Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Tetramethylammonium aquatrichloridooxalatostannate(IV) monohydrate

Yaya Sow, ${ }^{\text {a* }}$ Libasse Diop, ${ }^{\text {a }}$ Kieran C. Molloy ${ }^{\text {b }}$ and Gabriele Kociok-Köhn ${ }^{\text {b }}$
${ }^{\text {a }}$ Laboratoire de Chimie Minerale et Analytique (LACHIMIA), Departement de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and ${ }^{\text {b }}$ Department of Chemistry, University of Bath, Bath BA2 7AY, England Correspondence e-mail: yayasow81@yahoo.fr

Received 5 December 2012; accepted 9 January 2013
Key indicators: single-crystal X-ray study; $T=150 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.026 ; w R$ factor $=0.062$; data-to-parameter ratio $=25.4$.

The $\mathrm{Sn}^{\mathrm{IV}}$ atom in the title compound, $\left[\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}\right]\left[\mathrm{Sn}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right) \mathrm{Cl}_{3^{-}}\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O}$, obtained from the reaction between SnCl_{4} and $\left[\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}\right]_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, is six-coordinated by three Cl atoms, an O atom of a water molecule and two O atoms from an asymmetrically chelating oxalate anion. The environment around the $\mathrm{Sn}^{\mathrm{IV}}$ atom is distorted octahedral. The anions are connected by the lattice water molecule through $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, leading to a layered structure parallel to (010). The cations are located between these layers and besides Coulombic forces are connected to the anionic layers through weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ interactions.

Related literature

For background to halogentin(IV) chemistry, see: Hausen et al. (1986); Koutsantonis et al. (2003); Mahon et al. (2004); PattSiebel et al.(1986); Szymanska-Buzar et al. (2001); Tudela et al. (1986). For tin compounds containing an $\mathrm{Sn}-\mathrm{Cl}$ bond in a cisor trans-position, see: Fernandez et al. (2002); Hazell et al. (1998); Sow et al. (2010). For tin compounds containing carboxylate moieties, see: Ng \& Kumar Das (1993); Xu et al. (2003).

Experimental

Crystal data

$M_{r}=423.24$
$Z=4$
Monoclinic, $P 2_{b} / n$
Mo $K \alpha$ radiation
$a=7.2458$ (1) A
$\mu=2.20 \mathrm{~mm}^{-1}$
$b=22.2812(2) \AA$
$T=150 \mathrm{~K}$
$c=9.6019$ (1) \AA
$0.15 \times 0.15 \times 0.13 \mathrm{~mm}$
$\beta=98.015$ (1)

Data collection

Nonius KappaCCD diffractometer
35849 measured reflections
Absorption correction: multi-scan (SORTAV; Blessing, 1995)
$T_{\text {min }}=0.734, T_{\text {max }}=0.763$ 4445 independent reflections 3855 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.042$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}=0.92 \mathrm{e} \AA_{\circ}^{-3}$
$\Delta \rho_{\text {min }}=-0.79 \mathrm{e}^{-3}$
$S=1.08$
4445 reflections
175 parameters
4 restraints

Table 1
Hydrogen-bond geometry (${ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O5-H50A \cdots O6	0.86 (2)	1.66 (2)	2.511 (2)	173 (3)
$\mathrm{O} 5-\mathrm{H} 50 \mathrm{~B} \cdots \mathrm{O} 4^{\text {i }}$	0.85 (2)	1.78 (2)	2.6120 (19)	168 (3)
$\mathrm{O} 6-\mathrm{H} 60 B \cdots \mathrm{O} 3^{\text {ii }}$	0.84 (2)	1.99 (2)	2.792 (2)	160 (3)
$\mathrm{O} 6-\mathrm{H} 604 \cdots \mathrm{O}{ }^{\text {iii }}$	0.84 (2)	1.95 (2)	2.7840 (19)	172 (3)
$\mathrm{O} 6-\mathrm{H} 60 B \cdots \mathrm{O} 4^{\text {ii }}$	0.84 (2)	2.47 (3)	2.993 (2)	122 (3)
C6-H6B $\cdots{ }^{\text {O }}{ }^{\text {i }}$	0.98	2.54	3.411 (3)	148
$\mathrm{C} 6-\mathrm{H} 6 A \cdots \mathrm{Cl}^{\text {iv }}$	0.98	2.91	3.762 (3)	146

Symmetry codes: (i) $-x+2,-y,-z+1$; (ii) $x-1, y, z$; (iii) $-x+2,-y,-z+2$; (iv) $x, y, z-1$.

Data collection: COLLECT (Nonius, 1999); cell refinement: DENZO and SCALEPACK (Otwinowski \& Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2712).

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Fernandez, D., Garcia-Seijo, M. I., Kegl, T., Petocz, G., Kollar, L. \& GarciaFernandez, M. E. (2002). Inorg. Chem. 41, 4435-4443.
Hausen, H.-D., Schwarz, W., Ragca, G. \& Weidlein, J. (1986). Z. Naturforsch. Teil B, 41, 1223-1229.
Hazell, A., Khoo, L. E., Ouyang, J., Rausch, B. J. \& Tavares, Z. M. (1998). Acta Cryst. C54, 728-732.
Koutsantonis, G. A., Morien, T. S., Skelton, B. W. \& White, A. H. (2003). Acta Cryst. C59, m361-m365.

metal-organic compounds

Mahon, M. F., Moldovan, N. L., Molloy, K. C., Muresan, A., SilaghiDumitrescu, I. \& Silaghi-Dumitrescu, L. (2004). J. Chem. Soc. Dalton Trans. 23, 4017-4021.
Ng, S. W. \& Kumar Das, V. G. (1993). Main Group Met. Chem. 16, 87-93. Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Patt-Siebel, U., Ruangsuttinarupap, S., Müller, U., Pebler, J. \& Dehnicke, K. (1986). Z. Naturforsch. Teil B, 41, 1191-1195.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sow, Y., Diop, L., Kociock-Köhn, G. \& Molloy, K. C. (2010). Main Group Met. Chem. 33, 205-207.
Szymanska-Buzar, T., Glowiak, T. \& Czelusnuak, I. (2001). Main Group Met. Chem. 24, 821-822.
Tudela, D. V., Fernadez, V., Tomero, J. D. \& Vegas, A. (1986). Z. Anorg. Allg. Chem. 532, 215-224.
Xu, T., Yang, S.-Y., Xie, Z.-X. \& Ng, S. W. (2003). Acta Cryst. E59, m873-m875.

supporting information

Acta Cryst. (2013). E69, m106-m107 [doi:10.1107/S1600536813000895]

Tetramethylammonium aquatrichloridooxalatostannate(IV) monohydrate

Yaya Sow, Libasse Diop, Kieran C. Molloy and Gabriele Kociok-Köhn

S1. Comment

Numerous crystal structures of $\operatorname{Sn} X_{4}$ adducts ($X=$ halogen) containing tin(IV) in an octahedral environment have been reported up to date, e.g. Hausen et al. (1986); Koutsantonis et al. (2003); Mahon et al. (2004); Patt-Siebel et al. (1986); Szymanska-Buzar et al. (2001); Tudela et al. (1986). Our group has previously reported the crystal structure of ((n$\left.\left.\mathrm{C}_{3} \mathrm{H}_{7}\right)_{2} \mathrm{NH}_{2}\right)_{2}\left[\mathrm{Sn}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right) \mathrm{Cl}_{4}\right]$ which contains a chelating oxalate anion, and the environment of tin(IV) being likewise octahedral (Sow et al., 2010). In the context of our search for new $\operatorname{Sn} X_{4}$ adducts we report here the study of the reaction between $\left(\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}\right)_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and SnCl_{4} which has yielded the title compound, $\left(\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}\right)\left[\mathrm{Sn}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right) \mathrm{Cl}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O}$. While many $\mathrm{Sn} X_{4}$ adducts have been reported (see above), a complex with a $\left[\mathrm{SnCl}_{3}\right]$-containing residue is reported here. The octahedral geometry around the $\mathrm{tin}(\mathrm{IV})$ atom is defined by three Cl atoms, two oxygen atoms from the chelating oxalate anion and the oxygen atom of a water molecule (Fig. 1). The two oxygen atoms from the oxalate anion and two of the Cl atoms are in the equatorial plane while the remaining Cl atom and the oxygen atom of the $\mathrm{H}_{2} \mathrm{O}$ molecule are in axial positions.
The $\left[\mathrm{Sn}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right) \mathrm{Cl}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{-}$anions are connected to the lattice water molecule through $\mathrm{H}-\mathrm{O}-\mathrm{H} \cdots \mathrm{OH}_{2}$ hydrogen bonds. The water molecule bonded to the $\operatorname{tin}(I V)$ atom is also hydrogen-bonded to the O 4 atom of a neighbour complex-anion. The lattice water molecule O 6 is bonded to O 3 and O 4 of the same oxalate anion through a bifurcated hydrogen bond and to a O3 atom of a neighbouring oxalate anion, leading to a layered structure extending parallel to (010). The cations are located between the anionic planes (Figs. 2,3). In the crystal packing, $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ interactions between cations and anions are also observed (Table 1).
The angle $\mathrm{O} 5-\mathrm{Sn}-\mathrm{Cl} 3\left[170.75^{\circ}(5)\right]$ deviates from linearity. The two $\mathrm{Sn}-\mathrm{Cl}$ bond lengths in the equatorial plane are very similar [$\mathrm{Sn}-\mathrm{Cl} 2=2.3598(5), \mathrm{Sn}-\mathrm{Cl} 1=2.3627(5) \AA$], but different from the one trans to the water molecule [Sn $-\mathrm{Cl} 3=2.3926(5) \AA$], pointing to a weak trans-effect involving the latter. The $\mathrm{Sn}-\mathrm{O} 5$ bond of $2.0781(15) \AA$ involving the water molecule is shorter than the $\mathrm{Sn}-\mathrm{O}$ bonds distances involving the oxalate anion $[\mathrm{Sn}-\mathrm{O} 1=2.0980(13)$; $\mathrm{Sn}-$ $\mathrm{O} 2=2.1025(13) \AA]$, whereby these two last $\mathrm{Sn}-\mathrm{O}$ distances are very close. The dimensions of $\mathrm{Sn}-\mathrm{O}$ bonds and $\mathrm{Sn}-$ Cl bonds are in the range of $\mathrm{Sn}-\mathrm{O}$ and $\mathrm{Sn}-\mathrm{Cl}$ bonds reported for $\mathrm{O}_{2} \mathrm{SnCl}_{4}$ containing adducts with cis- or transgeometry (Fernandez et al., 2002; Hazell et al., 1998; Sow et al., 2010).
The $\mathrm{C}-\mathrm{O}$ distances $[\mathrm{O} 1-\mathrm{C} 1=1.285(2) ; \mathrm{O} 2-\mathrm{C} 2=1.288(2) \AA$; $33-\mathrm{C} 1=1.219$ (2) \AA; $\mathrm{O} 4-\mathrm{C} 2=1.223$ (2) \AA] are in the typical range of $\mathrm{C}-\mathrm{O}$ and $\mathrm{C}=\mathrm{O}$ bonds ($\mathrm{Ng} \&$ Kumar Das, 1993; Xu et al., 2003).

S2. Experimental

All chemicals were purchased from Aldrich (Germany) and used without any further purification. $\left(\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}\right)_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ has been obtained on allowing $\left(\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}\right) \mathrm{OH}$ as a 20% water solution to react with oxalic acid in a $2: 1$ ratio. A powder is obtained after evaporation of water at 333 K . On allowing the oxalic acid salt to react with SnCl_{4} in a 1:1 ratio in ethanol, a colorless solution is obtained, which gives, after slow solvent evaporation, crystals suitable for X-ray determination .

The reaction equation of the title compound is: $\left(\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}\right)_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{SnCl}_{4} \rightarrow\left(\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}\right) \mathrm{Cl}+\left(\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}\right)$
$\left[\mathrm{Sn}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right) \mathrm{Cl}_{3} \mathrm{H}_{2} \mathrm{O}\right] \cdot \mathrm{H}_{2} \mathrm{O}$

S3. Refinement

Water molecule hydrogen atoms have been located in the difference fourier map and were refined with an idealized bond lenght of $0.85 \AA$. The other hydrogen atoms have been placed onto calculated position and were refined using a riding model, with $\mathrm{C}-\mathrm{H}$ distances of $0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\mathrm{eq}}(\mathrm{C})$.

Figure 1

The asymmetric unit showing the numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2
The layered structure of the anions and the lattice water molecule parallel to (010). O $-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding interactions are shown as dashed lines.

Figure 3
The packing of the structure showing $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding interactions as dashed lines $[\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ contacts are omitted for clarity].

Tetramethylammonium aquatrichloridooxalatostannate(IV) monohydrate

Crystal data

$\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}\right)\left[\mathrm{Sn}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right) \mathrm{Cl}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O}$	$F(000)=832$
$M_{r}=423.24$	$D_{\mathrm{x}}=1.831 \mathrm{Mg} \mathrm{m}^{-3}$
Monoclinic, $P 2_{1} / n$	Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Hall symbol: -P 2 yn	Cell parameters from 29534 reflections
$a=7.2458(1) \AA$	$\theta=2.9-30.0^{\circ}$
$b=22.2812(2) \AA$	$\mu=2.20 \mathrm{~mm}^{-1}$
$c=9.6019(1) \AA$	$T=150 \mathrm{~K}$
$\beta=98.015(1)^{\circ}$	Irregular, colourless
$V=1535.04(3) \AA^{3}$	$0.15 \times 0.15 \times 0.13 \mathrm{~mm}$
$Z=4$	

Data collection

Nonius KappaCCD diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
4611.3 degree images with ω scans

Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
$T_{\text {min }}=0.734, T_{\text {max }}=0.763$
35849 measured reflections
4445 independent reflections
3855 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.042$
$\theta_{\text {max }}=30.0^{\circ}, \theta_{\text {min }}=4.2^{\circ}$
$h=-10 \rightarrow 10$
$k=-28 \rightarrow 31$
$l=-13 \rightarrow 13$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$w R\left(F^{2}\right)=0.062$
$S=1.08$
4445 reflections
175 parameters
4 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.0322 P)^{2}+0.5616 P\right]$ where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.92 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.79$ e \AA^{-3}
Extinction correction: SHELXL97 (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.0124 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Sn	0.834510 (17)	0.112222 (6)	0.679281 (12)	0.02693 (6)
Cl1	0.61541 (8)	0.13476 (3)	0.83233 (5)	0.03867 (12)
Cl2	0.66559 (8)	0.14793 (3)	0.46760 (5)	0.04369 (14)
Cl 3	1.01222 (8)	0.20243 (2)	0.72319 (6)	0.04152 (13)
O5	0.7216 (2)	0.02693 (7)	0.64413 (15)	0.0372 (3)
O1	1.00588 (18)	0.07154 (6)	0.84708 (13)	0.0278 (3)
O3	1.2565 (2)	0.01364 (6)	0.89271 (13)	0.0310 (3)
O4	1.28776 (19)	0.01308 (7)	0.61246 (13)	0.0323 (3)
O2	1.04412 (18)	0.07556 (6)	0.57415 (13)	0.0285 (3)
O6	0.5915 (2)	-0.03357 (7)	0.82856 (15)	0.0320 (3)
N	1.0670 (2)	0.16827 (7)	0.20003 (17)	0.0298 (3)
C1	1.1444 (2)	0.04194 (8)	0.81171 (17)	0.0241 (3)
C2	1.1635 (3)	0.04294 (8)	0.65224 (18)	0.0249 (3)
C3	0.9820 (3)	0.10701 (9)	0.1966 (3)	0.0370 (5)
H3A	0.8911	0.1053	0.2632	0.055*
H3B	1.0798	0.0771	0.2228	0.055*
H3C	0.9192	0.0985	0.1015	0.055*
C4	0.9184 (4)	0.21327 (11)	0.1570 (3)	0.0561 (7)
H4A	0.8558	0.2036	0.0624	0.084*
H4B	0.9739	0.2534	0.1566	0.084*
H4C	0.8274	0.2125	0.2235	0.084*
C5	1.1603 (4)	0.18245 (13)	0.3445 (2)	0.0500 (6)
H5A	1.2132	0.2230	0.3458	0.075*
H5B	1.2601	0.1533	0.3721	0.075*
H5C	1.0689	0.1804	0.4106	0.075*
C6	1.2081 (4)	0.17066 (11)	0.0997 (3)	0.0491 (6)
H6A	1.1482	0.1599	0.0051	0.074*
H6B	1.3090	0.1423	0.1300	0.074*
H6C	1.2592	0.2113	0.0984	0.074*
H50B	0.703 (4)	0.0121 (13)	0.562 (2)	0.058 (8)*
H60B	0.481 (3)	-0.0227 (14)	0.829 (3)	0.057 (9)*
H60A	0.647 (4)	-0.0270 (13)	0.909 (2)	0.053 (8)*
H50A	0.668 (4)	0.0068 (12)	0.704 (3)	0.059 (9)*

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sn	$0.02791(9)$	$0.02922(8)$	$0.02369(8)$	$0.00383(4)$	$0.00368(5)$	$0.00042(4)$
C11	$0.0382(3)$	$0.0436(3)$	$0.0363(3)$	$0.0062(2)$	$0.0124(2)$	$-0.0069(2)$
C12	$0.0376(3)$	$0.0596(3)$	$0.0325(3)$	$0.0146(2)$	$0.0002(2)$	$0.0094(2)$
C13	$0.0423(3)$	$0.0295(2)$	$0.0520(3)$	$-0.0019(2)$	$0.0039(2)$	$0.0029(2)$
O5	$0.0468(9)$	$0.0414(8)$	$0.0256(7)$	$-0.0136(7)$	$0.0122(6)$	$-0.0087(6)$
O1	$0.0321(7)$	$0.0308(6)$	$0.0208(6)$	$0.0045(5)$	$0.0048(5)$	$-0.0001(5)$
O3	$0.0316(7)$	$0.0376(7)$	$0.0230(6)$	$0.0047(6)$	$0.0014(5)$	$0.0034(5)$
O4	$0.0291(7)$	$0.0442(8)$	$0.0230(6)$	$0.0069(6)$	$0.0018(5)$	$-0.0051(5)$
O2	$0.0287(7)$	$0.0362(7)$	$0.0209(6)$	$0.0051(5)$	$0.0040(5)$	$0.0033(5)$
O6	$0.0323(8)$	$0.0396(8)$	$0.0239(7)$	$0.0062(6)$	$0.0031(6)$	$0.0003(5)$
N	$0.0361(9)$	$0.0254(7)$	$0.0272(8)$	$-0.0021(6)$	$0.0018(6)$	$-0.0007(6)$
C1	$0.0268(9)$	$0.0247(8)$	$0.0205(8)$	$-0.0031(6)$	$0.0024(7)$	$-0.0013(6)$
C2	$0.0260(9)$	$0.0281(8)$	$0.0199(8)$	$-0.0025(7)$	$0.0014(6)$	$-0.0014(6)$
C3	$0.0409(12)$	$0.0269(9)$	$0.0445(12)$	$-0.0048(8)$	$0.0106(10)$	$-0.0014(8)$
C4	$0.0539(15)$	$0.0325(12)$	$0.0774(19)$	$0.0084(10)$	$-0.0061(13)$	$0.0040(11)$
C5	$0.0551(15)$	$0.0598(15)$	$0.0319(11)$	$-0.0207(12)$	$-0.0052(10)$	$0.0029(10)$
C6	$0.0646(16)$	$0.0399(12)$	$0.0477(13)$	$-0.0152(11)$	$0.0249(12)$	$-0.0067(10)$

Geometric parameters ($A,{ }^{\circ}$)

$\mathrm{Sn}-\mathrm{O} 5$	2.0781 (15)	$\mathrm{N}-\mathrm{C} 3$	1.496 (2)
$\mathrm{Sn}-\mathrm{O} 1$	2.0980 (13)	$\mathrm{N}-\mathrm{C} 6$	1.500 (3)
$\mathrm{Sn}-\mathrm{O} 2$	2.1025 (13)	C1-C2	1.557 (2)
$\mathrm{Sn}-\mathrm{Cl} 2$	2.3598 (5)	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9800
$\mathrm{Sn}-\mathrm{Cl1}$	2.3627 (5)	С3-H3B	0.9800
$\mathrm{Sn}-\mathrm{Cl} 3$	2.3926 (5)	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	0.9800
O5-H50B	0.850 (17)	C4-H4A	0.9800
O5-H50A	0.859 (17)	C4-H4B	0.9800
O1-C1	1.285 (2)	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	0.9800
O3-C1	1.219 (2)	C5-H5A	0.9800
O4-C2	1.223 (2)	C5-H5B	0.9800
$\mathrm{O} 2-\mathrm{C} 2$	1.288 (2)	C5-H5C	0.9800
O6-H60B	0.836 (17)	C6-H6A	0.9800
O6-H60A	0.836 (17)	C6-H6B	0.9800
$\mathrm{N}-\mathrm{C} 4$	1.488 (3)	C6-H6C	0.9800
$\mathrm{N}-\mathrm{C} 5$	1.490 (3)		
$\mathrm{O} 5-\mathrm{Sn}-\mathrm{O} 1$	84.67 (6)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	115.63 (15)
$\mathrm{O} 5-\mathrm{Sn}-\mathrm{O} 2$	82.02 (6)	$\mathrm{O} 4-\mathrm{C} 2-\mathrm{O} 2$	126.11 (16)
$\mathrm{O} 1-\mathrm{Sn}-\mathrm{O} 2$	79.11 (5)	O4- $\mathrm{C} 2-\mathrm{C} 1$	118.03 (16)
$\mathrm{O} 5-\mathrm{Sn}-\mathrm{Cl} 2$	91.33 (5)	$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 1$	115.85 (15)
$\mathrm{O} 1-\mathrm{Sn}-\mathrm{Cl} 2$	170.93 (4)	$\mathrm{N}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.5
$\mathrm{O} 2-\mathrm{Sn}-\mathrm{Cl} 2$	92.30 (4)	N-C3-H3B	109.5
$\mathrm{O} 5-\mathrm{Sn}-\mathrm{Cl} 1$	90.68 (4)	H3A-C3-H3B	109.5
$\mathrm{O} 1-\mathrm{Sn}-\mathrm{Cl} 1$	89.50 (4)	$\mathrm{N}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	109.5

$\mathrm{O} 2-\mathrm{Sn}-\mathrm{Cl1}$	$166.95(4)$
$\mathrm{C} 2-\mathrm{Sn}-\mathrm{Cl} 1$	$98.70(2)$
$\mathrm{O} 5-\mathrm{Sn}-\mathrm{Cl} 3$	$170.75(5)$
$\mathrm{O} 1-\mathrm{Sn}-\mathrm{Cl} 3$	$88.93(4)$
$\mathrm{O} 2-\mathrm{Sn}-\mathrm{Cl} 3$	$90.23(4)$
$\mathrm{C} 2-\mathrm{Sn}-\mathrm{Cl} 3$	$94.03(2)$
$\mathrm{C} 11-\mathrm{Sn}-\mathrm{Cl} 3$	$95.95(2)$
$\mathrm{Sn}-\mathrm{O} 5-\mathrm{H} 50 \mathrm{~B}$	$121(2)$
$\mathrm{Sn}-\mathrm{O} 5-\mathrm{H} 50 \mathrm{~A}$	$125(2)$
$\mathrm{H} 50 \mathrm{~B}-\mathrm{O} 5-\mathrm{H} 50 \mathrm{~A}$	$113(3)$
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Sn}$	$114.77(11)$
$\mathrm{C} 2-\mathrm{O} 2-\mathrm{Sn}$	$114.29(11)$
$\mathrm{H} 60 \mathrm{~B}-\mathrm{O} 6-\mathrm{H} 60 \mathrm{~A}$	$107(3)$
$\mathrm{C} 4-\mathrm{N}-\mathrm{C} 5$	$109.4(2)$
$\mathrm{C} 4-\mathrm{N}-\mathrm{C} 3$	$109.18(18)$
$\mathrm{C} 5-\mathrm{N}-\mathrm{C} 3$	$110.24(17)$
$\mathrm{C} 4-\mathrm{N}-\mathrm{C} 6$	$109.2(2)$
$\mathrm{C} 5-\mathrm{N}-\mathrm{C} 6$	$109.25(18)$
$\mathrm{C} 3-\mathrm{N}-\mathrm{C} 6$	$109.49(16)$
$\mathrm{O} 3-\mathrm{C} 1-\mathrm{O} 1$	$124.90(16)$
$\mathrm{O} 3-\mathrm{C} 1-\mathrm{C} 2$	$119.47(16)$

$\mathrm{H} 3 \mathrm{~A}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	109.5
$\mathrm{H} 3 \mathrm{~B}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	109.5
$\mathrm{~N}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	109.5
$\mathrm{~N}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	109.5
$\mathrm{H} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	109.5
$\mathrm{~N}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	109.5
$\mathrm{H} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	109.5
$\mathrm{H} 4 \mathrm{~B}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	109.5
$\mathrm{~N}-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	109.5
$\mathrm{~N}-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B}$	109.5
$\mathrm{H} 5 \mathrm{~A}-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B}$	109.5
$\mathrm{~N}-\mathrm{C} 5-\mathrm{H} 5 \mathrm{C}$	109.5
$\mathrm{H} 5 \mathrm{~A}-\mathrm{C} 5-\mathrm{H} 5 \mathrm{C}$	109.5
$\mathrm{H} 5 \mathrm{~B}-\mathrm{C} 5-\mathrm{H} 5 \mathrm{C}$	109.5
$\mathrm{~N}-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	109.5
$\mathrm{~N}-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~B}$	109.5
$\mathrm{H} 6 \mathrm{~A}-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~B}$	109.5
$\mathrm{~N}-\mathrm{C} 6-\mathrm{H} 6 \mathrm{C}$	109.5
$\mathrm{H} 6 \mathrm{~A}-\mathrm{C} 6-\mathrm{H} 6 \mathrm{C}$	109.5
$\mathrm{H} 6 \mathrm{~B}-\mathrm{C} 6-\mathrm{H} 6 \mathrm{C}$	109.5

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots \mathrm{A}$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O5-H50 $A \cdots \mathrm{O} 6$	0.86 (2)	1.66 (2)	2.511 (2)	173 (3)
$\mathrm{O} 5-\mathrm{H} 50 \mathrm{~B}^{\cdots} \mathrm{O}^{\text {i}}$	0.85 (2)	1.78 (2)	2.6120 (19)	168 (3)
$\mathrm{O} 6-\mathrm{H} 60 B^{\cdots} \mathrm{O}^{\text {iii }}$	0.84 (2)	1.99 (2)	2.792 (2)	160 (3)
O6- $\mathrm{H} 60 A^{\cdots} \mathrm{O}^{\text {iii }}$	0.84 (2)	1.95 (2)	2.7840 (19)	172 (3)
O6-H60B $\cdots 4^{\text {iii }}$	0.84 (2)	2.47 (3)	2.993 (2)	122 (3)
C6-H6B $\cdots \mathrm{O}^{\text {i }}$	0.98	2.54	3.411 (3)	148
C6- $\mathrm{H} 6 A \cdots{ }^{\text {Cl3 }}{ }^{\text {iv }}$	0.98	2.91	3.762 (3)	146

Symmetry codes: (i) $-x+2,-y,-z+1$; (ii) $x-1, y, z$; (iii) $-x+2,-y,-z+2$; (iv) $x, y, z-1$.

