organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(E)-2-[(Furan-2-yl)methylidene]-7methyl-2,3,4,9-tetrahydro-1H-carbazol-1-one

A. Thiruvalluvar,^a* R. Archana,^a E. Yamuna,^b K. J. Rajendra Prasad,^b R. J. Butcher,^c Sushil K. Gupta^d and Sema Öztürk Yildirim^{c,e}

^aPostgraduate Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamilnadu, India, ^bDepartment of Chemistry, Bharathiar University, Coimbatore 641 046, Tamilnadu, India, ^cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, ^dSchool of Studies in Chemistry, Jiwaji University, Gwalior 474 011, MP, India, and ^eFaculty of Sciences, Department of Physics, Ercives University, 38039 Kayseri, Turkev

Correspondence e-mail: thiruvalluvar.a@gmail.com

Received 17 December 2012; accepted 18 December 2012

Key indicators: single-crystal X-ray study; T = 123 K; mean σ (C–C) = 0.002 Å; R factor = 0.047; wR factor = 0.132; data-to-parameter ratio = 13.7.

In the title molecule, $C_{18}H_{15}NO_2$, the atoms in the carbazole unit deviate from planarity [maximum deviation from mean plane = 0.1317(12) Å]. The pyrrole ring makes dihedral angles of 1.01 (8) and 18.56 $(10)^{\circ}$ with the benzene and furan rings, respectively. The cyclohexene ring adopts a half-chair conformation. In the crystal, pairs of N-H···O hydrogen bonds form an $R_2^2(10)$ ring. Molecules are further linked by $C-H\cdots O$ and $C-H\cdots \pi$ interactions, forming a threedimensional network.

Related literature

For a related structure and the synthesis and applications of carbazole derivatives, see: Archana et al. (2010). For ring conformations, see: Cremer & Pople (1975). For hydrogenbond motifs, see: Bernstein et al. (1995).

Experimental

Crystal data C18H15NO2

 $M_r = 277.31$

Triclinic, $P\overline{1}$	
a = 6.3925 (3) Å	
b = 7.9880 (4) Å	
c = 13.8629 (8) Å	
$\alpha = 83.151 \ (5)^{\circ}$	
$\beta = 81.649 \ (4)^{\circ}$	
$\gamma = 78.921 \ (4)^{\circ}$	

Data collection

Agilent Xcalibur Ruby Gemini	4371 measured reflections
diffractometer	2724 independent reflections
Absorption correction: multi-scan	2382 reflections with $I > 2\sigma(I)$
(CrysAlis PRO; Agilent, 2012)	$R_{\rm int} = 0.021$
$T_{\min} = 0.816, \ T_{\max} = 1.000$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.047$	H atoms treated by a mixture of
$wR(F^2) = 0.132$	independent and constrained
S = 1.05	refinement
2724 reflections	$\Delta \rho_{\rm max} = 0.41 \text{ e } \text{\AA}^{-3}$
199 parameters	$\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$

V = 684.28 (6) Å³

Cu Ka radiation

 $0.34 \times 0.26 \times 0.12 \text{ mm}$

 $\mu = 0.70 \text{ mm}^{-1}$ T = 123 K

7 - 2

Table 1 Hydrogen-bond geometry (Å, °).

Cg2 and Cg1 are the centroids of the pyrrole (N9/C9A/C4A/C4B/C8A) and furan (O11/C12-C15)rings, respectively.

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N9-H9\cdots O1^{ii} \\ C14-H14\cdots O1^{ii} \\ C4-H4B\cdots Cg2^{iii} \\ C17-H17B\cdots Cg1^{iii}$	0.867 (18) 0.95 0.99 0.98	1.961 (18) 2.55 2.60 2.89	2.8069 (17) 3.250 (2) 3.5176 (16) 3.807 (2)	164.9 (17) 130 154 156
Summation and an (i)	. 2 1		(:::) 1	10 -

Symmetry codes: (i) -x + 2, -y + 1, -z; (ii) x - 1, y, z; (iii) -x + 1, -y + 2, -z.

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 and PLATON.

RJB acknowledges the NSF-MRI program (grant No. CHE0619278) for funds to purchase the X-ray diffractometer. SKG wishes to thank the USIEF for the award of a Fulbright-Nehru Senior Fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5183).

References

Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England. Archana, R., Yamuna, E., Rajendra Prasad, K. J., Thiruvalluvar, A. & Butcher, R. J. (2010). Acta Cryst. E66, 03145.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2013). E69, o150 [doi:10.1107/S1600536812051203]

(E)-2-[(Furan-2-yl)methylidene]-7-methyl-2,3,4,9-tetrahydro-1H-carbazol-1-one

A. Thiruvalluvar, R. Archana, E. Yamuna, K. J. Rajendra Prasad, R. J. Butcher, Sushil K. Gupta and Sema Öztürk Yildirim

S1. Comment

As part of our research (Archana *et al.*, 2010), we have synthesized the title compound (I), and report its crystal structure here.

In the title molecule (Fig. 1), $C_{18}H_{15}NO_2$, the carbazole unit is not planar. Maximum deviation from carbazole mean plane = -0.1317 (12) Å for atom C4. All bond lengths and angles in (I) are normal and comparable with those observed in the related (*E*)-2-(furan-2-ylmethylidene)-8-methyl-2,3,4,9-tetrahydro-1*H*- carbazol-1-one (Archana *et al.*, 2010). The pyrrole ring makes dihedral angles of 1.01 (8) and 18.56 (10)° with the benzene and the furan rings, respectively. The cyclohexene ring adopts a half-chair conformation. The puckering parameters (Cremer & Pople, 1975) are q2 = 0.1372 (15) Å, q3 = 0.1060 (15) Å, Q = 0.1734 (15) Å, $\theta = 52.3$ (5)° and $\varphi = 143.0$ (6)°. Intermolecular N9—H9…O1 hydrogen bonds form a $R^2_2(10)$ (Bernstein *et al.*, 1995) ring motif in the crystal structure (Table 1, Fig. 2). Further, molecules are linked by intermolecular C14—H14…O1, C4—H4B… π , involving the pyrrole (N9/C9A/C4A/C4B/C8A) ring, and C17—H17B… π , involving the furan (O11/C12—C15) ring, interaction to form a three-dimensional architecture (Table 1, Figs 2 & 3).

S2. Experimental

An equimolar mixture of 7-methyl-2,3,4,9-tetrahydro-1*H*-carbazol-1-one (0.995 g, 0.005 mol) and furan-2-carbaldehyde (0.414 g, 0.005 mol) was treated with 25 ml of a 5% ethanolic potassium hydroxide solution and stirred for 6 h at room temperature. The product precipitated as a yellow crystalline mass, was filtered off and washed with 50% ethanol. A further crop of condensation product was obtained on neutralization with acetic acid and dilution with water. The product was recrystallized from methanol to yield 95% (1.315 g) of the title compound. The pure compound was recrystallized from EtOAc and ethanol.

S3. Refinement

The H atoms bonded to N9 and C10 were located in a difference Fourier map and refined freely; N9—H9 = 0.867 (18) Å and C10—H10 = 0.964 (19) Å. Other H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95–0.99 Å, and with $U_{iso}(H) = 1.2-1.5U_{eq}$ (parent atom).

Figure 1

The molecular structure of the title compound, with displacement ellipsoids drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radius.

Figure 2

The partial packing of the title compound, viewed approximately down the b axis. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.

Figure 3

Part of the crystal structure of compound, showing the formation of C—H $\cdots\pi$ interactions. Symmetry code iii: 1 - *x*, 2 - *y*, - *z*

(E)-2-[(Furan-2-yl)methylidene]-7-methyl-2,3,4,9- tetrahydro-1H-carbazol-1-one

Crystal data

C₁₈H₁₅NO₂ $M_r = 277.31$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 6.3925 (3) Å b = 7.9880 (4) Å c = 13.8629 (8) Å a = 83.151 (5)° $\beta = 81.649$ (4)° $\gamma = 78.921$ (4)° V = 684.28 (6) Å³

Data collection

Agilent Xcalibur Ruby Gemini diffractometer Radiation source: Enhance (Cu) X-ray Source Graphite monochromator Detector resolution: 10.5081 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*CrysAlis PRO*; Agilent, 2012) $T_{\min} = 0.816, T_{\max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.047$ $wR(F^2) = 0.132$ S = 1.052724 reflections 199 parameters 0 restraints Z = 2 F(000) = 292 $D_x = 1.346 \text{ Mg m}^{-3}$ Melting point: 402 K Cu Ka radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 2052 reflections $\theta = 5.7-75.5^{\circ}$ $\mu = 0.70 \text{ mm}^{-1}$ T = 123 KPrism, colourless $0.34 \times 0.26 \times 0.12 \text{ mm}$

4371 measured reflections 2724 independent reflections 2382 reflections with $I > 2\sigma(I)$ $R_{int} = 0.021$ $\theta_{max} = 75.7^{\circ}, \theta_{min} = 5.7^{\circ}$ $h = -7 \rightarrow 7$ $k = -8 \rightarrow 9$ $l = -17 \rightarrow 17$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement

 $w = 1/[\sigma^2(F_o^2) + (0.0769P)^2 + 0.1562P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} = 0.001$ $\begin{array}{l} \Delta\rho_{\rm max}=0.41~{\rm e}~{\rm \AA}^{-3}\\ \Delta\rho_{\rm min}=-0.29~{\rm e}~{\rm \AA}^{-3} \end{array}$

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A	^²)
--	----------------

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.82745 (16)	0.54561 (14)	-0.10721 (8)	0.0321 (3)	
011	0.4389 (2)	0.62235 (18)	-0.38788 (8)	0.0462 (4)	
N9	0.77421 (19)	0.66480 (16)	0.08384 (9)	0.0272 (3)	
C1	0.6548 (2)	0.63419 (18)	-0.07581 (10)	0.0256 (4)	
C2	0.4695 (2)	0.68389 (18)	-0.13316 (10)	0.0259 (4)	
C3	0.2549 (2)	0.77564 (19)	-0.08760 (11)	0.0296 (4)	
C4	0.2491 (2)	0.86429 (18)	0.00542 (11)	0.0275 (4)	
C4A	0.4362 (2)	0.79645 (18)	0.05978 (10)	0.0258 (4)	
C4B	0.4742 (2)	0.82727 (18)	0.15417 (10)	0.0279 (4)	
C5	0.3503 (3)	0.9176 (2)	0.23067 (12)	0.0346 (5)	
C6	0.4421 (3)	0.9234 (2)	0.31372 (12)	0.0404 (5)	
C7	0.6555 (3)	0.8434 (2)	0.32410 (12)	0.0375 (5)	
C8	0.7788 (3)	0.7521 (2)	0.25079 (11)	0.0328 (5)	
C8A	0.6863 (2)	0.74409 (18)	0.16619 (10)	0.0285 (4)	
C9A	0.6217 (2)	0.69588 (17)	0.01966 (10)	0.0252 (4)	
C10	0.5039 (2)	0.63565 (19)	-0.22508 (11)	0.0298 (4)	
C12	0.2715 (3)	0.6422 (3)	-0.44181 (13)	0.0492 (6)	
C13	0.0838 (3)	0.6875 (2)	-0.38630 (13)	0.0433 (5)	
C14	0.1333 (3)	0.6999 (2)	-0.29094 (12)	0.0366 (5)	
C15	0.3511 (3)	0.6590 (2)	-0.29413 (11)	0.0317 (4)	
C17	0.7481 (3)	0.8590 (3)	0.41581 (13)	0.0476 (6)	
H3A	0.19484	0.86329	-0.13780	0.0355*	
H3B	0.15695	0.69133	-0.07227	0.0355*	
H4A	0.11559	0.85019	0.04927	0.0329*	
H4B	0.24433	0.98848	-0.01290	0.0329*	
H5	0.20662	0.97310	0.22495	0.0415*	
H6	0.35921	0.98317	0.36572	0.0485*	
H8	0.92199	0.69650	0.25754	0.0394*	
H9	0.900 (3)	0.600(2)	0.0795 (13)	0.033 (5)*	
H10	0.644 (3)	0.575 (2)	-0.2485 (14)	0.038 (5)*	
H12	0.28626	0.62615	-0.50943	0.0590*	
H13	-0.05517	0.70746	-0.40667	0.0520*	
H14	0.03333	0.73078	-0.23547	0.0439*	

supporting information

H17A	0.89806	0.80012	0.41094	0.0714*
H17B	0.74130	0.98028	0.42362	0.0714*
H17C	0.66510	0.80661	0.47255	0.0714*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0224 (5)	0.0448 (6)	0.0290 (5)	-0.0035 (4)	-0.0033 (4)	-0.0073 (4)
011	0.0401 (7)	0.0717 (9)	0.0272 (6)	-0.0045 (6)	-0.0073 (5)	-0.0117 (5)
N9	0.0233 (6)	0.0337 (6)	0.0261 (6)	-0.0056 (5)	-0.0062 (5)	-0.0041 (5)
C1	0.0221 (7)	0.0301 (7)	0.0259 (7)	-0.0081 (5)	-0.0029 (5)	-0.0020 (5)
C2	0.0240 (7)	0.0291 (7)	0.0260 (7)	-0.0080 (5)	-0.0046 (5)	-0.0007 (5)
C3	0.0254 (7)	0.0345 (7)	0.0297 (7)	-0.0035 (5)	-0.0080 (5)	-0.0040 (6)
C4	0.0235 (6)	0.0297 (7)	0.0294 (7)	-0.0044 (5)	-0.0042 (5)	-0.0033 (5)
C4A	0.0255 (7)	0.0268 (7)	0.0260 (7)	-0.0080 (5)	-0.0029 (5)	-0.0017 (5)
C4B	0.0297 (7)	0.0289 (7)	0.0265 (7)	-0.0079 (5)	-0.0045 (5)	-0.0028 (5)
C5	0.0368 (8)	0.0348 (8)	0.0312 (8)	-0.0035 (6)	-0.0030 (6)	-0.0056 (6)
C6	0.0522 (10)	0.0408 (9)	0.0282 (8)	-0.0065 (7)	-0.0021 (7)	-0.0092 (6)
C7	0.0505 (10)	0.0384 (8)	0.0271 (8)	-0.0136 (7)	-0.0087 (7)	-0.0033 (6)
C8	0.0373 (8)	0.0356 (8)	0.0281 (8)	-0.0094 (6)	-0.0102 (6)	-0.0014 (6)
C8A	0.0317 (7)	0.0298 (7)	0.0260 (7)	-0.0097 (6)	-0.0044 (5)	-0.0025 (5)
C9A	0.0225 (6)	0.0286 (7)	0.0261 (7)	-0.0076 (5)	-0.0046 (5)	-0.0018 (5)
C10	0.0278 (7)	0.0349 (7)	0.0276 (7)	-0.0079 (6)	-0.0043 (5)	-0.0022 (6)
C12	0.0519 (11)	0.0675 (12)	0.0307 (8)	-0.0055 (9)	-0.0171 (8)	-0.0089 (8)
C13	0.0437 (9)	0.0556 (10)	0.0337 (9)	-0.0087 (8)	-0.0169 (7)	-0.0019 (7)
C14	0.0360 (8)	0.0463 (9)	0.0289 (8)	-0.0081 (7)	-0.0099 (6)	-0.0014 (6)
C15	0.0364 (8)	0.0362 (8)	0.0236 (7)	-0.0088 (6)	-0.0047 (6)	-0.0022 (6)
C17	0.0567 (11)	0.0582 (11)	0.0317 (9)	-0.0111 (9)	-0.0140 (8)	-0.0078 (8)

Geometric parameters (Å, °)

01—C1	1.2418 (17)	C8—C8A	1.401 (2)
O11—C12	1.367 (2)	C10—C15	1.437 (2)
O11—C15	1.3804 (19)	C12—C13	1.340 (3)
N9—C8A	1.3673 (19)	C13—C14	1.422 (2)
N9—C9A	1.3820 (18)	C14—C15	1.363 (3)
N9—H9	0.867 (18)	С3—НЗА	0.9900
C1—C2	1.4867 (19)	С3—Н3В	0.9900
C1—C9A	1.4399 (19)	C4—H4A	0.9900
C2—C3	1.513 (2)	C4—H4B	0.9900
C2-C10	1.351 (2)	С5—Н5	0.9500
C3—C4	1.536 (2)	С6—Н6	0.9500
C4—C4A	1.4857 (19)	C8—H8	0.9500
C4A—C9A	1.3819 (19)	C10—H10	0.964 (19)
C4A—C4B	1.4227 (19)	C12—H12	0.9500
C4B—C5	1.411 (2)	C13—H13	0.9500
C4B—C8A	1.4144 (19)	C14—H14	0.9500
C5—C6	1.375 (2)	C17—H17A	0.9800

C6—C7	1.411 (3)	C17—H17B	0.9800
	1.506 (3)	С17—Н17С	0.9800
C7—C8	1.382 (2)		
C12—O11—C15	106.77 (14)	C10—C15—C14	136.41 (15)
C8A—N9—C9A	107.83 (12)	O11—C15—C10	114.65 (15)
С9А—N9—H9	129.7 (12)	O11—C15—C14	108.81 (14)
C8A—N9—H9	122.2 (12)	С2—С3—НЗА	108.00
O1—C1—C9A	121.59 (12)	С2—С3—Н3В	108.00
O1—C1—C2	122.91 (13)	C4—C3—H3A	108.00
C2—C1—C9A	115.50 (12)	C4—C3—H3B	108.00
C3—C2—C10	123.32 (12)	НЗА—СЗ—НЗВ	107.00
C1—C2—C3	120.81 (12)	C3—C4—H4A	109.00
C1—C2—C10	115.81 (12)	C3—C4—H4B	109.00
C2—C3—C4	118.19 (11)	C4A—C4—H4A	109.00
C3—C4—C4A	113.51 (12)	C4A—C4—H4B	109.00
C4B—C4A—C9A	106.39 (12)	H4A—C4—H4B	108.00
C4—C4A—C4B	130.26 (13)	C4B—C5—H5	121.00
C4—C4A—C9A	123.17 (13)	С6—С5—Н5	121.00
C5—C4B—C8A	118.99 (13)	С5—С6—Н6	119.00
C4A—C4B—C5	134.20 (14)	С7—С6—Н6	119.00
C4A—C4B—C8A	106.80 (12)	С7—С8—Н8	121.00
C4B—C5—C6	118.52 (16)	C8A—C8—H8	121.00
C5—C6—C7	122.07 (16)	C2-C10-H10	118.6 (12)
C6—C7—C17	119.33 (15)	С15—С10—Н10	113.9 (11)
C6—C7—C8	120.43 (16)	O11—C12—H12	125.00
C8—C7—C17	120.25 (17)	C13—C12—H12	125.00
C7—C8—C8A	117.99 (16)	С12—С13—Н13	127.00
N9—C8A—C8	129.24 (13)	C14—C13—H13	127.00
C4B—C8A—C8	121.97 (13)	C13—C14—H14	126.00
N9—C8A—C4B	108.78 (12)	C15—C14—H14	126.00
C1—C9A—C4A	125.39 (12)	C7—C17—H17A	109.00
N9—C9A—C1	124.41 (12)	C7—C17—H17B	109.00
N9—C9A—C4A	110.20 (12)	С7—С17—Н17С	109.00
C2-C10-C15	127.43 (13)	H17A—C17—H17B	110.00
O11—C12—C13	110.73 (16)	H17A—C17—H17C	109.00
C12—C13—C14	106.59 (17)	H17B—C17—H17C	109.00
C13—C14—C15	107.09 (15)		
C15 011 C12 C12	0.7(2)		0.92(1())
C15 - 011 - C12 - C13	-0.7(2)	C9A - C4A - C4B - C8A	0.82 (16)
	176.78 (15)	C4—C4A—C9A—N9	174.68 (13)
C12—O11—C15—C14	0.2 (2)	C4—C4A—C9A—C1	-4.3 (2)
C9A—N9—C8A—C4B	-0.07 (16)	C4B—C4A—C9A—N9	-0.89 (16)
C9A—N9—C8A—C8	-178.77 (15)	C4B—C4A—C9A—C1	-179.83 (13)
C8A—N9—C9A—C1	179.56 (13)	C4A—C4B—C5—C6	-178.90 (16)
C8A—N9—C9A—C4A	0.61 (16)	C8A—C4B—C5—C6	1.0 (2)
01	173.38 (13)	C4A—C4B—C8A—N9	-0.47 (16)
O1—C1—C2—C10	-4.0 (2)	C4A—C4B—C8A—C8	178.34 (14)

O1C1C9AC4A $179.22 (14)$ $C5C6C7C8$ $C2C1C9AN9$ $-179.53 (13)$ $C5C6C7C1'$ $C2C1C9AC4A$ $-0.7 (2)$ $C6C7C8C8$ $C1C2C3C4$ $18.4 (2)$ $C17C7C8C8$ $C1C2C3C4$ $-164.48 (14)$ $C7C8C8C8$ $C1C2C10C15$ $176.62 (14)$ $C7C8C8AC10C15C8C8AC10C15$	A $0.9 (2)$ $3A$ $-178.87 (16)$ 19 $179.15 (15)$ $4B$ $0.6 (2)$ 011 $169.91 (15)$ 014 $-14.9 (3)$ -0.14 $0.8 (2)$ -0.15 $-0.6 (2)$ -0.11 $0.24 (18)$ -0.10 $-175.19 (18)$
--	---

Hydrogen-bond geometry (Å, °)

Cg2 and Cg1 are the centroids of the pyrrole (N9/C9A/C4A/C4B/C8A) and furan (O11/C12-C15)rings, respectively.

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N9—H9…O1 ⁱ	0.867 (18)	1.961 (18)	2.8069 (17)	164.9 (17)
C14—H14…O1 ⁱⁱ	0.95	2.55	3.250 (2)	130
C4—H4 B ···Cg2 ⁱⁱⁱ	0.99	2.60	3.5176 (16)	154
C17—H17 B ···Cg1 ⁱⁱⁱ	0.98	2.89	3.807 (2)	156

Symmetry codes: (i) -*x*+2, -*y*+1, -*z*; (ii) *x*-1, *y*, *z*; (iii) -*x*+1, -*y*+2, -*z*.