

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# Bis(2,2',2''-nitrilotriacetamide- $\kappa^3$ O,N,O')nickel(II) dinitrate tetrahydrate

#### Xiao-Hui Deng,\* Qi-Jun Nie and Feng-Juan Zhu

Institute of Economic Crops, Hubei Academy of Agricultural Science, Wuhan 430064, People's Republic of China Correspondence e-mail: xhdengyy@yahoo.com.cn

Received 17 December 2012; accepted 23 December 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.032; wR factor = 0.088; data-to-parameter ratio = 12.4.

In the title compound,  $[Ni(C_6H_{12}N_4O_3)_2](NO_3)_2 \cdot 4H_2O$ , the Ni<sup>II</sup> cation is located on an inversion center and is N,O,O'chelated by two nitrilotris(acetamide) molecules in a distorted octahedral geometry. The complex cations, nitrate anions and lattice water molecules are connected by O-H···O and N-H...O hydrogen bonds, forming a three-dimensional supramolecular structure.

#### **Related literature**

For related metal complexes, see: Niraj et al. (2012); Biswajit et al. (2009); Ben Amor et al. (1998). For the synthesis of the ligand, see: Donald & George (1974).



#### **Experimental**

#### Crystal data

[Ni(C<sub>6</sub>H<sub>12</sub>N<sub>4</sub>O<sub>3</sub>)<sub>2</sub>](NO<sub>3</sub>)<sub>2</sub>·4H<sub>2</sub>O  $M_r = 631.17$ Triclinic,  $P\overline{1}$ a = 8.557 (7) Å b = 9.212 (8) Å c = 9.367 (8) Å  $\alpha = 91.180 \ (14)^{\circ}$  $\beta = 96.215 \ (14)^{\circ}$ 

```
\gamma = 111.136 \ (14)^{\circ}
V = 683.2 (10) \text{ Å}^3
Z = 1
Mo K\alpha radiation
\mu = 0.80 \text{ mm}^{-1}
T = 296 \text{ K}
0.42 \times 0.38 \times 0.33 \text{ mm}
```

 $R_{\rm int} = 0.014$ 

3732 measured reflections

2352 independent reflections

2219 reflections with  $I > 2\sigma(I)$ 

#### Data collection

Bruker SMART 1000 CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2001)  $T_{\rm min} = 0.731, T_{\rm max} = 0.779$ 

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.032$ | H atoms treated by a mixture of                           |
|---------------------------------|-----------------------------------------------------------|
| $wR(F^2) = 0.088$               | independent and constrained                               |
| S = 1.05                        | refinement                                                |
| 2352 reflections                | $\Delta \rho_{\rm max} = 0.31 \text{ e } \text{\AA}^{-3}$ |
| 190 parameters                  | $\Delta \rho_{\rm min} = -0.24 \text{ e} \text{ Å}^{-3}$  |
| 6 restraints                    |                                                           |

#### Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$         | D-H      | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-------------------------------------|----------|-------------------------|--------------|--------------------------------------|
| $N2-H2A\cdots O8^{i}$               | 0.86     | 2.14                    | 2.988 (3)    | 169                                  |
| $N2-H2B\cdots O6^{ii}$              | 0.86     | 2.19                    | 3.027 (4)    | 165                                  |
| $N3-H3A\cdots O4^{iii}$             | 0.86     | 2.28                    | 3.056 (4)    | 150                                  |
| $N3-H3B\cdots O3^{ii}$              | 0.86     | 1.99                    | 2.848 (3)    | 173                                  |
| $N4-H4A\cdots O7^{iv}$              | 0.86     | 2.22                    | 3.002 (3)    | 152                                  |
| $N4 - H4B \cdots O7$                | 0.86     | 2.32                    | 3.068 (4)    | 145                                  |
| $O7-H7A\cdots O4$                   | 0.87 (2) | 2.08 (2)                | 2.913 (4)    | 162 (3)                              |
| $O7 - H7B \cdot \cdot \cdot O8^{v}$ | 0.87 (2) | 1.98 (2)                | 2.843 (3)    | 174 (4)                              |
| O8−H8A···O1 <sup>iii</sup>          | 0.86 (2) | 2.18 (2)                | 3.018 (3)    | 165 (3)                              |
| $O8 - H8B \cdot \cdot \cdot O4$     | 0.86 (2) | 2.19 (2)                | 2.999 (4)    | 157 (3)                              |
| $O8-H8B\cdots O6$                   | 0.86 (2) | 2.40 (3)                | 3.107 (4)    | 141 (3)                              |

x + 1, y, z + 1; (ii) -x + 1, -y, -z + 2;(iii) Symmetry codes. (i) -x + 1, -y + 1, -z + 2; (iv) -x + 1, -y, -z + 1; (v) -x + 1, -y + 1, -z + 1.

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT ; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This research was supported by the International Cooperation Special Fund of the Ministry of Science and Technology, China (No. 2011DFB31620). We are grateful to Professor Dr S.-M. Qiu of Hubei Academy of Agricultural Science for his valuable suggestions.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5668).

#### References

- Ben Amor, F., Bourguiba, N., Driss, A. & Jouini, T. (1998). Acta Cryst. C54, 197 - 199
- Biswajit, D., Somnath, R. C., Eringathodi, S., Atish, D. J. & Subrata, M. (2009). J. Mol. Struct. 921, 268-273.
- Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Donald, H. T. & George, C. H. (1974). US patent No. 3799981.
- Niraj, K., Benzamin, D. W., Sanjib, K. & Lallan, M. (2012). Polyhedron, 33, 425-434.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

# supporting information

Acta Cryst. (2013). E69, m89 [doi:10.1107/S160053681205177X]

# Bis(2,2',2''-nitrilotriacetamide- $\kappa^3 O, N, O'$ )nickel(II) dinitrate tetrahydrate

# Xiao-Hui Deng, Qi-Jun Nie and Feng-Juan Zhu

## S1. Comment

Coordination chemistry of nitrilotriacetic acid with metal ions is explored extensively owing to their flexible coordinating nature, but nitrilotriacetamide (H<sub>3</sub>NTA) is hardly studied (Niraj *et al.*, 2012; Biswajit *et al.*, 2009; Ben Amor *et al.*, 1998). This is the first report of a bis(H<sub>3</sub>NTA)–nickel(II) structure in which only H<sub>3</sub>NTA acts as a tridentate ligand.

Complex I consists of a Ni(H<sub>3</sub>NTA)<sub>2</sub> cation, two nitrate anions and four solvent water molecules (Scheme). Ni(II) has an octahedral coordination environment which is centrosymmetric as Ni(II) occupies an inversion center. The Ni atom is coordinated in a planar geometry by the nitrilotriacetamide N and O atoms. Two *trans* axial sites of this coordination environment is occupied by O2 and its symmetry related O2' oxygen atoms from ligands(Fig. 1). In the equatorial plane the Ni—N1 distance is 2.131 (2) Å and the Ni—O1 distance is 2.098 (2) Å. The axial Ni—O2 bond is appreciably shortented which is 2.036 (2) Å. A few more selected bond distances and bond angles are presented in Table 1. The molecules are stacked along the *a* axis and display N—H…O and O—H…O hydrogen-bonds interaction (Fig. 2).

## **S2. Experimental**

The synthesis of nitrilotriacetamide was carried out according to US patent 3799981 (Donald & George, 1974). The title compound was synthesized by adding solid Ni(NO<sub>3</sub>)<sub>2</sub>.6H<sub>2</sub>O (291 mg, 1 mmol) to a solution of ligands (376 mg, 2 mmol) in ethanol/water (2:1, 20 ml), then the mixture was stirred for 2 h at room temperature. The solution was filtered and the filtrate was allowed to stand in air for 1 d, and blue crystals were formed at the bottom of the vessel on slow evaporation of the solvent at room temperature. Yield: 73%.

### **S3. Refinement**

Water H atoms were located in a difference Fourier map and the positional parameters were refined,  $U_{iso}(H) = 1.5U_{eq}(O)$ . Other H atoms were included in calculated positions with C—H = 0.93 or 0.97 and N—H = 0.86 Å, and refined using a riding-model with  $U_{iso}(H) = 1.2U_{eq}(C,N)$ .



# Figure 1

The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.



# Figure 2

The packed diagram for the title compound, viewed down the *a* axis with hydrogen bonds drawn as dashed lines.

## Bis(2,2',2''-nitrilotriacetamide- $\kappa^3 O, N, O'$ )nickel(II) dinitrate tetrahydrate

| Crystal data                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [Ni(C <sub>6</sub> H <sub>12</sub> N <sub>4</sub> O <sub>3</sub> ) <sub>2</sub> ](NO <sub>3</sub> ) <sub>2</sub> ·4H <sub>2</sub> O<br>$M_r = 631.17$<br>Triclinic, $P\overline{1}$<br>Hall symbol: -P 1<br>a = 8.557 (7) Å<br>b = 9.212 (8) Å<br>c = 9.367 (8) Å<br>a = 91.180 (14)°<br>$\beta = 96.215$ (14)°<br>$\gamma = 111.136$ (14)°<br>V = 683.2 (10) Å <sup>3</sup> | Z = 1<br>F(000) = 330<br>$D_x = 1.534 \text{ Mg m}^{-3}$<br>Mo K $\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$<br>Cell parameters from 2322 reflections<br>$\theta = 2.4-28.2^{\circ}$<br>$\mu = 0.80 \text{ mm}^{-1}$<br>T = 296  K<br>Block, blue<br>$0.42 \times 0.38 \times 0.33 \text{ mm}$ |
| Data collection                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                      |
| Bruker SMART 1000 CCD area-detector<br>diffractometer<br>Radiation source: fine-focus sealed tube<br>Graphite monochromator<br>phi and $\omega$ scans                                                                                                                                                                                                                        | Absorption correction: multi-scan<br>( <i>SADABS</i> ; Bruker, 2001)<br>$T_{min} = 0.731, T_{max} = 0.779$<br>3732 measured reflections<br>2352 independent reflections                                                                                                                              |

| 2219 reflections with $I > 2\sigma(I)$                          | $h = -10 \rightarrow 10$                                   |
|-----------------------------------------------------------------|------------------------------------------------------------|
| $R_{\rm int} = 0.014$                                           | $k = -10 \rightarrow 10$                                   |
| $\theta_{\rm max} = 25.0^\circ, \ \theta_{\rm min} = 2.2^\circ$ | $l = -11 \rightarrow 9$                                    |
| Refinement                                                      |                                                            |
| Refinement on $F^2$                                             | Secondary atom site location: difference Fourier           |
| Least-squares matrix: full                                      | map                                                        |
| $R[F^2 > 2\sigma(F^2)] = 0.032$                                 | Hydrogen site location: inferred from                      |
| $wR(F^2) = 0.088$                                               | neighbouring sites                                         |
| S = 1.05                                                        | H atoms treated by a mixture of independent                |
| 2352 reflections                                                | and constrained refinement                                 |
| 190 parameters                                                  | $w = 1/[\sigma^2(F_o^2) + (0.0494P)^2 + 0.3085P]$          |
| 6 restraints                                                    | where $P = (F_o^2 + 2F_c^2)/3$                             |
| Primary atom site location: structure-invariant                 | $(\Delta/\sigma)_{\rm max} < 0.001$                        |
| direct methods                                                  | $\Delta \rho_{\rm max} = 0.31 \text{ e} \text{ Å}^{-3}$    |
|                                                                 | $\Delta \rho_{\rm min} = -0.24 \ {\rm e} \ {\rm \AA}^{-3}$ |

## Special details

**Experimental**. Selected IR data (cm<sup>-1</sup>): 3315 (*s*), 3192 (*s*), 2935(w), 2783(w), 1666(*s*), 1596(*s*), 1276(*m*), 1134(*m*), 997(*m*), 867(*m*), 729(w), 561(*s*).

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

|     | x            | у             | Ζ            | $U_{ m iso}*/U_{ m eq}$ |
|-----|--------------|---------------|--------------|-------------------------|
| Ni1 | 1.0000       | 0.5000        | 1.0000       | 0.02392 (14)            |
| 01  | 1.0488 (2)   | 0.43473 (17)  | 1.20851 (16) | 0.0346 (4)              |
| O3  | 0.7111 (2)   | -0.06864 (18) | 0.86966 (18) | 0.0445 (4)              |
| O2  | 0.78448 (19) | 0.51673 (16)  | 1.05845 (18) | 0.0341 (4)              |
| O4  | 0.3921 (3)   | 0.3138 (2)    | 0.7047 (3)   | 0.0796 (8)              |
| O5  | 0.3643 (3)   | 0.0742 (3)    | 0.7446 (3)   | 0.0766 (7)              |
| O6  | 0.1436 (3)   | 0.1309 (3)    | 0.6829 (3)   | 0.0760 (7)              |
| O8  | 0.1390 (3)   | 0.4509 (2)    | 0.58844 (19) | 0.0503 (5)              |
| H8A | 0.070 (4)    | 0.467 (4)     | 0.640 (3)    | 0.075*                  |
| H8B | 0.188 (4)    | 0.396 (4)     | 0.635 (3)    | 0.075*                  |
| 07  | 0.6156 (3)   | 0.2788 (2)    | 0.5043 (2)   | 0.0618 (6)              |
| H7A | 0.563 (4)    | 0.311 (4)     | 0.564 (4)    | 0.093*                  |
| H7B | 0.685 (4)    | 0.361 (3)     | 0.470 (4)    | 0.093*                  |
| N4  | 0.6721 (3)   | -0.0015 (2)   | 0.6398 (2)   | 0.0488 (6)              |
| H4A | 0.6150       | -0.0964       | 0.6083       | 0.059*                  |
| H4B | 0.6905       | 0.0722        | 0.5816       | 0.059*                  |
| N1  | 0.8516 (2)   | 0.25706 (19)  | 0.97289 (18) | 0.0255 (4)              |
| N3  | 0.5292 (2)   | 0.3768 (2)    | 1.1244 (2)   | 0.0383 (5)              |
| H3A | 0.5150       | 0.4598        | 1.1533       | 0.046*                  |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

| H3B | 0.4526     | 0.2868     | 1.1308     | 0.046*     |  |
|-----|------------|------------|------------|------------|--|
| N2  | 1.0204 (3) | 0.2211 (2) | 1.3335 (2) | 0.0504 (6) |  |
| H2A | 1.0547     | 0.2765     | 1.4138     | 0.060*     |  |
| H2B | 0.9931     | 0.1216     | 1.3325     | 0.060*     |  |
| N5  | 0.3008 (3) | 0.1727 (3) | 0.7132 (3) | 0.0495 (6) |  |
| C4  | 0.6690 (3) | 0.3874 (2) | 1.0699 (2) | 0.0278 (4) |  |
| C1  | 0.9486 (3) | 0.1859 (2) | 1.0730 (2) | 0.0301 (5) |  |
| H1A | 1.0441     | 0.1794     | 1.0299     | 0.036*     |  |
| H1B | 0.8767     | 0.0813     | 1.0920     | 0.036*     |  |
| C6  | 0.7323 (3) | 0.0313 (2) | 0.7789 (2) | 0.0313 (5) |  |
| C2  | 1.0099 (3) | 0.2884 (2) | 1.2128 (2) | 0.0316 (5) |  |
| C5  | 0.8390 (3) | 0.2040 (2) | 0.8193 (2) | 0.0322 (5) |  |
| H5A | 0.9522     | 0.2242     | 0.7956     | 0.039*     |  |
| H5B | 0.7918     | 0.2669     | 0.7599     | 0.039*     |  |
| C3  | 0.6822 (3) | 0.2338 (2) | 1.0189 (3) | 0.0346 (5) |  |
| H3C | 0.6623     | 0.1635     | 1.0963     | 0.041*     |  |
| H3D | 0.5953     | 0.1855     | 0.9388     | 0.041*     |  |
|     |            |            |            |            |  |

Atomic displacement parameters  $(Å^2)$ 

| $U^{11}$    | $U^{22}$                                                                                                                                                                                                                     | $U^{33}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $U^{12}$                                              | $U^{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $U^{23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0223 (2)  | 0.0156 (2)                                                                                                                                                                                                                   | 0.0283 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.00044 (14)                                          | 0.00210 (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00082 (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.0430 (9)  | 0.0214 (8)                                                                                                                                                                                                                   | 0.0311 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0035 (7)                                            | -0.0013 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0001 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.0518 (11) | 0.0231 (8)                                                                                                                                                                                                                   | 0.0437 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.0027 (7)                                           | 0.0006 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0012 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.0284 (8)  | 0.0193 (7)                                                                                                                                                                                                                   | 0.0515 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0033 (6)                                            | 0.0110 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0018 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.0941 (18) | 0.0344 (11)                                                                                                                                                                                                                  | 0.1007 (18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0035 (11)                                           | 0.0446 (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.0048 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.0583 (14) | 0.0618 (14)                                                                                                                                                                                                                  | 0.109 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0227 (12)                                           | 0.0036 (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0220 (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.0538 (13) | 0.0572 (13)                                                                                                                                                                                                                  | 0.123 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0250 (11)                                           | 0.0171 (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0198 (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.0604 (13) | 0.0489 (11)                                                                                                                                                                                                                  | 0.0404 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0185 (10)                                           | 0.0068 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0036 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.0663 (14) | 0.0445 (11)                                                                                                                                                                                                                  | 0.0573 (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.0015 (10)                                          | 0.0122 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.0014 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.0606 (14) | 0.0304 (11)                                                                                                                                                                                                                  | 0.0401 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0019 (10)                                           | -0.0052 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.0068 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.0240 (9)  | 0.0187 (8)                                                                                                                                                                                                                   | 0.0296 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0033 (7)                                            | 0.0013 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.0007 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.0323 (10) | 0.0231 (9)                                                                                                                                                                                                                   | 0.0577 (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0052 (8)                                            | 0.0156 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0004 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.0761 (16) | 0.0300 (11)                                                                                                                                                                                                                  | 0.0355 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0115 (11)                                           | -0.0064 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0045 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.0567 (15) | 0.0376 (12)                                                                                                                                                                                                                  | 0.0546 (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0139 (11)                                           | 0.0196 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0053 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.0258 (10) | 0.0242 (11)                                                                                                                                                                                                                  | 0.0303 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0062 (9)                                            | 0.0010 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0019 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.0325 (11) | 0.0195 (10)                                                                                                                                                                                                                  | 0.0342 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0060 (9)                                            | -0.0007 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0019 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.0305 (11) | 0.0234 (11)                                                                                                                                                                                                                  | 0.0358 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0050 (9)                                            | 0.0040 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.0054 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.0307 (11) | 0.0252 (11)                                                                                                                                                                                                                  | 0.0332 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0050 (9)                                            | -0.0017 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0021 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.0372 (12) | 0.0216 (10)                                                                                                                                                                                                                  | 0.0292 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0011 (9)                                            | 0.0024 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.0001 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.0247 (11) | 0.0211 (10)                                                                                                                                                                                                                  | 0.0529 (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0017 (9)                                            | 0.0079 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.0008 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|             | $U^{11}$ 0.0223 (2) 0.0430 (9) 0.0518 (11) 0.0284 (8) 0.0941 (18) 0.0583 (14) 0.0538 (13) 0.0604 (13) 0.0606 (14) 0.0240 (9) 0.0323 (10) 0.0761 (16) 0.0258 (10) 0.0325 (11) 0.0305 (11) 0.0307 (11) 0.0372 (12) 0.0247 (11) | $\begin{array}{c ccccc} U^{11} & U^{22} \\ \hline 0.0223 (2) & 0.0156 (2) \\ \hline 0.0430 (9) & 0.0214 (8) \\ \hline 0.0518 (11) & 0.0231 (8) \\ \hline 0.0284 (8) & 0.0193 (7) \\ \hline 0.0941 (18) & 0.0344 (11) \\ \hline 0.0538 (13) & 0.0572 (13) \\ \hline 0.0604 (13) & 0.0489 (11) \\ \hline 0.0663 (14) & 0.0445 (11) \\ \hline 0.0666 (14) & 0.0304 (11) \\ \hline 0.0240 (9) & 0.0187 (8) \\ \hline 0.0323 (10) & 0.0231 (9) \\ \hline 0.0761 (16) & 0.0300 (11) \\ \hline 0.0557 (15) & 0.0376 (12) \\ \hline 0.0258 (10) & 0.0242 (11) \\ \hline 0.0305 (11) & 0.0252 (11) \\ \hline 0.0307 (11) & 0.0252 (11) \\ \hline 0.0372 (12) & 0.0216 (10) \\ \hline 0.0241 (10) \\ \hline \end{array}$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $U^{11}$ $U^{22}$ $U^{33}$ $U^{12}$ 0.0223 (2)0.0156 (2)0.0283 (2)0.00044 (14)0.0430 (9)0.0214 (8)0.0311 (8)0.0035 (7)0.0518 (11)0.0231 (8)0.0437 (9) $-0.0027 (7)$ 0.0284 (8)0.0193 (7)0.0515 (9)0.0033 (6)0.0941 (18)0.0344 (11)0.1007 (18)0.0035 (11)0.0583 (14)0.0618 (14)0.109 (2)0.0227 (12)0.0538 (13)0.0572 (13)0.123 (2)0.0250 (11)0.0663 (14)0.0449 (11)0.0404 (10)0.0185 (10)0.0666 (14)0.0304 (11)0.0401 (11)0.0019 (10)0.0240 (9)0.0187 (8)0.0296 (9)0.0033 (7)0.0323 (10)0.0231 (9)0.0577 (13)0.0052 (8)0.0761 (16)0.0300 (11)0.0355 (11)0.0115 (11)0.0567 (15)0.0376 (12)0.0546 (13)0.0139 (11)0.0258 (10)0.0242 (11)0.0303 (11)0.0062 (9)0.0305 (11)0.0234 (11)0.0358 (11)0.0050 (9)0.0305 (11)0.0252 (11)0.0322 (11)0.0050 (9)0.0372 (12)0.0216 (10)0.0292 (11)0.0011 (9)0.0247 (11)0.0211 (10)0.0529 (14)0.0017 (9) | $U^{11}$ $U^{22}$ $U^{33}$ $U^{12}$ $U^{13}$ 0.0223 (2)0.0156 (2)0.0283 (2)0.00044 (14)0.00210 (14)0.0430 (9)0.0214 (8)0.0311 (8)0.0035 (7) $-0.0013 (7)$ 0.0518 (11)0.0231 (8)0.0437 (9) $-0.0027 (7)$ 0.0006 (8)0.0284 (8)0.0193 (7)0.0515 (9)0.0033 (6)0.0110 (7)0.0941 (18)0.0344 (11)0.1007 (18)0.00227 (12)0.0036 (13)0.0583 (14)0.0618 (14)0.109 (2)0.0227 (12)0.0036 (13)0.0583 (13)0.0572 (13)0.123 (2)0.0250 (11)0.0171 (13)0.0604 (13)0.0489 (11)0.0404 (10)0.0185 (10)0.0068 (9)0.0663 (14)0.0344 (11)0.0404 (10)0.0185 (10)0.0122 (10)0.0666 (14)0.0304 (11)0.0401 (11)0.0019 (10) $-0.0052 (10)$ 0.0240 (9)0.0187 (8)0.0296 (9)0.0033 (7)0.0013 (7)0.0323 (10)0.0231 (9)0.0577 (13)0.0052 (8)0.0156 (9)0.0761 (16)0.0300 (11)0.0355 (11)0.0115 (11) $-0.0064 (10)$ 0.0556 (15)0.0376 (12)0.0546 (13)0.0139 (11)0.0196 (11)0.0258 (10)0.0224 (11)0.0303 (11)0.0060 (9) $-0.0007 (9)$ 0.0305 (11)0.0195 (10)0.0342 (11)0.0050 (9) $-0.0017 (9)$ 0.0305 (11)0.0216 (10)0.0292 (11)0.0011 (9)0.0024 (9)0.0372 (12)0.0216 (10)0.0292 (14)0.0017 (9)0.0079 (10) </td |

# Geometric parameters (Å, °)

| Ni1—O2              | 2.036 (2) | N1—C5 | 1.490 (3) |
|---------------------|-----------|-------|-----------|
| Ni1—O2 <sup>i</sup> | 2.036 (2) | N1—C3 | 1.499 (3) |
| Nil—Ol <sup>i</sup> | 2.098 (2) | N1—C1 | 1.499 (3) |
| Nil—Ol              | 2.098 (2) | N3—C4 | 1.323 (3) |
|                     |           |       |           |

| Ni1—N1                                               | 2.131 (2)                | N3—H3A                                                                                 | 0.8600                   |
|------------------------------------------------------|--------------------------|----------------------------------------------------------------------------------------|--------------------------|
| Ni1—N1 <sup>i</sup>                                  | 2.131 (2)                | N3—H3B                                                                                 | 0.8600                   |
| O1—C2                                                | 1.270 (3)                | N2—C2                                                                                  | 1.311 (3)                |
| O3—C6                                                | 1.244 (3)                | N2—H2A                                                                                 | 0.8600                   |
| O2—C4                                                | 1.259 (3)                | N2—H2B                                                                                 | 0.8600                   |
| 04—N5                                                | 1.262 (3)                | C4—C3                                                                                  | 1.530(3)                 |
| 05—N5                                                | 1.239 (3)                | C1—C2                                                                                  | 1.525 (3)                |
| 06—N5                                                | 1 256 (3)                | C1—H1A                                                                                 | 0.9700                   |
| 08—H8A                                               | 0.856(17)                | C1—H1B                                                                                 | 0.9700                   |
| 08—H8B                                               | 0.859(17)                | C6C5                                                                                   | 1.537(3)                 |
| 07_H7A                                               | 0.859(17)<br>0.868(18)   | C5H5A                                                                                  | 0.9700                   |
| 07—H7B                                               | 0.866 (18)               | C5—H5B                                                                                 | 0.9700                   |
| N4 C6                                                | 1,335(3)                 | $C_3 = H_3C$                                                                           | 0.9700                   |
|                                                      | 0.8600                   | $C_2 = H_2 D$                                                                          | 0.9700                   |
|                                                      | 0.8600                   | C3—II3D                                                                                | 0.9700                   |
| М4—П4В                                               | 0.8000                   |                                                                                        |                          |
| 02—Ni1—O2 <sup>i</sup>                               | 180.0                    | C2—N2—H2B                                                                              | 120.0                    |
| $02-Ni1-01^{i}$                                      | 92.01 (7)                | $H_2A = N_2 = H_2B$                                                                    | 120.0                    |
| $02^{i}$ Ni1-01 <sup>i</sup>                         | 87.99 (7)                | 05—N5—06                                                                               | 119.8 (2)                |
| 02 - Ni1 - 01                                        | 87 99 (7)                | 05—N5—04                                                                               | 1211(3)                  |
| $02^{i}$ Ni1-01                                      | 92 01 (7)                | 06—N5—04                                                                               | 121.1(3)<br>1191(3)      |
| $01^{i}$ Ni1-01                                      | 180000(1)                | 02-C4-N3                                                                               | 122 14 (19)              |
| $\Omega^2$ —Ni1—N1                                   | 83 50 (8)                | 02 - C4 - C3                                                                           | 122.11(19)<br>121.45(19) |
| $O2^{i}$ Ni1 N1                                      | 96 50 (7)                | $N_{3}$ C4 C3                                                                          | 121.19(19)<br>116.40(18) |
| $O1^{i}$ Ni1 N1                                      | 99.63 (7)                | $N_1 - C_1 - C_2$                                                                      | 108.40(10)               |
| 01 Ni Ni                                             | 80 37 (7)                | $N_1 = C_1 = C_2$<br>$N_1 = C_1 = H_1 A$                                               | 110.1                    |
| $O^2$ Ni1 N1 <sup>i</sup>                            | 96 50 (7)                | $C_2 = C_1 = H_{1A}$                                                                   | 110.1                    |
| $O2^{i}$ Ni1 Ni <sup>i</sup>                         | 90.50 (7)<br>83 50 (8)   | N1_C1_H1B                                                                              | 110.1                    |
| $O1^{i}$ Ni1 N1 <sup>i</sup>                         | 80.37 (7)                | $C_2 C_1 H_1 B_1$                                                                      | 110.1                    |
| O1  Ni1 N1 <sup>i</sup>                              | 00.57 (7)<br>00.63 (7)   | $H_{1A} = C_{1} = H_{1B}$                                                              | 108.4                    |
| NI NI NI                                             | 180.0                    | $\Omega_{2}^{2}$ C6 N4                                                                 | 100.4                    |
| $C_2 \cap I$ Nil                                     | 112 16 (13)              | 03 - C6 - C5                                                                           | 123.8(2)<br>121.5(2)     |
| $C_2 = 01 = Ni1$                                     | 112.10(13)<br>114.27(14) | N4 C6 C5                                                                               | 121.5(2)                 |
|                                                      | 114.27(14)<br>100(2)     | $N_{1} = C_{0} = C_{3}$                                                                | 114.0(2)                 |
|                                                      | 103(2)<br>107(2)         | O1 C2 C1                                                                               | 122.3(2)                 |
| $\Pi/A = O/-\Pi/B$                                   | 107(2)                   | OI = C2 = C1                                                                           | 119.24(10)<br>118.2(2)   |
| C6 N4 H4P                                            | 120.0                    | $N_2 - C_2 - C_1$                                                                      | 116.5(2)                 |
| CO - N4 - H4D                                        | 120.0                    | N1 = C5 = U5 A                                                                         | 113.90 (17)              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 120.0<br>112.27(17)      | $NI - C_3 - H_3A$                                                                      | 108.5                    |
| $C_5 N_1 C_1$                                        | 112.27(17)               | CO-CJ-HJA                                                                              | 108.3                    |
| $C_3 = N_1 = C_1$                                    | 112.85(17)               |                                                                                        | 108.3                    |
| C5 NI NII                                            | 111.30(17)<br>108.65(12) | Co-Co-HSB                                                                              | 108.3                    |
| $C_{2}$ NI NII                                       | 108.05(12)               | HJA-CJ-HJB                                                                             | 107.4                    |
| $C_{1} = N_{1} = N_{1}$                              | 107.87(12)<br>102.22(12) | N1 = C2 = U2C                                                                          | 112.21 (10)              |
| $C_1 = N_1 = N_1$                                    | 105.52 (15)              | NI = US = HSU                                                                          | 109.2                    |
| C4 = N2 = H2D                                        | 120.0                    | $\begin{array}{ccc} C4 & -C2 & -H3C \\ \hline \\ N1 & C2 & -H2D \\ \hline \end{array}$ | 109.2                    |
|                                                      | 120.0                    | $NI = C_{3} = H_{3}D$                                                                  | 109.2                    |
| $H_3A - N_3 - H_3B$                                  | 120.0                    |                                                                                        | 109.2                    |
| C2-N2-H2A                                            | 120.0                    | H3C-C3-H3D                                                                             | 107.9                    |

| O2—Ni1—O1—C2               | 100.65 (16)  | O1 <sup>i</sup> —Ni1—N1—C1 | 147.65 (13)  |
|----------------------------|--------------|----------------------------|--------------|
| O2 <sup>i</sup> —Ni1—O1—C2 | -79.35 (16)  | O1—Ni1—N1—C1               | -32.35 (13)  |
| O1 <sup>i</sup> —Ni1—O1—C2 | 177 (100)    | N1 <sup>i</sup> —Ni1—N1—C1 | -136 (100)   |
| N1—Ni1—O1—C2               | 16.91 (15)   | Ni1—O2—C4—N3               | 171.21 (17)  |
| N1 <sup>i</sup> —Ni1—O1—C2 | -163.09 (15) | Ni1—O2—C4—C3               | -9.8 (3)     |
| O2 <sup>i</sup> —Ni1—O2—C4 | 178 (100)    | C5—N1—C1—C2                | 159.20 (17)  |
| O1 <sup>i</sup> —Ni1—O2—C4 | 106.73 (15)  | C3—N1—C1—C2                | -73.5 (2)    |
| O1—Ni1—O2—C4               | -73.27 (15)  | Ni1—N1—C1—C2               | 42.05 (18)   |
| N1—Ni1—O2—C4               | 7.27 (15)    | Ni1—O1—C2—N2               | -175.82 (19) |
| N1 <sup>i</sup> —Ni1—O2—C4 | -172.73 (15) | Ni1—O1—C2—C1               | 4.2 (3)      |
| O2—Ni1—N1—C5               | 118.55 (14)  | N1-C1-C2-O1                | -33.3 (3)    |
| O2 <sup>i</sup> —Ni1—N1—C5 | -61.45 (14)  | N1-C1-C2-N2                | 146.7 (2)    |
| O1 <sup>i</sup> —Ni1—N1—C5 | 27.60 (14)   | C3—N1—C5—C6                | -59.4 (2)    |
| O1—Ni1—N1—C5               | -152.40 (14) | C1—N1—C5—C6                | 67.4 (2)     |
| N1 <sup>i</sup> —Ni1—N1—C5 | 103 (100)    | Ni1—N1—C5—C6               | -178.62 (15) |
| O2—Ni1—N1—C3               | -3.40 (13)   | O3—C6—C5—N1                | -25.7 (3)    |
| O2 <sup>i</sup> —Ni1—N1—C3 | 176.60 (13)  | N4—C6—C5—N1                | 157.0 (2)    |
| O1 <sup>i</sup> —Ni1—N1—C3 | -94.34 (14)  | C5—N1—C3—C4                | -119.78 (19) |
| O1—Ni1—N1—C3               | 85.66 (14)   | C1—N1—C3—C4                | 112.6 (2)    |
| N1 <sup>i</sup> —Ni1—N1—C3 | -18 (100)    | Ni1—N1—C3—C4               | -0.1 (2)     |
| O2—Ni1—N1—C1               | -121.40 (14) | O2—C4—C3—N1                | 6.6 (3)      |
| O2 <sup>i</sup> —Ni1—N1—C1 | 58.60 (14)   | N3—C4—C3—N1                | -174.31 (19) |
|                            |              |                            |              |

Symmetry code: (i) -x+2, -y+1, -z+2.

## Hydrogen-bond geometry (Å, °)

| D—H···A                              | <i>D</i> —Н | H···A    | $D \cdots A$ | D—H···A |
|--------------------------------------|-------------|----------|--------------|---------|
| N2—H2A····O8 <sup>ii</sup>           | 0.86        | 2.14     | 2.988 (3)    | 169     |
| N2—H2 <i>B</i> ···O6 <sup>iii</sup>  | 0.86        | 2.19     | 3.027 (4)    | 165     |
| N3—H3A····O4 <sup>iv</sup>           | 0.86        | 2.28     | 3.056 (4)    | 150     |
| N3—H3 <i>B</i> ····O3 <sup>iii</sup> | 0.86        | 1.99     | 2.848 (3)    | 173     |
| N4—H4 $A$ ···O7 <sup>v</sup>         | 0.86        | 2.22     | 3.002 (3)    | 152     |
| N4—H4 <i>B</i> …O7                   | 0.86        | 2.32     | 3.068 (4)    | 145     |
| O7—H7 <i>A</i> ···O4                 | 0.87 (2)    | 2.08 (2) | 2.913 (4)    | 162 (3) |
| O7—H7 <i>B</i> ···O8 <sup>vi</sup>   | 0.87 (2)    | 1.98 (2) | 2.843 (3)    | 174 (4) |
| O8—H8A···O1 <sup>iv</sup>            | 0.86 (2)    | 2.18 (2) | 3.018 (3)    | 165 (3) |
| O8—H8 <i>B</i> ···O4                 | 0.86 (2)    | 2.19 (2) | 2.999 (4)    | 157 (3) |
| O8—H8 <i>B</i> …O6                   | 0.86 (2)    | 2.40 (3) | 3.107 (4)    | 141 (3) |
|                                      |             |          |              |         |

Symmetry codes: (ii) x+1, y, z+1; (iii) -x+1, -y, -z+2; (iv) -x+1, -y+1, -z+2; (v) -x+1, -y, -z+1; (vi) -x+1, -y+1, -z+1.