (12)	-0.0004 (13)
C9	0.0383 (18)	0.0457 (19)	0.0400 (17)	0.0101 (15)	-0.0072 (14)	-0.0099 (15)
C10	0.0400 (18)	0.058 (2)	0.0383 (17)	0.0087 (16)	-0.0099 (14)	-0.0203 (16)
C11	0.0351 (17)	0.057 (2)	0.0291 (15)	0.0027 (15)	-0.0069 (13)	-0.0035 (15)
C12	0.054 (2)	0.049 (2)	0.053 (2)	0.0133 (18)	-0.0222 (17)	-0.0011 (18)
C13	0.057 (2)	0.0392 (19)	0.048 (2)	0.0050 (17)	-0.0210 (17)	-0.0101 (16)
C14	0.0330 (17)	0.068 (2)	0.0334 (17)	0.0039 (16)	-0.0072 (14)	-0.0032 (16)
C15	0.068 (3)	0.191 (7)	0.059 (3)	0.050 (4)	-0.033 (2)	-0.052 (4)
C16	0.080 (4)	0.207 (8)	0.056 (3)	0.034 (4)	-0.030 (3)	-0.055 (4)
C17	0.058 (3)	0.108 (4)	0.075 (3)	0.013 (3)	-0.021 (2)	0.004 (3)
C18	0.060 (3)	0.094 (4)	0.065 (3)	0.023 (3)	-0.019 (2)	-0.012 (2)
Col	0.0330 (3)	0.0221 (3)	0.0275 (3)	0.0006 (2)	-0.0110 (2)	-0.0016 (2)
N1	0.0292 (13)	0.0253 (12)	0.0272 (12)	-0.0005 (10)	-0.0066 (10)	-0.0006 (10)
N2	0.0336 (13)	0.0268 (13)	0.0291 (12)	0.0000 (10)	-0.0104 (10)	-0.0005 (10)
N3	0.0372 (14)	0.0288 (13)	0.0309 (13)	0.0006 (11)	-0.0133 (11)	-0.0008 (11)
N4	0.0304 (13)	0.0268 (13)	0.0263 (12)	-0.0010 (10)	-0.0043 (10)	-0.0035 (10)
N5	0.0438 (19)	0.121 (3)	0.0461 (19)	0.004 (2)	-0.0148 (15)	0.004 (2)
01	0.0389 (12)	0.0321 (11)	0.0441 (12)	0.0015 (10)	-0.0019 (10)	0.0062 (11)

Geometric parameters (Å, °)

C1—N1	1.336 (4)	C11—C14	1.488 (4)
C1—C2	1.368 (4)	C12—C13	1.372 (5)
C1—H1	0.9300	C12—H12	0.9300
С2—С3	1.374 (4)	C13—H13	0.9300
С2—Н2	0.9300	C14—C15	1.348 (6)
C3—C4	1.379 (4)	C14—C18	1.375 (6)
С3—Н3	0.9300	C15—C16	1.395 (6)
C4—C5	1.377 (4)	C15—H15	0.9300
C4—H4	0.9300	C16—N5	1.293 (7)
C5—N1	1.353 (3)	C16—H16	0.9300
C5—C6	1.466 (4)	C17—N5	1.321 (6)
C6—N2	1.328 (4)	C17—C18	1.374 (6)
C6—N4	1.344 (3)	C17—H17	0.9300
C7—N3	1.333 (4)	C18—H18	0.9300
C7—N4	1.354 (4)	Co1—N2 ⁱ	2.057 (2)
С7—С8	1.473 (4)	Co1—N2	2.057 (2)
С8—С9	1.379 (4)	Co1—N1	2.130 (2)
C8—C13	1.391 (5)	Co1—N1 ⁱ	2.130 (2)
C9—C10	1.381 (4)	Co1—O1 ⁱ	2.181 (2)
С9—Н9	0.9300	Co1—O1	2.181 (2)
C10-C11	1.383 (5)	N2—N3	1.363 (3)
C10—H10	0.9300	O1—H1W	0.8200 (11)
C11—C12	1.381 (5)	O1—H2W	0.8200 (11)
N1 - C1 - C2	122.8 (3)	C18—C14—C11	120.2 (3)
N1-C1-H1	118.6	C14-C15-C16	119.6 (5)
C2-C1-H1	118.6	C14—C15—H15	120.2
C1 - C2 - C3	118.8 (3)	C16—C15—H15	120.2
C1 - C2 - H2	120.6	N5-C16-C15	126.0 (5)
$C_{3} - C_{2} - H_{2}$	120.6	N5-C16-H16	117.0
$C_2 - C_3 - C_4$	119.4 (3)	C15—C16—H16	117.0
C2—C3—H3	120.3	N5-C17-C18	124 1 (5)
C4—C3—H3	120.3	N5-C17-H17	117.9
C5—C4—C3	118.9 (3)	С18—С17—Н17	117.9
С5—С4—Н4	120.5	C17—C18—C14	121.0 (4)
C3—C4—H4	120.5	C17—C18—H18	119.5
N1-C5-C4	121.7 (2)	C14—C18—H18	119.5
N1—C5—C6	113.3 (2)	N2 ⁱ —Co1—N2	180.00 (19)
C4—C5—C6	125.0 (2)	N2 ⁱ —Co1—N1	102.53 (9)
N2-C6-N4	112.9 (2)	N2—Co1—N1	77.47 (9)
N2	117.7 (2)	N2 ⁱ —Co1—N1 ⁱ	77.47 (9)
N4—C6—C5	129.3 (2)	N2—Co1—N1 ⁱ	102.53 (9)
N3—C7—N4	114.0 (2)	N1—Co1—N1 ⁱ	180.00 (12)
N3—C7—C8	119.6 (3)	N2 ⁱ —Co1—O1 ⁱ	89.65 (9)
N4—C7—C8	126.3 (3)	N2—Co1—O1 ⁱ	90.35 (9)
C9—C8—C13	117.4 (3)	N1—Co1—O1 ⁱ	88.49 (9)

C9—C8—C7	124.0 (3)	N1 ⁱ —Co1—O1 ⁱ	91.51 (9)
C13—C8—C7	118.6 (3)	N2 ⁱ —Co1—O1	90.35 (9)
C8—C9—C10	120.9 (3)	N2—Co1—O1	89.65 (9)
С8—С9—Н9	119.6	N1—Co1—O1	91.51 (9)
С10—С9—Н9	119.6	N1 ⁱ —Co1—O1	88.49 (9)
C9—C10—C11	121.7 (3)	O1 ⁱ Co1O1	180.00 (15)
C9—C10—H10	119.2	C1—N1—C5	118.4 (2)
C11—C10—H10	119.2	C1—N1—Co1	126.26 (19)
C12—C11—C10	117.2 (3)	C5—N1—Co1	115.22 (18)
C12—C11—C14	119.9 (3)	C6—N2—N3	107.2 (2)
C10-C11-C14	122.9 (3)	C6—N2—Co1	116.21 (18)
C13—C12—C11	121.4 (3)	N3—N2—Co1	136.62 (19)
C13—C12—H12	119.3	C7—N3—N2	104.5 (2)
C11—C12—H12	119.3	C6—N4—C7	101.4 (2)
C12—C13—C8	121.4 (3)	C16—N5—C17	113.7 (4)
С12—С13—Н13	119.3	Co1—O1—H1W	124 (2)
C8—C13—H13	119.3	Co1—O1—H2W	120 (2)
C15—C14—C18	114.8 (4)	H1W—O1—H2W	114.6 (2)
C15—C14—C11	124.8 (4)		

Symmetry code: (i) -x+1, -y, -z.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H…A	D····A	D—H···A	
O1—H1 <i>W</i> ···N4 ⁱⁱ	0.82(1)	1.98 (1)	2.783 (3)	168 (4)	
O1—H2W····N5 ⁱⁱⁱ	0.82(1)	2.46 (3)	3.196 (4)	150 (5)	

Symmetry codes: (ii) -x+1, y-1/2, -z+1/2; (iii) x-1, y, z-1.