Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hexaaquacobalt(II) 2,2'-[naphthalene-1,8-diylbis(oxy)]diacetate dihydrate

Hui Fang Shi,* Tao Wu, Peng Gang Jiang, Zhi Hao and Miao Miao Zhang
Department of Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, People's Republic of China Correspondence e-mail: shishipiaoliang@126.com

Received 19 December 2012; accepted 7 January 2013

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.031 ; w R$ factor $=0.080 ;$ data-to-parameter ratio $=10.4$.

In the title compound, $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{6}\right) \cdot 2 \mathrm{H}_{2} \mathrm{O}$, the $2,2^{\prime}$ -[naphthalene-1,8-diylbis(oxy)]diacetate dianion L is not coordinated to the $\mathrm{Co}^{\mathrm{II}}$ ion. The asymmetric unit contains half of the L dianion, half of a $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ cation (both molecules being completed by inversion symmetry), and one water molecule. The crystal packing features $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding between the carboxylate groups, the aqua ligands and the hydrate water molecules.

Related literature

In recent years, metal complexes have been synthezised with potential applications in molecular sorption, electrical conductivity, catalysis, magnetism, non-linear optics and molecular sensing, see: James (2003); Murray et al. (2009); Karmakar et al. (2009); Kurmoo (2009); Bradshaw et al. (2005). The 5-carboxymethoxy-naphtalene1-yl(oxy)-acetate ligand can provide a dominant packing feature and it often controls the supramolecular assembly, see: Desiraju (2007). For Cd complexes with different co-ligands, see: Deka et al. (2011); Li et al. (2012) and for Zn complexes, see: Mondal et al. (2008).

Experimental

Crystal data
$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{6}\right) \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$\gamma=64.911(8)^{\circ}$
$M_{r}=477.28$
Triclinic, $P \overline{1}$
$a=6.377(2) \AA$
$b=6.642$ (2) \AA
$c=12.979$ (5) \AA
$\alpha=79.669(10)^{\circ}$
$\beta=79.963(11)^{\circ}$

Data collection

Siemens CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2007)
$T_{\text {min }}=0.731, T_{\max }=1.000$
3126 measured reflections 1678 independent reflections 1605 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.018$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.080$
H atoms treated by a mixture of independent and constrained
$S=1.09$
1678 reflections
161 parameters refinement

12 restraints

Table 1
Selected bond lengths (\AA).

$\mathrm{Co} 1-\mathrm{O} 4$	$2.056(2)$	$\mathrm{Co} 1-\mathrm{O} 6$	$2.093(2)$
$\mathrm{Co} 1-\mathrm{O} 5$	$2.0792(17)$		

Table 2
Hydrogen-bond geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O6-H6C $\cdots \mathrm{O}^{\text {i }}$	0.96 (2)	1.76 (3)	2.723 (3)	174 (3)
O6-H6D . $\mathrm{O}^{7 \mathrm{ii}}$	0.93 (2)	1.83 (3)	2.751 (3)	171 (3)
$\mathrm{O} 5-\mathrm{H} 5 A \cdots \mathrm{O} 2{ }^{\text {iii }}$	0.93 (3)	1.96 (3)	2.850 (3)	159 (2)
$\mathrm{O} 5-\mathrm{H} 5 \mathrm{~B} \cdots \mathrm{O}^{\text {iv }}$	0.94 (3)	1.87 (2)	2.783 (3)	165 (2)
$\mathrm{O} 7-\mathrm{H} 7 A \cdots 3^{\text {v }}$	0.92 (2)	1.82 (3)	2.736 (3)	171 (3)
$\mathrm{O} 7-\mathrm{H} 7 \mathrm{~B} \cdots \mathrm{O}^{\text {vi }}$	0.93 (3)	1.89 (3)	2.780 (3)	158 (2)

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $x, y-1, z-1$; (iii) $x-1, y, z$; (iv)
$x-1, y-1, z ;(\mathrm{v})-x+2,-y+2,-z+1$; (vi) $-x+1,-y+2,-z+1$.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the Fundamental Research Funds for the Central Universities (No. CQDXWL-2012-024).

[^0]
metal-organic compounds

References

Bradshaw, D., Claridge, J. B., Cussen, E. J., Prior, T. J. \& Rosseinsky, M. J. (2005). Acc. Chem. Res. 38, 273-282.

Deka, H., Sarma, R., Kumari, S., Khare, A. \& Baruah, J. B. (2011). J. Solid State Chem. 184, 1726-1734.
Desiraju, G. R. (2007). Angew. Chem. Int. Ed. 46, 8342-8356.
James, S. L. (2003). Chem. Soc. Rev. 32, 276-288.
Karmakar, A., Baruah, J. B. \& Shankar, B. (2009). CrystEngComm, 11, 832840.

Kurmoo, M. (2009). Chem. Soc. Rev. 38, 1353-1379.
Li, L., Song, Y. L., Hou, H. W., Liu, Z. S., Yuan, G. \& Su, Z. M. (2012). Inorg. Chem. Commun. 15, 289-291.
Mondal, P., Karmakar, A. J., Singh, M. W. \& Baruah, J. B. (2008). CrystEngComm, 10, 1159-1550.
Murray, L. J., Dinca, M. \& Long, J. R. (2009). Chem. Soc. Rev. 38, 1294-1314.
Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

supporting information

Acta Cryst. (2013). E69, m103-m104 [doi:10.1107/S1600536813000512]

Hexaaquacobalt(II) 2,2'-[naphthalene-1,8-diylbis(oxy)]diacetate dihydrate Hui Fang Shi, Tao Wu, Peng Gang Jiang, Zhi Hao and Miao Miao Zhang

S1. Comment

In recent years, metal complexes have been synthezised with potential applications in molecular sorption, electrical conductivity, catalysis, magnetism, nonlinear optics, and molecular sensing (James, 2003; Murray et al., 2009; Kurmoo, 2009; Karmakar et al., 2009; Bradshaw et al., 2005). The LH2 ligand (5-carboxymethoxy-naphtalen-1-yloxy)-acetic acid) has received our attention because it can provide a dominant packing feature and it often controls the supramolecular assembly (Desiraju et al., 2007). At present, many of its metal complexes have already been reported, but most are focused on Cd complexes (Deka et al., 2011; Li et al., 2012) and Zn complexes (Li et al., 2012) with different co-ligands such as 2,2-bipyridine or 1,10-phenanthroline (phen). In the present paper, we hydrothermally synthesized a novel coordination complex constructed by $\mathrm{Co}^{\mathrm{II}}, L$ and water molecules and determined its crystal structure (Fig. 1).

The asymmetric unit of the complex consists of a half ligand L, a half $\mathrm{Co}^{\text {II }}$ ion complexed with three water molecules and one additional water molecule. The $\mathrm{Co}^{\mathrm{II}}$ center is octahedrally coordinated by six water molecules. The two carboxylate arms of the $L H 2$ ligand lie in the same plane as the naphthalene ring. The hydrogen atoms of the water molecular and the oxygen atoms which are coordinated by $\mathrm{Co}^{\mathrm{II}}$ are involved in hydrogen bonding with the oxygen atoms of the carboxylate group (Table 2, Fig. 2). In this case a sheet-like structure is formed.

S2. Experimental

The ligand LH2 was synthesized according to the procedure published by Mondal et al. (2008).
A mixture of $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.05 \mathrm{mmol}, 0.015 \mathrm{~g}), L(0.05 \mathrm{mmol}, 0.013 \mathrm{~g})$, water $(1 \mathrm{ml})$ and DMF $(1 \mathrm{ml})$ was heated at 393 K in a Teflon-lined autoclave for three days, followed by slow cooling to room temperature. The resulting pink block crystals were filtered off and washed with distilled water.

S3. Refinement

The H atoms on the ligands were positioned geometrically and refined as riding $\left[\mathrm{C}-\mathrm{H}=0.93 \AA\right.$ and $\left.U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})\right]$. Hydrogen atoms of the water molecules were located in the Fourier difference maps and refined with restraints for the $\mathrm{O}-$ H distances and $\mathrm{H}-\mathrm{O}-\mathrm{H}$ angles.

Figure 1
The molecular structure of (I), with the atomic numbering scheme and displacement ellipsoids at the 50% probability level (H atoms omitted for clarity) [symmetry codes: (A) $-x+1,-y+1,-z+1$, (B) $-x,-y+1,-z$.].

Figure 2

Three dimensional supramolecular architecture constructed by intermolecular hydrogen bonds. The dotted lines indicate the hydrogen bonds.

Hexaaquacobalt(II) 2,2'-[naphthalene-1,8-diylbis(oxy)]diacetate dihydrate

Crystal data

$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{6}\right) \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=477.28$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=6.377(2) \AA$
$b=6.642(2) \AA$
$c=12.979(5) \AA$
$\alpha=79.669(10)^{\circ}$
$\beta=79.963(11)^{\circ}$
$\gamma=64.911(8)^{\circ}$
$V=486.8(3) \AA^{3}$

[^1]
Data collection

Siemens CCD area-detector
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
$T_{\min }=0.731, T_{\text {max }}=1.000$

> 3126 measured reflections
> 1678 independent reflections
> 1605 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.018$
> $\theta_{\max }=25.0^{\circ}, \theta_{\min }=3.4^{\circ}$
> $h=-7 \rightarrow 7$
> $k=-7 \rightarrow 7$
> $l=-15 \rightarrow 15$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.080$
$S=1.09$
1678 reflections
161 parameters
12 restraints
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
O1	$0.7658(2)$	$0.7636(3)$	$0.38143(11)$	$0.0299(3)$
O2	$0.9252(3)$	$0.9376(3)$	$0.20485(12)$	$0.0374(4)$
O3	$1.0787(3)$	$1.1022(3)$	$0.28675(12)$	$0.0331(4)$
C5	$0.5504(3)$	$0.5494(3)$	$0.45495(15)$	$0.0222(4)$
C4	$0.6759(3)$	$0.6729(3)$	$0.47211(15)$	$0.0239(4)$
C3	$0.6996(3)$	$0.6953(3)$	$0.57172(16)$	$0.0275(4)$
H3	0.7826	0.7752	0.5816	0.033^{*}
C2	$0.5966(3)$	$0.5961(4)$	$0.65934(16)$	$0.0282(4)$
H2	0.6115	0.6131	0.7269	0.034^{*}
C1	$0.4761(3)$	$0.4762(3)$	$0.64724(15)$	$0.0257(4)$
H1	0.4113	0.4111	0.7062	0.031^{*}
C6	$0.8919(3)$	$0.8899(3)$	$0.39326(15)$	$0.0254(4)$
H6A	1.0262	0.7948	0.4304	0.031^{*}
H6B	0.7933	1.0118	0.4343	0.031^{*}
C7	$0.9709(3)$	$0.9827(3)$	$0.28607(16)$	$0.0255(4)$

Co1	0.0000	0.5000	0.0000	$0.03054(16)$
O7	$0.5069(3)$	$1.0109(3)$	$0.83972(12)$	$0.0387(4)$
O5	$0.0045(3)$	$0.5054(3)$	$0.15926(12)$	$0.0407(4)$
O6	$0.3582(3)$	$0.3007(3)$	$-0.00989(14)$	$0.0504(5)$
H6C	$0.403(6)$	$0.199(5)$	$0.0532(16)$	$0.075(10)^{*}$
H6D	$0.411(6)$	$0.214(5)$	$-0.0654(18)$	$0.087(12)^{*}$
H5A	$-0.021(6)$	$0.630(4)$	$0.191(2)$	$0.076(10)^{*}$
H5B	$0.013(5)$	$0.385(4)$	$0.211(2)$	$0.067(9)^{*}$
H7A	$0.638(3)$	$0.982(5)$	$0.7915(19)$	$0.062(9)^{*}$
H7B	$0.380(4)$	$1.029(6)$	$0.807(2)$	$0.085(11)^{*}$
O4	$0.0880(5)$	$0.7707(3)$	$-0.03180(15)$	$0.0629(6)$
H4A	0.2060	0.7419	-0.0738	0.094^{*}
H4B	$-0.043(5)$	$0.897(9)$	$-0.061(4)$	$0.27(4)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0387(8)$	$0.0372(9)$	$0.0246(7)$	$-0.0275(7)$	$-0.0017(6)$	$-0.0010(6)$
O2	$0.0532(9)$	$0.0444(10)$	$0.0277(8)$	$-0.0338(8)$	$-0.0041(7)$	$-0.0010(7)$
O3	$0.0386(8)$	$0.0346(9)$	$0.0351(8)$	$-0.0253(7)$	$-0.0006(6)$	$-0.0033(6)$
C5	$0.0206(8)$	$0.0211(10)$	$0.0238(9)$	$-0.0079(7)$	$-0.0025(7)$	$-0.0012(7)$
C4	$0.0240(9)$	$0.0241(10)$	$0.0250(10)$	$-0.0128(8)$	$-0.0005(7)$	$-0.0005(8)$
C3	$0.0293(10)$	$0.0295(11)$	$0.0299(11)$	$-0.0170(8)$	$-0.0041(8)$	$-0.0044(8)$
C2	$0.0337(10)$	$0.0323(11)$	$0.0223(10)$	$-0.0157(9)$	$-0.0039(8)$	$-0.0049(8)$
C1	$0.0270(9)$	$0.0288(11)$	$0.0229(10)$	$-0.0143(8)$	$-0.0006(7)$	$-0.0014(8)$
C6	$0.0285(9)$	$0.0254(10)$	$0.0274(10)$	$-0.0160(8)$	$-0.0027(8)$	$-0.0027(8)$
C7	$0.0260(9)$	$0.0231(10)$	$0.0284(11)$	$-0.0117(8)$	$-0.0013(8)$	$-0.0023(8)$
Co1	$0.0457(3)$	$0.0224(2)$	$0.0229(2)$	$-0.01429(18)$	$-0.00138(17)$	$-0.00230(16)$
O7	$0.0332(8)$	$0.0466(10)$	$0.0329(9)$	$-0.0127(7)$	$-0.0026(7)$	$-0.0068(7)$
O5	$0.0655(11)$	$0.0304(9)$	$0.0257(8)$	$-0.0194(8)$	$-0.0046(7)$	$-0.0026(7)$
O6	$0.0605(11)$	$0.0451(11)$	$0.0359(10)$	$-0.0118(9)$	$-0.0026(8)$	$-0.0085(8)$
O4	$0.1209(18)$	$0.0469(12)$	$0.0407(10)$	$-0.0550(13)$	$-0.0101(11)$	$0.0015(9)$

Geometric parameters $\left(\stackrel{A}{A},{ }^{\circ}\right)$

O1-C4	1.371 (2)	C6-H6B	0.9700
O1-C6	1.427 (2)	Col-O4	2.056 (2)
O2-C7	1.257 (3)	$\mathrm{Co} 1-\mathrm{O} 4{ }^{\text {ii }}$	2.056 (2)
O3-C7	1.253 (3)	Col-O5 ${ }^{\text {ii }}$	2.0792 (17)
C5-C1 ${ }^{\text {i }}$	1.414 (3)	Col-O5	2.0792 (17)
C5-C5 ${ }^{\text {i }}$	1.425 (4)	Col-O6	2.093 (2)
C5-C4	1.431 (3)	Col-O6 ${ }^{\text {ii }}$	2.093 (2)
C4-C3	1.368 (3)	O7-H7A	0.921 (17)
C3-C2	1.413 (3)	O7-H7B	0.932 (17)
C3-H3	0.9300	O5-H5A	0.931 (17)
C2-C1	1.362 (3)	O5-H5B	0.933 (17)
C2-H2	0.9300	O6-H6C	0.962 (17)
$\mathrm{C} 1-\mathrm{C} 5^{\text {i }}$	1.414 (3)	O6-H6D	0.929 (18)

C1-H1	0.9300	O4-H4A	0.8200
C6-C7	1.510 (3)	O4-H4B	0.97 (2)
C6-H6A	0.9700		
C4-O1-C6	116.91 (15)	$\mathrm{O} 4-\mathrm{Co} 1-\mathrm{O} 4{ }^{\text {ii }}$	180.0
C1-C5-C5 ${ }^{\text {i }}$	119.8 (2)	$\mathrm{O} 4-\mathrm{Co} 1-\mathrm{O}^{\text {ii }}$	91.63 (7)
C1- ${ }^{\text {i }} 5$ - C 4	122.26 (18)	$\mathrm{O} 4{ }^{\text {iii }}-\mathrm{Co} 1-\mathrm{O} 5^{\text {ii }}$	88.37 (7)
C5- $\mathrm{C} 5-\mathrm{C} 4$	117.9 (2)	$\mathrm{O} 4-\mathrm{Co} 1-\mathrm{O} 5$	88.37 (7)
C3-C4-O1	124.53 (18)	$\mathrm{O} 4{ }^{\text {iii }}-\mathrm{Co} 1-\mathrm{O} 5$	91.63 (7)
C3-C4-C5	121.27 (18)	$\mathrm{O} 5{ }^{\text {iii }} \mathrm{Co}-\mathrm{C} 5$	180.00 (11)
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 5$	114.19 (17)	$\mathrm{O} 4-\mathrm{Co1-O6}$	86.53 (10)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	119.38 (19)	$\mathrm{O} 4{ }^{\text {iii }} \mathrm{Co}-\mathrm{Co}$	93.47 (10)
C4-C3-H3	120.3	$\mathrm{O} 5^{\mathrm{ii}}-\mathrm{Co} 1-\mathrm{O} 6$	91.34 (7)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	120.3	$\mathrm{O} 5-\mathrm{Co1-O6}$	88.66 (7)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	121.62 (18)	$\mathrm{O} 4-\mathrm{Co} 1-\mathrm{O}^{\text {ii }}$	93.47 (10)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	119.2	$\mathrm{O} 4{ }^{\text {iii }}$ - $\mathrm{Co} 1-\mathrm{O}^{\text {ii }}$	86.53 (10)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	119.2	$\mathrm{O} 5{ }^{\mathrm{ii}}-\mathrm{Co} 1-\mathrm{O}^{\text {ii }}$	88.66 (7)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 5{ }^{\text {i }}$	119.98 (18)	O5-Col-O6 ${ }^{\text {ii }}$	91.34 (7)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$	120.0	O6-Col- $\mathrm{O}^{\text {6ii }}$	180.00 (7)
$\mathrm{C} 5-\mathrm{C} 1-\mathrm{H} 1$	120.0	H7A-O7-H7B	110 (2)
O1-C6-C7	109.63 (16)	$\mathrm{Co1-O5}-\mathrm{H} 5 \mathrm{~A}$	126.3 (19)
O1-C6-H6A	109.7	$\mathrm{Co1-O5-H5B}$	123.8 (18)
C7-C6-H6A	109.7	H5A-O5-H5B	109 (2)
O1-C6-H6B	109.7	Col-O6-H6C	112.4 (19)
C7-C6-H6B	109.7	Col-O6-H6D	113 (2)
H6A-C6-H6B	108.2	H6C-O6-H6D	107 (2)
$\mathrm{O} 3-\mathrm{C} 7-\mathrm{O} 2$	125.29 (19)	Col-O4-H4A	109.5
O3-C7-C6	115.32 (17)	$\mathrm{Co} 1-\mathrm{O} 4-\mathrm{H} 4 \mathrm{~B}$	107 (4)
O2-C7-C6	119.39 (18)	H4A-O4-H4B	111.3

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $-x,-y+1,-z$.

Hydrogen-bond geometry ($\hat{A},{ }^{\circ}$)

$\underline{D-H \cdots A}$	D-H	$\mathrm{H} \cdots \mathrm{A}$	$D^{\cdots} A$	$D-\mathrm{H} \cdots A$
O6-H6C $\cdots{ }^{\text {O }}{ }^{\text {i }}$	0.96 (2)	1.76 (3)	2.723 (3)	174 (3)
O6-H6D \cdots O7iii	0.93 (2)	1.83 (3)	2.751 (3)	171 (3)
O5-H5A $\cdots \mathrm{O}^{\text {iv }}$	0.93 (3)	1.96 (3)	2.850 (3)	159 (2)
$\mathrm{O} 5-\mathrm{H} 5 B \cdots \mathrm{O} 3^{v}$	0.94 (3)	1.87 (2)	2.783 (3)	165 (2)
O7-H7A $\cdots 3^{\text {vi }}$	0.92 (2)	1.82 (3)	2.736 (3)	171 (3)
$\mathrm{O} 7-\mathrm{H} 7 B \cdots \mathrm{O} 2^{\text {vii }}$	0.93 (3)	1.89 (3)	2.780 (3)	158 (2)

[^2]
[^0]: Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2185).

[^1]: $Z=1$
 $F(000)=249$
 $D_{\mathrm{x}}=1.628 \mathrm{Mg} \mathrm{m}^{-3}$
 Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
 Cell parameters from 1414 reflections
 $\theta=3.2-27.5^{\circ}$
 $\mu=0.95 \mathrm{~mm}^{-1}$
 $T=293 \mathrm{~K}$
 Block, pink
 $0.30 \times 0.28 \times 0.25 \mathrm{~mm}$

[^2]: Symmetry codes: (i) $-x+1,-y+1,-z+1$; (iii) $x, y-1, z-1$; (iv) $x-1, y, z$; (v) $x-1, y-1, z$; (vi) $-x+2,-y+2,-z+1$; (vii) $-x+1,-y+2,-z+1$.

