Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Poly[tris(dimethylformamide)(μ_{3}-2,4,6-triiodobenzene-1,3,5-tricarboxylato)samarium(III)]

Bin Yan,* Daopeng Sheng* and Yanzhao Yang*

Key Laboratory for Special Functional Aggregated Materials of the Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan,
Shandong 250100, People's Republic of China
Correspondence e-mail: wl-yanbin@163.com, sdp1214@gmail.com,
yzhyang@sdu.edu.cn

Received 23 December 2012; accepted 1 February 2013

Key indicators: single-crystal X-ray study; $T=295 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$; R factor $=0.021 ; w R$ factor $=0.049$; data-to-parameter ratio $=20.2$.

In the title compound, $\left[\mathrm{Sm}\left(\mathrm{C}_{9} \mathrm{I}_{3} \mathrm{O}_{6}\right)\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\right)_{3}\right]_{n}$, the $\mathrm{Sm}^{\text {III }}$ atom is coordinated by nine O atoms, viz. six carboxylate O atoms from three 2,4,6-triiodobenzene-1,3,5-tricarboxylate ($\mathrm{I}_{3} \mathrm{BTC}$) ligands and three O atoms from three N, N-dimethylformamide (DMF) molecules. Each I_{3} BTC ligand bridges three $\mathrm{Sm}^{\text {III }}$ atoms, generating a three-dimensional metalorganic framework structure. The asymmetric unit contains one $\mathrm{Sm}^{\text {III }}$ ion and one I_{3} BTC anion, both situated on a threefold axis, and one DMF molecule in a general position.

Related literature

For applications of compounds with metal-organic framework structures (MOFs), see: Nakanishi \& Tanaka (2007); Phan et al. (2010); Suib et al. (2008). For related structures, see: Daiguebonne et al. (2002); Han et al. (2012); Lu et al. (2008); Serre et al. (2004).

Experimental

Crystal data
$\left[\mathrm{Sm}\left(\mathrm{C}_{9} \mathrm{I}_{3} \mathrm{O}_{6}\right)\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\right)_{3}\right]$
$M_{r}=954.43$
$Z=4$
Cubic, $P 2_{1} 3$
Mo $K \alpha$ radiation
$a=14.1341$ (16) \AA
$\mu=5.41 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
$0.16 \times 0.15 \times 0.15 \mathrm{~mm}$

Data collection
Bruker APEXII CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2005)
$T_{\text {min }}=0.478, T_{\text {max }}=0.498$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.021$
$w R\left(F^{2}\right)=0.049$
$S=1.03$
2143 reflections
106 parameters
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.72 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.62$ e \AA^{-3}
Absolute structure: Flack (1983), 943 Friedel pairs
Flack parameter: 0.02 (2)

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 2012).

The authors acknowledge financial support from the National Natural Science Foundation of China (grant Nos. 21276142 and 21076115).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5378).

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Bruker (2005). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Daiguebonne, C., Gerault, Y., Le Dret, F., Guillou, O. \& Boubekeur, K. (2002). J. Alloys Compd, 344, 179-185.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Han, Y.-F., Fu, L.-S., Mafra, L. \& Shi, F.-N. (2012). J. Solid State Chem. 186, 165-170.
Lu, J.-H., Xu, H.-W., Liu, Y., Zhao, Y.-S., Daemen, L. L., Brown, C., Timofeeva, T. V., Ma, S.-Q. \& Zhou, H.-C. (2008). J. Am. Chem. Soc. 130, 9626-9627.
Nakanishi, K. \& Tanaka, N. (2007). Acc. Chem. Res. 40, 863-873.
Phan, A., Doonan, C. J., Uribe-Romo, F. J., Knobler, C. B., O'Keeffe, M. \& Yaghi, O. M. (2010). Acc. Chem. Res. 43, 58-67.
Serre, C., Millange, F., Thouvenot, C., Gardant, N., Pelle, F. \& Ferey, G. (2004). J. Mater. Chem. 14, 1540-1543.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Suib, S. L. (2008). Acc. Chem. Res. 41, 479-487.

supporting information

Poly[tris(dimethylformamide) ($\boldsymbol{\mu}_{3}$-2,4,6-triiodobenzene-1,3,5-tricarboxylato)samarium(III)]

Bin Yan, Daopeng Sheng and Yanzhao Yang

S1. Comment

Metal-organic framework (MOF) compounds have attracted considerable interest because of their potential applications in a variety of areas, including catalysis, shape-selective adsorption, gas storage, photochemistry, and materials with magnetic properties (Nakanishi et al., 2007; Phan et al., 2010; Suib et al., 2008). The design and synthesis of MOFs with great potential for chemical and structural diversity, is one of the major current challenges in inorganic chemistry. To the best of our knowledge, MOF structure of the $I_{3} B T C$ ligand is not reported so far. The $I_{3} B T C$ ligand, besides three iodine atoms at the 2,4,6-sites of benzene ring, is same as $1,3,5$ - benzenetricarboxylic acid $\left(\mathrm{H}_{3} \mathrm{BTC}\right)$. Although the coordinated ability of carbonylic O atoms is influenced by the electronic properties of iodine atoms to some extent, its coordinated mode is almost no change (Daiguebonne et al., 2002). In recent years, the construction of MOFs based on $\mathrm{H}_{3} \mathrm{BTC}$ ligand has been widely investigated owing to their fascinating coordination modes (Han et al., 2012; Lu et al., 2008; Serre et al., 2004). Herein we report the hydrothermal synthesis and crystal structure of the title compound (I).

In (I), the asymmetric unit contains one $\mathrm{Sm}^{\text {III }}$ ion and one I_{3} BTC anion, both situated on a threefold axis, and one DMF molecule in general position. As shown in Fig. 1, each Sm center is coordinated by nine O atoms -six carboxylate O atoms from three ligands and three O atoms from three DMF molecules. The Sm1-O bond lengths fall in the range of 2.446 (3)-2.562 (3) \AA, and the $\mathrm{O}-\mathrm{Sm}-\mathrm{O}$ angles varying from $51.702(88)-142.712(91)^{\circ}$, thus falling in the expected region. Each ligand $\mathrm{I}_{3} \mathrm{BTC}$ bridges three Sm atoms to produce a three-dimensional metal organic framework structure, while coordinated solvent molecules (DMF) exist among the pore canals by coordinating O atoms to central metal ions.

S2. Experimental

The title compound was prepared by the solvothermal reaction of $\mathrm{Sm}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(100 \mathrm{mg}), 2,4,6$-triiodobenzene-1,3,5tricarboxylic acid (100 mg), DMF (4 ml) and ethanol (4 ml) at $90^{\circ} \mathrm{C}$ for 72 h . The autoclave was subsequently allowed to cool to room temperature. After washing with ethanol, colourless block crystals were obtained.

S3. Refinement

All H atoms were placed in geometrically calculated positions $(\mathrm{C}-\mathrm{H}=0.93-0.96 \% \mathrm{~A})$, and refined using a riding model, with $\mathrm{U}_{\mathrm{iso}}(\mathrm{H})=1.2-1.5 \mathrm{U}_{\mathrm{eq}}(\mathrm{C})$.

Figure 1

A portion of the crystal structure of (I) showing the coordination environment of $\mathrm{Sm} 1,30 \%$ probability displacement ellipsoids and atomic numbering [symmetry codes: (i) $1-x, 1 / 2+y, 3 / 2-z$; (ii) $3 / 2-x, 1-y,-1 / 2+z$; (iii) $3 / 2-x, 1-y$, $-1 / 2+z$; (iv) $1 / 2-x,-y, 1 / 2+z]$.

Poly[tris(dimethylformamide)(μ_{3}-2,4,6-triiodobenzene-1,3,5-tricarboxylato)samarium(III)]

Crystal data

$\left[\mathrm{Sm}\left(\mathrm{C}_{9} \mathrm{I}_{3} \mathrm{O}_{6}\right)\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\right)_{3}\right]$
$M_{r}=954.43$
Cubic, $P 2_{1} 3$
Hall symbol: P 2ac 2ab 3
$a=14.1341$ (16) \AA
$V=2823.6(6) \AA^{3}$
$Z=4$
$F(000)=1772$

Data collection

Bruker APEXII CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
$T_{\text {min }}=0.478, T_{\text {max }}=0.498$
$D_{\mathrm{x}}=2.245 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2685 reflections
$\theta=3.2-27.2^{\circ}$
$\mu=5.41 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
Prism, yellow
$0.16 \times 0.15 \times 0.15 \mathrm{~mm}$

5119 measured reflections
2143 independent reflections
2026 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.020$
$\theta_{\text {max }}=27.4^{\circ}, \theta_{\text {min }}=3.2^{\circ}$
$h=-12 \rightarrow 7$
$k=0 \rightarrow 18$
$l=-16 \rightarrow 12$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.021$
$w R\left(F^{2}\right)=0.049$
$S=1.03$
2143 reflections
106 parameters
0 restraints

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0236 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.002$
$\Delta \rho_{\text {max }}=0.72 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.62 \mathrm{e} \AA^{-3}$
Extinction correction: SHELXL97 (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.00049 (7)
Absolute structure: Flack (1983), 943 Friedel pairs
Absolute structure parameter: 0.02 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger. SHELXTL (Sheldrick, 2008)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} U_{\text {eq }}$
O2	$0.9837(2)$	$-0.17185(19)$	$0.4744(2)$	$0.0341(7)$
C1	$0.9099(3)$	$-0.1640(3)$	$0.4268(3)$	$0.0219(8)$
C2	$0.8710(2)$	$-0.2536(3)$	$0.3796(3)$	$0.0227(8)$
C3	$0.9151(3)$	$-0.2914(3)$	$0.2996(3)$	$0.0236(8)$
C4	$0.8963(4)$	$0.2099(3)$	$0.4875(4)$	$0.0464(12)$
H4	0.9575	0.2290	0.5023	0.056^{*}
C5	$0.8521(6)$	$0.3734(5)$	$0.5058(7)$	$0.125(4)$
H5A	0.8541	0.4090	0.4479	0.187^{*}
H5B	0.9125	0.3772	0.5367	0.187^{*}
H5C	0.8042	0.3990	0.5465	0.187^{*}
C6	$0.7318(5)$	$0.2501(7)$	$0.4593(7)$	$0.126(4)$
H6A	0.7297	0.1860	0.4370	0.189^{*}
H6B	0.7099	0.2918	0.4103	0.189^{*}
H6C	0.6920	0.2564	0.5139	0.189^{*}
I1	$1.03806(2)$	$-0.22509(2)$	$0.248693(19)$	$0.03739(10)$
N1	$0.8303(4)$	$0.2748(3)$	$0.4848(4)$	$0.0687(14)$
O1	$0.8674(2)$	$-0.08834(19)$	$0.4139(2)$	$0.0304(6)$
O3	$0.8828(2)$	$0.1250(2)$	$0.4717(2)$	$0.0428(8)$
Sm1	$0.999507(13)$	$0.000493(13)$	$0.500493(13)$	$0.01931(8)$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O2	$0.0346(17)$	$0.0259(14)$	$0.0419(17)$	$0.0000(12)$	$-0.0116(13)$	$-0.0055(12)$
C1	$0.0222(19)$	$0.0212(19)$	$0.0224(19)$	$-0.0053(15)$	$0.0077(15)$	$-0.0030(15)$
C2	$0.0207(19)$	$0.022(2)$	$0.025(2)$	$-0.0016(15)$	$-0.0020(14)$	$-0.0003(15)$

C3	$0.0211(19)$	$0.026(2)$	$0.0234(19)$	$-0.0046(15)$	$0.0047(15)$	$0.0007(15)$
C4	$0.050(3)$	$0.042(3)$	$0.047(3)$	$0.022(2)$	$0.000(2)$	$0.005(2)$
C5	$0.170(9)$	$0.061(5)$	$0.143(8)$	$0.061(5)$	$-0.040(7)$	$-0.039(5)$
C6	$0.072(5)$	$0.147(10)$	$0.160(9)$	$0.056(6)$	$-0.011(5)$	$-0.011(6)$
I1	$0.03269(16)$	$0.04066(18)$	$0.03881(18)$	$-0.01484(12)$	$0.01194(11)$	$-0.00927(13)$
N1	$0.086(4)$	$0.053(3)$	$0.067(3)$	$0.046(3)$	$0.003(3)$	$-0.007(2)$
O1	$0.0303(16)$	$0.0243(15)$	$0.0365(17)$	$0.0005(12)$	$-0.0038(13)$	$-0.0024(12)$
O3	$0.0369(18)$	$0.0390(19)$	$0.053(2)$	$0.0154(14)$	$0.0044(15)$	$0.0053(16)$
Sm1	$0.01931(8)$	$0.01931(8)$	$0.01931(8)$	$0.00093(7)$	$0.00093(7)$	$-0.00093(7)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{O} 2-\mathrm{C} 1$	1.245 (5)	C5-H5C	0.9600
$\mathrm{O} 2-\mathrm{Sm1}$	2.474 (3)	C6-N1	1.480 (10)
C1-O1	1.240 (5)	C6-H6A	0.9600
$\mathrm{C} 1-\mathrm{C} 2$	1.534 (5)	C6-H6B	0.9600
C1-Sm1	2.844 (4)	C6-H6C	0.9600
$\mathrm{C} 2-\mathrm{C} 3{ }^{\text {i }}$	1.393 (5)	O1-Sm1	2.562 (3)
C2-C3	1.397 (5)	O3-Sm1	2.446 (3)
C3-C2 ${ }^{\text {ii }}$	1.393 (5)	Sm1-O3 ${ }^{\text {iii }}$	2.446 (3)
C3-I1	2.101 (4)	Sm1-O3 ${ }^{\text {iv }}$	2.446 (3)
C4-O3	1.236 (6)	$\mathrm{Sm} 1-\mathrm{O} 2{ }^{\text {iv }}$	2.474 (3)
C4-N1	1.309 (6)	$\mathrm{Sm} 1-\mathrm{O} 2^{\text {iii }}$	2.474 (3)
C4-H4	0.9300	Sm1-O1 ${ }^{\text {iii }}$	2.562 (3)
C5-N1	1.458 (9)	$\mathrm{Sm} 1-\mathrm{Ol}^{\text {iv }}$	2.562 (3)
C5-H5A	0.9600	$\mathrm{Sm} 1-\mathrm{C} 1^{\text {iv }}$	2.844 (4)
C5-H5B	0.9600	$\mathrm{Sm} 1-\mathrm{Cl}^{\text {iii }}$	2.844 (4)
$\mathrm{C} 1-\mathrm{O} 2-\mathrm{Sm} 1$	93.9 (2)	$\mathrm{O} 3{ }^{\text {iv }}-\mathrm{Sm1}-\mathrm{O} 1$	73.51 (10)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	124.2 (4)	$\mathrm{O} 2{ }^{\text {iv }}-\mathrm{Sm} 1-\mathrm{O} 1$	133.46 (10)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	118.3 (3)	$\mathrm{O} 2-\mathrm{Sm1}-\mathrm{O} 1$	51.69 (9)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	117.5 (3)	$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Sm1}-\mathrm{O} 1$	71.50 (9)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{Sm} 1$	64.2 (2)	$\mathrm{O} 3 \mathrm{iii}-\mathrm{Sm} 1-\mathrm{O} 1^{\text {iii }}$	77.37 (10)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{Sm} 1$	60.20 (19)	$\mathrm{O} 3-\mathrm{Sm1}-\mathrm{O}^{1{ }^{\text {iii }}}$	73.51 (10)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{Sm} 1$	173.6 (2)	$\mathrm{O} 3{ }^{\text {iv }}-\mathrm{Sm} 1-\mathrm{O} 1^{\text {iii }}$	142.72 (11)
C3 ${ }^{\text {i }}$ - $22-\mathrm{C} 3$	118.3 (4)	$\mathrm{O} 2{ }^{\text {iv }}-\mathrm{Sm} 1-\mathrm{O} 1^{\text {iii }}$	71.50 (9)
C3 - $\mathrm{C} 2-\mathrm{C} 1$	121.2 (3)	$\mathrm{O} 2-\mathrm{Sm1}-\mathrm{O} 1^{\text {iii }}$	133.46 (10)
C3-C2-C1	120.5 (3)	$\mathrm{O} 2 \mathrm{iii}-\mathrm{Sm} 1-\mathrm{O} 1^{\text {iii }}$	51.69 (9)
$\mathrm{C} 2 \mathrm{ii}-\mathrm{C} 3-\mathrm{C} 2$	121.7 (4)	$\mathrm{O} 1-\mathrm{Sm1}-\mathrm{O}{ }^{1 i \mathrm{iij}}$	118.13 (3)
$\mathrm{C} 2{ }^{\text {ii }}-\mathrm{C} 3-\mathrm{I} 1$	119.9 (3)	$\mathrm{O} 3 \mathrm{iii}-\mathrm{Sm} 1-\mathrm{O} 1^{\text {iv }}$	73.51 (10)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{I} 1$	118.4 (3)	$\mathrm{O} 3-\mathrm{Sm1}-\mathrm{Ol}^{\text {iv }}$	142.72 (11)
$\mathrm{O} 3-\mathrm{C} 4-\mathrm{N} 1$	124.4 (5)	$\mathrm{O} 3{ }^{\text {iv }}-\mathrm{Sm1}-\mathrm{O} 1^{\text {iv }}$	77.37 (10)
$\mathrm{O} 3-\mathrm{C} 4-\mathrm{H} 4$	117.8	$\mathrm{O} 2{ }^{\text {iv }}-\mathrm{Sm1}-\mathrm{O} 1^{\text {iv }}$	51.69 (9)
N1-C4-H4	117.8	$\mathrm{O} 2-\mathrm{Sml}-\mathrm{Ol}^{\text {iv }}$	71.50 (9)
N1-C5-H5A	109.5	$\mathrm{O} 2 \mathrm{iii}-\mathrm{Sm} 1-\mathrm{O} 1^{\mathrm{iv}}$	133.46 (10)
N1-C5-H5B	109.5	$\mathrm{O} 1-\mathrm{Sm1}-\mathrm{Ol}^{\text {iv }}$	118.13 (3)
H5A-C5-H5B	109.5	$\mathrm{O} 1 \mathrm{iii}-\mathrm{Sm} 1-\mathrm{O} 1^{\text {iv }}$	118.13 (3)
N1-C5-H5C	109.5	$\mathrm{O} 3{ }^{\text {iii }}$ - $\mathrm{Sm1} 1-\mathrm{C} 1$	152.70 (11)

H5A-C5-H5C	109.5
H5B-C5-H5C	109.5
N1-C6-H6A	109.5
N1-C6-H6B	109.5
H6A-C6-H6B	109.5
N1-C6-H6C	109.5
H6A-C6-H6C	109.5
H6B-C6-H6C	109.5
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 5$	120.9 (6)
C4-N1-C6	120.8 (6)
C5-N1-C6	118.3 (5)
C1-O1-Sm1	89.9 (2)
C4-O3-Sm1	124.4 (3)
O3 ${ }^{\text {iiil-Sm1-O3 }}$	75.35 (12)
O3iii-Sm1-O3 ${ }^{\text {iv }}$	75.35 (12)
$\mathrm{O} 3-\mathrm{Sm1}-\mathrm{O}^{\text {iv }}$	75.35 (12)
O 3 iii- $\mathrm{Sm1}-\mathrm{O} 2^{\text {iv }}$	82.62 (10)
$\mathrm{O} 3-\mathrm{Sm} 1-\mathrm{O} 2{ }^{\text {iv }}$	141.85 (10)
$\mathrm{O3}^{\text {iv }}-\mathrm{Sm1}-\mathrm{O} 2^{\text {iv }}$	128.50 (10)
$\mathrm{O}^{\text {iiii- }}$ - $\mathrm{Sm1}-\mathrm{O} 2$	141.85 (10)
$\mathrm{O} 3-\mathrm{Sm1}$ - O 2	128.50 (10)
$\mathrm{O}^{\text {iv }}-\mathrm{Sm1}-\mathrm{O} 2$	82.62 (10)
$\mathrm{O} 2{ }^{\text {iv }}-\mathrm{Sm1}-\mathrm{O} 2$	87.46 (10)
$\mathrm{O} 3{ }^{\text {iii }}-\mathrm{Sm1} 1-\mathrm{O} 2^{\text {iii }}$	128.50 (10)
$\mathrm{O} 3-\mathrm{Sm} 1-\mathrm{O} 2{ }^{\text {iii }}$	82.62 (10)
$\mathrm{O}^{\text {iv }}$ - $\mathrm{Sml}-\mathrm{O} 2^{\text {iii }}$	141.85 (10)
$\mathrm{O} 2{ }^{\text {iv }}-\mathrm{Sm1} 1-\mathrm{O} 2^{\text {iii }}$	87.46 (10)
$\mathrm{O} 2-\mathrm{Sml}-\mathrm{O} 2{ }^{\text {iii }}$	87.46 (10)
O3 ${ }^{\text {iiii- }} \mathrm{Sm1}-\mathrm{O} 1$	142.72 (11)
$\mathrm{O} 3-\mathrm{Sm} 1-\mathrm{O} 1$	77.37 (10)
Sm1-O2-C1-O1	-5.3 (4)
$\mathrm{Sm} 1-\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	173.3 (3)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3{ }^{\text {i }}$	-76.0 (5)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3^{\text {i }}$	105.3 (4)
$\mathrm{Sm} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3^{\text {i }}$	172 (2)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	104.2 (4)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-74.4 (5)
Sm1-C1-C2-C3	-8 (3)
C3 ${ }^{\text {i }}$ - $22-\mathrm{C} 3-\mathrm{C} 2{ }^{\text {ii }}$	2.2 (7)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 2^{\text {ii }}$	-178.0 (3)
C3--C2-C3-I1	-177.81 (18)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{I} 1$	2.0 (5)
O3-C4-N1-C5	179.1 (7)
$\mathrm{O} 3-\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 6$	-1.6 (9)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1-\mathrm{Sml}$	5.1 (4)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{O} 1-\mathrm{Sm1}$	-173.4 (3)
N1-C4-O3-Sm1	-170.0 (4)

$\mathrm{O} 3-\mathrm{Sm} 1-\mathrm{C} 1$	103.10 (11)
$\mathrm{O} 3{ }^{\text {iv- }} \mathrm{Sm} 1-\mathrm{C} 1$	77.91 (10)
$\mathrm{O} 2{ }^{\text {iv- }}$ - $\mathrm{Sm} 1-\mathrm{C} 1$	110.46 (10)
$\mathrm{O} 2-\mathrm{Sm} 1-\mathrm{C} 1$	25.90 (10)
$\mathrm{O} 2{ }^{\text {iii] }}$ - $\mathrm{Sm1}-\mathrm{C} 1$	77.28 (10)
$\mathrm{O} 1-\mathrm{Sm} 1-\mathrm{C} 1$	25.84 (10)
O1 ${ }^{\text {iii- }} \mathrm{Sm1}$ - C 1	128.98 (10)
$\mathrm{O}{ }^{12}-\mathrm{Sm1}-\mathrm{C} 1$	95.43 (10)
$\mathrm{O} 3{ }^{\text {iii }}-\mathrm{Sm1}-\mathrm{C} 1^{\text {iv }}$	77.91 (10)
$\mathrm{O} 3-\mathrm{Sm} 1-\mathrm{Cl}^{\text {iv }}$	152.70 (11)
$\mathrm{O} 3{ }^{\text {iv }}-\mathrm{Sm} 1-\mathrm{C} 1^{\text {iv }}$	103.10 (11)
$\mathrm{O} 2{ }^{\text {iv }}-\mathrm{Sm} 1-\mathrm{C} 1^{\text {iv }}$	25.90 (10)
$\mathrm{O} 2-\mathrm{Sm} 1-\mathrm{Cl}^{\text {iv }}$	77.28 (10)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Sm1}-\mathrm{C} 1^{\text {iv }}$	110.46 (10)
$\mathrm{O} 1-\mathrm{Sm1}-\mathrm{Cl}^{\text {iv }}$	128.98 (10)
$\mathrm{O} 1{ }^{\text {iii }}-\mathrm{Sm} 1-\mathrm{C} 1^{\text {iv }}$	95.43 (10)
O1 $1^{\text {iv }}-\mathrm{Sm} 1-\mathrm{Cl}^{\text {iv }}$	25.84 (10)
$\mathrm{C} 1-\mathrm{Sm} 1-\mathrm{Cl}^{\text {iv }}$	103.16 (9)
$\mathrm{O} 3{ }^{\text {iii }}-\mathrm{Sm} 1-\mathrm{C} 1^{\text {iii }}$	103.10 (11)
$\mathrm{O} 3-\mathrm{Sm} 1-\mathrm{C} 1^{\text {iii }}$	77.91 (10)
$\mathrm{O} 3{ }^{\text {iv }}-\mathrm{Sm} 1-\mathrm{C} 1^{\text {iii }}$	152.70 (11)
$\mathrm{O} 2{ }^{\text {iv }}-\mathrm{Sm} 1-\mathrm{C} 1{ }^{\text {iii }}$	77.28 (10)
$\mathrm{O} 2-\mathrm{Sm1}-\mathrm{C} 1^{\text {iii }}$	110.46 (10)
$\mathrm{O} 2{ }^{\text {iii }}$ - $\mathrm{Sm} 1-\mathrm{C} 1{ }^{\text {iii }}$	25.90 (10)
$\mathrm{O} 1-\mathrm{Sm} 1-\mathrm{C} 1^{\text {iii }}$	95.43 (10)
$\mathrm{O} 1{ }^{\text {iii }}$ - $\mathrm{Sm} 1-\mathrm{C} 1{ }^{\text {iii }}$	25.84 (10)
O1 $1^{\text {iv }} \mathrm{Sm} 1-\mathrm{C} 1^{\text {iii }}$	128.98 (10)
$\mathrm{C} 1-\mathrm{Sm1}-\mathrm{Cl}^{\text {iii }}$	103.16 (9)
$\mathrm{C} 1{ }^{\text {iv }}-\mathrm{Sm} 1-\mathrm{C} 1^{\text {iii }}$	103.16 (9)

-96.3 (2)
31.5 (3)
-2.7 (2)
99.1 (2)
122.17 (19)
-31.0 (3)
-2.6 (3)
109.2 (3)
88.8 (3)
-86.3 (3)
-156(2)
5.5 (3)
-169.7 (2)
120 (2)
77.1 (2)
-98.1 (2)
-168 (2)

$\mathrm{C} 4-\mathrm{O} 3-\mathrm{Sm} 1-\mathrm{O} 3{ }^{\text {iii }}$	33.2 (4)
$\mathrm{C} 4-\mathrm{O} 3-\mathrm{Sm} 1-\mathrm{O}^{\text {iv }}$	111.6 (4)
$\mathrm{C} 4-\mathrm{O} 3-\mathrm{Sm} 1-\mathrm{O} 2{ }^{\text {iv }}$	-23.6 (5)
$\mathrm{C} 4-\mathrm{O} 3-\mathrm{Sm} 1-\mathrm{O} 2$	179.4 (4)
$\mathrm{C} 4-\mathrm{O} 3-\mathrm{Sm} 1-\mathrm{O} 2{ }^{\text {iii }}$	-99.8 (4)
$\mathrm{C} 4-\mathrm{O} 3-\mathrm{Sm1}-\mathrm{O} 1$	-172.4 (4)
$\mathrm{C} 4-\mathrm{O} 3-\mathrm{Sm} 1-\mathrm{O} 1^{\text {iii }}$	-47.7 (4)
$\mathrm{C} 4-\mathrm{O} 3-\mathrm{Sm} 1-\mathrm{Ol}^{\text {iv }}$	67.3 (4)
$\mathrm{C} 4-\mathrm{O} 3-\mathrm{Sm} 1-\mathrm{C} 1$	-174.9 (4)
$\mathrm{C} 4-\mathrm{O} 3-\mathrm{Sm1}-\mathrm{Cl}^{\text {iv }}$	21.3 (5)
$\mathrm{C} 4-\mathrm{O} 3-\mathrm{Sm} 1-\mathrm{C} 1^{\text {iii }}$	-74.0 (4)
$\mathrm{C} 1-\mathrm{O} 2-\mathrm{Sm} 1-\mathrm{O} 3{ }^{\text {iii }}$	132.2 (2)
$\mathrm{C} 1-\mathrm{O} 2-\mathrm{Sm} 1-\mathrm{O} 3$	12.9 (3)
$\mathrm{C} 1-\mathrm{O} 2-\mathrm{Sm} 1-\mathrm{O}^{\text {iv }}$	77.5 (2)
$\mathrm{C} 1-\mathrm{O} 2-\mathrm{Sm} 1-\mathrm{O} 2{ }^{\text {iv }}$	-153.2 (2)
$\mathrm{C} 1-\mathrm{O} 2-\mathrm{Sm1}-\mathrm{O}^{\text {iii }}$	-65.6 (3)
$\mathrm{C} 1-\mathrm{O} 2-\mathrm{Sm} 1-\mathrm{O} 1$	2.7 (2)
$\mathrm{C} 1-\mathrm{O} 2-\mathrm{Sm} 1-\mathrm{O} 1^{\text {iii }}$	-91.8 (3)
$\mathrm{C} 1-\mathrm{O} 2-\mathrm{Sm} 1-\mathrm{Ol}^{\text {iv }}$	156.6 (2)
$\mathrm{C} 1-\mathrm{O} 2-\mathrm{Sm1}-\mathrm{Cl}^{\text {iv }}$	-177.2 (3)
$\mathrm{C} 1-\mathrm{O} 2-\mathrm{Sm1}-\mathrm{Cl}^{\text {iii }}$	-77.76 (18)
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Sm1}-\mathrm{O}^{\text {iii }}$	-130.8 (2)
C1-O1-Sm1-O3	-174.6 (3)

-156.1 (2)
28.8 (2)
-41 (2)
175.1 (4)
-70 (2)
-73.7 (2)
111.1 (3)

41 (2)
-175.1 (4)
115 (2)
-73.78 (19)
111.1 (2)

41 (2)
152.9 (2)
-22.3 (2)
-92 (2)
177.9 (2)
2.8 (3)
-67 (2)
-75.0 (3)
109.90 (18)

40 (2)

Symmetry codes: (i) $-y+1 / 2,-z, x-1 / 2$; (ii) $z+1 / 2,-x+1 / 2,-y$; (iii) $-z+3 / 2,-x+1, y+1 / 2$; (iv) $-y+1, z-1 / 2,-x+3 / 2$.

