

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(4'-Ethynyl-2,2':6',2"-terpyridine)-(2,2':6',2"-terpyridine)ruthenium(II) bis(hexafluoridophosphate) acetonitrile disolvate

Weizhong Chen, Francisca N. Rein, Brian L. Scott and Reginaldo C. Rocha*

Los Alamos National Laboratory, Los Alamos, NM 87545, USA Correspondence e-mail: rcrocha@lanl.gov

Received 6 December 2012; accepted 18 December 2012

Key indicators: single-crystal X-ray study; T = 140 K; mean σ (C–C) = 0.013 Å; disorder in solvent or counterion; R factor = 0.084; wR factor = 0.228; data-to-parameter ratio = 12.6.

The title heteroleptic bis-terpyridine complex. $[Ru(C_{15}H_{11}N_3)(C_{17}H_{11}N_3)](PF_6)_2 \cdot 2CH_3CN$, crystallized from an acetonitrile solution as a salt containing two hexafluoridophosphate counter-ions and two acetonitrile solvent molecules. The Ru^{II} atom has a distorted octahedral geometry due to the restricted bite angle $[157.7 (3)^{\circ}]$ of the two merarranged N,N',N''-tridendate ligands, viz. 2,2':6',2''-terpyridine (tpy) and 4'-ethynyl-2,2':6',2''-terpyridine (tpy'), which are essentially perpendicular to each other, with a dihedral angle of 87.75 (12)° between their terpyridyl planes. The rod-like acetylene group lies in the same plane as its adjacent terpyridyl moiety, with a maximum deviation of only 0.071 (11) Å from coplanarity with the pyridine rings. The mean Ru-N bond length involving the outer N atoms trans to each other is 2.069 (6) Å at tpy and 2.070 (6) Å at tpy'. The Ru-N bond length involving the central N atom is 1.964 (6) Å at tpy and 1.967 (6) Å at tpy'. Two of the three counter anions were refined as half-occupied.

Related literature

For the crystal structure of a Ru^{II} -terpyridine complex containing the {Ru(tpy-C=C)} fragment, see: Ruben *et al.* (2008). For a comparative discussion, see the *Comment* section in the Supplementary materials. For bond lengths and angles in related tpy complexes, see: Lashgari *et al.* (1999); Scudder *et al.* (2005). For the preparation of the starting materials, see: Benniston *et al.* (2005); Grosshenny *et al.* (1997); Sullivan *et al.* (1980); Ziessel *et al.* (2004). For general properties of this complex and related systems, see: Grosshenny *et al.* (1996); Hammarström & Johansson (2010); Ruther *et al.* (2011); Ziessel *et al.* (2004).

Experimental

Crystal data

$[Ru(C_{15}H_{11}N_3)(C_{17}H_{11}N_3)](PF_6)_2$.	
$2C_2H_3N$	
$M_r = 963.67$	
Triclinic, P1	
a = 8.704 (2) Å	
b = 8.860 (2) Å	
c = 27.277 (7) Å	
$\alpha = 96.876 \ (4)^{\circ}$	

Data collection

```
Bruker D8 with APEXII CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
T_{min} = 0.947, T_{max} = 0.968
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.084$	
$wR(F^2) = 0.228$	
S = 1.25	
7496 reflections	

 $V = 2073.9 (10) Å^{3}$ Z = 2Mo K\alpha radiation $\mu = 0.55 \text{ mm}^{-1}$ T = 140 K $0.10 \times 0.08 \times 0.06 \text{ mm}$

 $\beta = 95.619 \ (3)^{\circ}$ $\gamma = 93.023 \ (3)^{\circ}$

19870 measured reflections 7496 independent reflections 5137 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.081$

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT-Plus* (Bruker, 2007); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Support by the US Department of Energy through the Laboratory Directed Research and Development (LDRD) program at LANL is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5287).

References

- Benniston, A. C., Harriman, A., Li, P. & Sams, C. A. (2005). J. Am. Chem. Soc. 127, 2553–2564.
- Bruker (2007). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Grosshenny, V., Harriman, A., Gisselbrecht, J.-P. & Ziessel, R. (1996). J. Am. Chem. Soc. 118, 10315–10316.
- Grosshenny, V., Romero, F. M. & Ziessel, R. (1997). J. Org. Chem. 62, 1491– 1500.
- Hammarström, L. & Johansson, O. (2010). Coord. Chem. Rev. 254, 2546-2559.

Lashgari, K., Kritikos, M., Norrestam, R. & Norrby, T. (1999). Acta Cryst. C55, 64–67.

- Ruben, M., Landa, A., Lörtscher, E., Riel, H., Mayor, M., Görls, H., Weber, H. B., Arnold, A. & Evers, F. (2008). *Small*, **4**, 2229–2235.
- Ruther, R. E., Rigsby, M. L., Gerken, J. B., Hogendoorn, S. R., Landis, E. C., Stahl, S. S. & Hamers, R. J. (2011). J. Am. Chem. Soc. 133, 5692–5694.
- Scudder, M. L., Craig, D. C. & Goodwin, H. A. (2005). CrystEngComm, 7, 642–649.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sullivan, B. P., Calvert, J. M. & Meyer, T. J. (1980). Inorg. Chem. 19, 1404–1407. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
- Ziessel, R., Grosshenny, V., Hissler, M. & Stroh, C. (2004). Inorg. Chem. 43, 4262–4271.

Acta Cryst. (2013). E69, m79-m80 [doi:10.1107/S1600536812051227]

(4'-Ethynyl-2,2':6',2''-terpyridine)(2,2':6',2''-terpyridine)ruthenium(II) bis-(hexafluoridophosphate) acetonitrile disolvate

Weizhong Chen, Francisca N. Rein, Brian L. Scott and Reginaldo C. Rocha

S1. Comment

The compound $[Ru^{II}(tpy)(tpy')](PF_6)_2 \times 2MeCN$ crystallized in the triclinic space group $(P\overline{1})$ from an acetonitrile solution. The crystal structure of its dication $[Ru(tpy)(tpy')]^{2+}(I)$ is reported here for the first time, despite its well demonstrated relevance as a metallo-synthon unit into the construction of alkyne-bridged polyad arrays with optical/electronic applications (for example, see: Benniston *et al.*, 2005; Grosshenny *et al.*, 1996; Ziessel *et al.*, 2004) and, more recently, as interesting precursors to optically/electrochemically active interfacial assemblies *via* surface click chemistry at the alkynyl group (for example, see: Ruther *et al.*, 2011).

The only other crystallographically characterized compound featuring the {Ru(tpy–C=C)} fragment is the homoleptic complex [Ru^{II}(tpy")₂](PF₆)₂ (**II**; tpy" = *S*-(4-[2,2':6',2"]terpyridin-4'-ylethynyl-phenyl ester), which was applied in studies of molecular electronics involving charge transport through single molecules (**II**) in break-junction configurations (Ruben *et al.*, 2008). In this case, the compound also crystallized in the triclinic space group ($P\overline{1}$). In **II**, the two elongated ligands pointed along the long axis of the complex, with only slight distortion across the metal center (N–Ru–N angle: 178.9 (4)°). The mean Ru–N bond distances (1.966 (8) Å for the central nitrogen and 2.066 (10) Å for the outer nitrogen atoms *trans* to each other) as well as the tpy" bite angles (158.3 (4)°) are very similar to those observed for **I**.

These distances and angles are also in very good agreement with typical values reported for $[Ru(tpy)_2]^{2+}$ (*e.g.*, Lashgari *et al.*, 1999; Scudder *et al.*, 2005). The bite angle of terpyridines is well known to be far from the ideal 180° due to the unfavorable *N*,*N*,*N* geometric configuration of the *mer*-terdentate ligand (Hammarström & Johansson, 2010). In **I**, the two terpyridyl ligands are approximately planar, with only a slight bending towards the outer ring atoms (maximum deviation from planarity: 0.093 (10) Å for atom C13 at tpy and 0.110 (8) Å for atom C30 at tpy'). The acetylenic group (– C31=C32–H32) lies along the main axis passing through the metal center as well as in the same plane as its adjacent terpyridyl moiety, with a maximum deviation of only 0.071 (11) Å (C32) from coplanarity. The length of the triple bond between C31 and C32 is 1.175 (13) Å.

S2. Experimental

The compound $[Ru(tpy)(tpy')](PF_6)_2$ was prepared from the precursor $[Ru(tpy)(tpy'-TMS)](PF_6)_2$ (tpy'-TMS = 4'-trimethylsilylethynyl-(2,2':6',2"-terpy)) as described in the literature (Benniston *et al.*, 2005). Also synthesized according to reported procedures were the starting materials $Ru(tpy)Cl_3$ (Sullivan *et al.*, 1980) and tpy'-TMS (Grosshenny *et al.*, 1997). The identity of the cation $[Ru(tpy)(tpy')]^{2+}$ (I) in solution was also confirmed by electrochemical and spectroscopic methods. Single crystals suitable for X-ray analysis were grown by slow diffusion of Et_2O into MeCN solutions of $[Ru(tpy)(tpy')](PF_6)_2$ in a long thin tube.

S3. Refinement

The structure was solved by using direct methods and difference Fourier techniques. All hydrogen atom positions were idealized, and rode on the atom they were attached to. The final refinement included anisotropic temperature factors on all non-hydrogen atoms.

Two of the hexafluorophosphate anions had very large temperature factors when compared to the third. Other characterization by nuclear magnetic resonance, electronic absorption spectroscopy, and electrochemical techniques clearly support the oxidation state +2 for the Ru center. As a result, the two hexafluorophosphate anions were refined at one-half occupancy.

Figure 1

The single-crystal structure of the cation (I) in $[Ru^{II}(tpy)(tpy')](PF_6)_2 \times 2MeCN$. Displacement ellipsoids are drawn at the 50% probability level. Except for H32, H atoms are omitted for clarity.

(4'-Ethynyl-2,2':6',2''-terpyridine)(2,2':6',2''-terpyridine)ruthenium(II) bis(hexafluoridophosphate) acetonitrile disolvate

Crystal data

$[Ru(C_{15}H_{11}N_3)(C_{17}H_{11}N_3)](PF_6)_2 \cdot 2C_2H_3N$	Z = 2
$M_r = 963.67$	F(000) = 964
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.543$ N
Hall symbol: -P 1	Mo <i>Kα</i> radia
a = 8.704 (2) Å	Cell paramet
b = 8.860 (2) Å	$\theta = 4.7 - 41.0$
c = 27.277 (7) Å	$\mu = 0.55 \text{ mm}$
$\alpha = 96.876 \ (4)^{\circ}$	T = 140 K
$\beta = 95.619 \ (3)^{\circ}$	Block, orang
$\gamma = 93.023 \ (3)^{\circ}$	0.10×0.08
$V = 2073.9 (10) \text{ Å}^3$	

Z = 2 F(000) = 964 $D_x = 1.543 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1822 reflections $\theta = 4.7-41.0^{\circ}$ $\mu = 0.55 \text{ mm}^{-1}$ T = 140 KBlock, orange $0.10 \times 0.08 \times 0.06 \text{ mm}$ Data collection

Bruker D8 with APEXII CCD	19870 measured reflections
diffractometer	7496 independent reflections
Radiation source: fine-focus sealed tube	5137 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int} = 0.081$
ω scans	$\theta_{max} = 25.3^{\circ}, \ \theta_{min} = 2.3^{\circ}$
Absorption correction: multi-scan	$h = -10 \rightarrow 10$
(<i>SADABS</i> ; Bruker, 2007)	$k = -10 \rightarrow 10$
$T_{min} = 0.947, T_{max} = 0.968$	$l = -32 \rightarrow 32$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.084$	Hydrogen site location: inferred from
$wR(F^2) = 0.228$	neighbouring sites
S = 1.25	H-atom parameters constrained
7496 reflections	$w = 1/[\sigma^2(F_o^2) + (0.1P)^2]$
596 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} < 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 1.75$ e Å ⁻³
direct methods	$\Delta\rho_{min} = -0.94$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. Note: Two of the hexafluorophosphate anions had very large temperature factors when compared to the third. Other characterization by nuclear magnetic resonance, electronic absorption spectroscopy, and electrochemical techniques clearly support the oxidation state +2 for the Ru center. As a result, the two hexafluorophosphate anions were refined at one-half occupancy.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Ru1	0.60446 (7)	0.66280(7)	0.71976 (2)	0.0229 (2)	
P1	0.5105 (3)	0.2494 (3)	0.86893 (9)	0.0406 (6)	
P2	0.0665 (4)	0.3760 (5)	0.58567 (15)	0.0223 (9)	0.50
P3	0.3376 (7)	0.9331 (5)	0.52521 (18)	0.0460 (13)	0.50
F1	0.4111 (7)	0.3779 (7)	0.8487 (2)	0.0662 (17)	
F2	0.3720 (7)	0.1889 (8)	0.8960 (2)	0.083 (2)	
F3	0.6136 (8)	0.1235 (7)	0.8895 (3)	0.087 (2)	
F4	0.6488 (6)	0.3082 (6)	0.8399 (2)	0.0627 (16)	
F5	0.5731 (8)	0.3658 (7)	0.9169 (2)	0.080 (2)	
F6	0.4524 (7)	0.1353 (6)	0.8207 (2)	0.0699 (18)	
F7	0.2344 (13)	0.4242 (15)	0.5732 (4)	0.071 (4)	0.50
F8	0.0213 (12)	0.3542 (11)	0.5289 (3)	0.048 (3)	0.50
F9	-0.0984 (14)	0.3277 (16)	0.5993 (4)	0.074 (4)	0.50

F10	0.1149 (13)	0.3953 (11)	0.6387 (3)	0.048 (3)	0.50
F11	0.0255 (16)	0.5450 (15)	0.5929 (5)	0.086 (4)	0.50
F12	0.1067 (14)	0.2015 (14)	0.5798 (5)	0.078 (4)	0.50
F13	0.2819(11)	0.7699 (11)	0.5355 (4)	0.052 (3)	0.50
F14	0.4594 (13)	0.9411 (12)	0.5740 (4)	0.055 (3)	0.50
F15	0.2102 (13)	0.9903 (13)	0.5575 (4)	0.061 (3)	0.50
F16	0.3906 (14)	1.1053 (11)	0.5201 (4)	0.051 (3)	0.50
F17	0.2281 (13)	0.9269 (11)	0.4820 (5)	0.066 (4)	0.50
F18	0.4732 (18)	0.8751 (13)	0.4927 (5)	0.080 (4)	0.50
N1	0.6951 (6)	0.8758 (7)	0.7100 (2)	0.0218 (14)	
N2	0.6314 (7)	0.6327 (6)	0.6487(2)	0.0223(14)	
N3	0.5163(7)	0.4394(7)	0.7002(3)	0.0306 (16)	
N4	0.8136(7)	0.5925 (6)	0.7502(2)	0.0212(14)	
N5	0.5824(7)	0.6975 (6)	0.7902(2) 0.7912(2)	0.0212(11) 0.0241(14)	
N6	0.3821(7) 0.3870(7)	0.7435(7)	0.7912(2) 0.7184(3)	0.0273(15)	
N7	0.9608(12)	-0.0287(12)	0.8456(4)	0.0275(15)	
N8	0.0331(14)	0.6207(12)	0.0150(1)	0.082(3)	
C1	0.0331(14) 0.7199(8)	1 0006 (9)	0.7444(3)	0.000(3)	
U1 Н1	0.6942	0.9936	0.7764	0.0275 (10)	
C^2	0.0942 0.7826 (9)	1 1392 (9)	0.7704 0.7334 (3)	0.033	
С2 H2	0.7820 ())	1.1332 (5)	0.7575	0.032 (2)	
C3	0.7989 0.8230 (9)	1.2256	0.6865 (3)	0.032(2)	
С5 Н3	0.8230 ())	1.1495 (8)	0.6788	0.032 (2)	
113 C4	0.7941 (9)	1.0242 (9)	0.6506 (3)	0.039	
С 4 Н/	0.8165	1.0242(9) 1.0314	0.6183	0.0251 (15)	
11 4 C5	0.7316 (8)	0.8874(8)	0.6628 (3)	0.033 0.0234(17)	
C6	0.6073 (0)	0.7496 (9)	0.6277(3)	0.0254(17)	
C_0	0.0975(9) 0.7184(11)	0.7490(9) 0.7255(10)	0.0277(3)	0.0231(17)	
С7 Н7	0.7104 (11)	0.7255 (10)	0.5635	0.042 (2)	
117 C8	0.7010 0.6785 (13)	0.5803 (11)	0.5496 (3)	0.050	
С0 Ц9	0.6050	0.5355 (11)	0.5490 (5)	0.050(5)	
C0	0.0939	0.3734	0.5105 0.5717 (2)	0.007°	
U9 U0	0.0102 (12)	0.4099 (10)	0.5717 (5)	0.048 (3)	
П9 С10	0.5000	0.3738	0.5555	0.038°	
C10 C11	0.3881(9) 0.5205(0)	0.4900(8)	0.0213(3)	0.0294(19) 0.034(2)	
	0.3203(9) 0.4508(11)	0.3899(9)	0.0310(3)	0.034(2)	
U12	0.4398 (11)	0.2427 (9)	0.0311 (4)	0.031 (3)	
П12 С12	0.4052	0.2099	0.3970	0.001°	
U13	0.3950 (11)	0.14/3 (10)	0.0012(4)	0.001 (3)	
ніз С14	0.3528	0.0503	0.0484	0.073^{+}	
C14	0.3951 (10)	0.2002 (10)	0.7107 (4)	0.050 (3)	
H14	0.3551	0.1369	0.7319	0.059*	
C15	0.4541 (9)	0.34/1 (9)	0.7297 (4)	0.038 (2)	
HIS CIC	0.4505	0.5815	0.7631	0.0251 (17)	
C16	0.9277 (8)	0.5350 (8)	0.7264 (3)	0.0251 (17)	
H16	0.9201	0.5297	0.6920	0.030*	
CI7	1.0570 (9)	0.4828 (9)	0.7508 (3)	0.0312 (19)	
HI7	1.1334	0.4413	0.7328	0.037*	
C18	1.0729 (9)	0.4920 (9)	0.8014 (3)	0.036 (2)	

H18	1.1600	0.4586	0.8184	0.043*
C19	0.9558 (9)	0.5523 (9)	0.8265 (3)	0.033 (2)
H19	0.9635	0.5599	0.8610	0.040*
C20	0.8264 (8)	0.6019 (8)	0.8006 (3)	0.0252 (18)
C21	0.6948 (10)	0.6671 (9)	0.8251 (3)	0.0304 (19)
C22	0.6838 (11)	0.6954 (9)	0.8747 (3)	0.038 (2)
H22	0.7631	0.6723	0.8975	0.045*
C23	0.5526 (12)	0.7590 (9)	0.8908 (3)	0.041 (2)
C24	0.4340 (11)	0.7933 (9)	0.8559 (3)	0.041 (2)
H24	0.3463	0.8378	0.8662	0.049*
C25	0.4506 (9)	0.7593 (9)	0.8058 (3)	0.033 (2)
C26	0.3421 (9)	0.7893 (9)	0.7645 (3)	0.032 (2)
C27	0.2062 (9)	0.8608 (9)	0.7703 (4)	0.042 (2)
H27	0.1808	0.8962	0.8018	0.051*
C28	0.1083 (10)	0.8787 (10)	0.7282 (4)	0.053 (3)
H28	0.0161	0.9257	0.7312	0.063*
C29	0.1501 (9)	0.8255 (9)	0.6820 (4)	0.041 (2)
H29	0.0854	0.8357	0.6536	0.049*
C30	0.2887 (9)	0.7569 (9)	0.6782 (4)	0.035 (2)
H30	0.3144	0.7191	0.6470	0.042*
C31	0.5415 (13)	0.7943 (11)	0.9431 (4)	0.058 (3)
C32	0.5330 (16)	0.8213 (12)	0.9860 (4)	0.072 (4)
H32	0.5263	0.8427	1.0199	0.087*
C33	0.9607 (15)	0.0376 (19)	0.8804 (5)	0.104 (6)
C34	0.958 (2)	0.113 (4)	0.9314 (8)	0.36 (3)
H34A	0.8897	0.0544	0.9486	0.541*
H34B	0.9217	0.2132	0.9303	0.541*
H34C	1.0603	0.1207	0.9485	0.541*
C35	0.1365 (14)	0.5885 (14)	0.9648 (4)	0.063 (3)
C36	0.2593 (15)	0.4921 (15)	0.9767 (5)	0.084 (4)
H36A	0.3438	0.5523	0.9962	0.126*
H36B	0.2941	0.4450	0.9465	0.126*
H36C	0.2220	0.4148	0.9952	0.126*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ru1	0.0183 (3)	0.0179 (3)	0.0337 (4)	-0.0009 (2)	0.0022 (3)	0.0091 (3)
P1	0.0455 (14)	0.0296 (13)	0.0456 (15)	0.0006 (11)	-0.0040 (11)	0.0080 (11)
P2	0.0167 (19)	0.025 (2)	0.027 (2)	0.0045 (16)	0.0036 (16)	0.0105 (17)
Р3	0.072 (4)	0.029 (3)	0.035 (3)	-0.003 (2)	0.010 (3)	-0.005 (2)
F1	0.055 (4)	0.064 (4)	0.086 (4)	0.028 (3)	0.006 (3)	0.025 (3)
F2	0.067 (4)	0.104 (6)	0.080 (5)	-0.027 (4)	0.019 (3)	0.029 (4)
F3	0.072 (5)	0.057 (4)	0.134 (6)	0.011 (3)	-0.018 (4)	0.044 (4)
F4	0.054 (4)	0.055 (4)	0.083 (4)	-0.006 (3)	0.013 (3)	0.021 (3)
F5	0.111 (6)	0.068 (4)	0.052 (4)	-0.030 (4)	-0.008(4)	0.002 (3)
F6	0.092 (5)	0.045 (4)	0.065 (4)	-0.021 (3)	0.003 (3)	-0.007 (3)
F7	0.055 (8)	0.095 (10)	0.067 (8)	-0.012 (7)	-0.004 (6)	0.038 (7)

F8	0.076 (8)	0.055 (7)	0.009 (5)	-0.040 (6)	0.004 (4)	0.008 (4)
F9	0.062 (8)	0.101 (10)	0.077 (9)	0.020 (7)	0.026(7)	0.056 (8)
F10	0.083 (8)	0.033 (6)	0.036 (6)	0.015 (5)	0.047 (5)	0.001 (4)
F11	0.085 (10)	0.062 (9)	0.099 (10)	0.021 (7)	-0.043 (8)	0.001 (7)
F12	0.067 (8)	0.060 (8)	0.098 (10)	0.021 (7)	-0.024 (7)	-0.008(7)
F13	0.035 (6)	0.041 (6)	0.072 (8)	-0.027(5)	0.016 (5)	-0.023(5)
F14	0.073 (8)	0.049 (7)	0.047 (7)	0.030 (6)	0.006 (6)	0.006 (5)
F15	0.049 (7)	0.059 (8)	0.073 (8)	0.004 (6)	-0.006 (6)	0.013 (6)
F16	0.080 (9)	0.035 (6)	0.035 (6)	-0.021(6)	-0.003 (6)	0.002 (5)
F17	0.060 (7)	0.020 (5)	0.109 (10)	-0.015(5)	-0.032(7)	0.019 (6)
F18	0.113(12)	0.050 (8)	0.070 (9)	-0.029(8)	0.033 (8)	-0.021(6)
N1	0.014(3)	0.020(3)	0.070(9)	0.002 (0)	-0.001(3)	0.021(0)
N2	0.017(3)	0.013(3)	0.036(4)	-0.001(2)	-0.008(3)	0.003(3)
N3	0.017(3) 0.023(4)	0.015(3)	0.030(1) 0.043(4)	-0.009(3)	-0.007(3)	0.000(3)
N4	0.029(1) 0.019(3)	0.023(1)	0.013(1)	-0.001(2)	-0.007(3)	0.013(3)
N5	0.019(3)	0.011(3)	0.032(4)	0.001(2)	0.002(3)	0.001(3)
N6	0.020(3)	0.011(3)	0.037(4)	-0.004(3)	-0.001(3)	0.007(3)
N7	0.013(3)	0.020(3)	0.048(4)	-0.020(6)	0.001(3)	-0.024(6)
NQ	0.078(7)	0.084(8)	0.079(8)	0.020(0)	-0.022(6)	0.024 (0)
	0.090(9)	0.038(3)	0.005(7)	0.019(7)	0.022(0)	0.009(0)
	0.022(4)	0.022(4)	0.030(3)	0.003(3)	0.002(3)	0.000(4)
C2 C2	0.033(3)	0.024(3)	0.057(5)	0.013(4)	-0.002(4)	0.001(4)
	0.029 (4)	0.010(4)	0.055(6)	-0.004(3)	-0.00/(4)	0.007(4)
C4	0.025 (4)	0.028 (5)	0.036 (5)	=0.001(3)	0.000 (4)	0.016(4)
05	0.020 (4)	0.021 (4)	0.030(4)	0.003(3)	0.004 (3)	0.004 (3)
C6	0.026 (4)	0.023(4)	0.026 (4)	0.002(3)	0.000(3)	0.005 (3)
C7	0.063 (6)	0.024 (5)	0.039 (5)	-0.005 (4)	0.004 (5)	0.016 (4)
C8	0.100 (9)	0.043 (6)	0.022 (5)	0.004 (6)	-0.002 (5)	0.000 (4)
C9	0.080 (7)	0.021 (5)	0.037 (6)	-0.003 (5)	-0.023 (5)	0.003 (4)
C10	0.035 (5)	0.014 (4)	0.037 (5)	-0.003 (3)	-0.013 (4)	0.006 (3)
C11	0.030 (5)	0.014 (4)	0.057 (6)	-0.012 (3)	-0.015 (4)	0.018 (4)
C12	0.059 (6)	0.018 (5)	0.070 (7)	-0.007(4)	-0.031 (5)	0.012 (4)
C13	0.056 (6)	0.024 (5)	0.096 (9)	-0.025 (5)	-0.045 (6)	0.035 (5)
C14	0.041 (6)	0.027 (5)	0.079 (8)	-0.015 (4)	-0.021 (5)	0.031 (5)
C15	0.017 (4)	0.033 (5)	0.066 (6)	-0.011 (4)	-0.010 (4)	0.027 (4)
C16	0.023 (4)	0.011 (4)	0.041 (5)	-0.005 (3)	0.006 (4)	0.003 (3)
C17	0.017 (4)	0.020 (4)	0.056 (6)	0.002 (3)	0.004 (4)	0.004 (4)
C18	0.018 (4)	0.029 (5)	0.059 (6)	0.005 (3)	-0.007 (4)	0.003 (4)
C19	0.037 (5)	0.028 (5)	0.033 (5)	0.005 (4)	-0.003 (4)	0.000 (4)
C20	0.021 (4)	0.013 (4)	0.043 (5)	0.000 (3)	-0.001 (4)	0.009(3)
C21	0.038 (5)	0.024 (4)	0.028 (5)	-0.006 (4)	0.000 (4)	0.006 (3)
C22	0.052 (6)	0.027 (5)	0.035 (5)	-0.002 (4)	0.002 (4)	0.011 (4)
C23	0.071 (7)	0.020 (4)	0.036 (5)	0.000 (4)	0.019 (5)	0.006 (4)
C24	0.049 (6)	0.027 (5)	0.053 (6)	0.004 (4)	0.028 (5)	0.012 (4)
C25	0.028 (4)	0.021 (4)	0.053 (6)	0.001 (3)	0.015 (4)	0.010 (4)
C26	0.030 (4)	0.020 (4)	0.049 (5)	-0.004 (3)	0.015 (4)	0.013 (4)
C27	0.026 (5)	0.024 (5)	0.081 (7)	0.000 (4)	0.015 (5)	0.015 (5)
C28	0.024 (5)	0.030 (5)	0.111 (9)	0.003 (4)	0.017 (6)	0.025 (6)
C29	0.019 (4)	0.021 (5)	0.085 (7)	-0.008 (3)	-0.008 (5)	0.033 (5)

C30	0.026 (4)	0.015 (4)	0.066 (6)	-0.003 (3)	0.000 (4)	0.017 (4)
C31	0.083 (8)	0.039 (6)	0.058 (7)	0.019 (6)	0.028 (6)	0.011 (5)
C32	0.134 (12)	0.046 (7)	0.047 (7)	0.035 (7)	0.036 (7)	0.013 (5)
C33	0.055 (8)	0.147 (15)	0.089 (11)	0.011 (9)	-0.007 (7)	-0.058 (10)
C34	0.15 (2)	0.60 (6)	0.23 (3)	0.16 (3)	-0.099 (19)	-0.33 (3)
C35	0.072 (8)	0.077 (8)	0.036 (6)	0.026 (7)	-0.009 (5)	-0.003 (5)
C36	0.082 (10)	0.085 (10)	0.085 (9)	0.004 (8)	0.004 (7)	0.013 (7)

Geometric parameters (Å, °)

Ru1—N2	1.964 (6)	C8—C9	1.411 (13)
Ru1—N5	1.967 (6)	C9—C10	1.385 (12)
Ru1—N6	2.057 (6)	C10-C11	1.461 (11)
Ru1—N1	2.064 (6)	C11—C12	1.410 (11)
Ru1—N3	2.073 (6)	C12—C13	1.384 (13)
Ru1—N4	2.083 (6)	C13—C14	1.374 (14)
P1—F2	1.577 (6)	C14—C15	1.394 (12)
P1—F6	1.583 (6)	C16—C17	1.381 (10)
P1—F1	1.585 (6)	C17—C18	1.364 (11)
P1—F3	1.588 (6)	C18—C19	1.378 (11)
P1—F5	1.596 (6)	C19—C20	1.389 (11)
P1—F4	1.602 (6)	C20—C21	1.489 (11)
P2—F10	1.453 (11)	C21—C22	1.360 (11)
P2—F8	1.547 (9)	C22—C23	1.386 (12)
P2—F11	1.551 (13)	C23—C24	1.404 (13)
P2—F9	1.568 (12)	C23—C31	1.438 (13)
P2—F7	1.581 (12)	C24—C25	1.388 (11)
P2—F12	1.597 (12)	C25—C26	1.457 (12)
P3—F17	1.435 (12)	C26—C27	1.385 (11)
P3—F15	1.551 (13)	C27—C28	1.390 (13)
P3—F13	1.567 (11)	C28—C29	1.381 (13)
P3—F16	1.597 (11)	C29—C30	1.387 (11)
P3—F14	1.610 (12)	C31—C32	1.175 (13)
P3—F18	1.613 (15)	C33—C34	1.47 (2)
F16—F18 ⁱ	1.278 (16)	C35—C36	1.439 (16)
F18—F16 ⁱ	1.278 (16)	C1—H1	0.93
N1—C1	1.355 (9)	С2—Н2	0.93
N1—C5	1.370 (9)	С3—Н3	0.93
N2-C10	1.353 (9)	C4—H4	0.93
N2—C6	1.368 (9)	С7—Н7	0.93
N3—C15	1.344 (10)	C8—H8	0.93
N3—C11	1.350 (10)	С9—Н9	0.93
N4—C16	1.330 (9)	C12—H12	0.93
N4—C20	1.361 (9)	С13—Н13	0.93
N5—C21	1.338 (10)	C14—H14	0.93
N5—C25	1.370 (10)	С15—Н15	0.93
N6—C30	1.344 (10)	C16—H16	0.93
N6—C26	1.373 (10)	С17—Н17	0.93

N7—C33	1.054 (13)	C18—H18	0.93
N8—C35	1.157 (14)	С19—Н19	0.93
C1—C2	1.395 (11)	С22—Н22	0.93
C2—C3	1.371 (11)	C24—H24	0.93
C3—C4	1.383 (11)	С27—Н27	0.93
C4—C5	1.392 (10)	C28—H28	0.93
C5—C6	1.456 (10)	C29—H29	0.93
C6—C7	1.376 (11)	C30—H30	0.93
C7—C8	1.363 (12)	C32—H32	0.93
N2—Ru1—N5	178.3 (3)	N2—C6—C7	118.3 (7)
N2—Ru1—N6	101.3 (3)	N2—C6—C5	112.5 (6)
N5— $Ru1$ — $N6$	79 4 (3)	C7-C6-C5	1291(7)
N2—Ru1—N1	79.0 (2)	C8-C7-C6	122.4 (8)
N5—Ru1—N1	99.5 (2)	C7—C8—C9	1186(9)
N6—Ru1—N1	89 9 (2)	C10-C9-C8	118.2(8)
$N_2 = R_{11} = N_3$	78.8 (3)	N_{2} C10 C9	1214(7)
N5N3	102.6(3)	$N_2 - C_{10} - C_{11}$	121.1(7) 111.3(7)
N6—Ru1—N3	92.4(2)	C9-C10-C11	127.3(7)
N1N3	52.7(2)	N_{3} C_{11} C_{12}	127.3(7) 121.0(8)
$N_2 R_{11} N_4$	107.7(3) 100.9(2)	N_{3} C_{11} C_{12}	121.0(3) 117.0(7)
$N5$ _Ru1_N4	783(2)	C_{12} C_{11} C_{10}	1221(9)
N6—Ru1—N4	157.7(3)	C12 - C12 - C11	122.1(9)
N1N1N4	94 5 (2)	C_{14} C_{13} C_{12} C_{12}	118.0 (9)
$N3_Ru1_N4$	91.7(2)	C13 - C12	1211(0)
$F_2 P_1 F_6$	90.3(4)	N_{3} C_{15} C_{14}	121.1(9) 120.6(9)
F2P1F1	91.5 (4)	N_{4} C16 C17	120.0(9) 122.4(8)
F_{6} P_{1} F_{1}	90.6 (4)	C18 - C17 - C16	122.4(8) 120.1(8)
$F_2 = P_1 = F_3$	90.0 (4) 89.5 (4)	$C_{13} = C_{17} = C_{10}$	120.1(8)
F6-P1-F3	90.3 (4)	C18 - C19 - C20	120.4(8)
F1F1F3	178.7(4)	N4-C20-C19	120.4(0) 120.6(7)
F2P1F5	912(4)	N4 = C20 = C13 N4 = C20 = C21	115.9 (6)
F6-P1-F5	1784(4)	C19-C20-C21	113.5(0) 123.5(7)
F1F5	89.4(4)	$N_{20} = C_{20} = C_{21}$	123.3(7) 122.1(8)
F3P1F5	89.7 (4)	$N_{5} = C_{21} = C_{20}$	122.1(0) 110.8(7)
F2P1F4	1783(4)	C^{22} C^{21} C^{20}	110.0(7) 127.0(8)
F6-P1-F4	88.0(3)	$C_{22} = C_{21} = C_{23}$	127.0(0) 1190(8)
F1F4	88.2 (3)	C^{22} C^{23} C^{24}	119.8 (8)
F3—P1—F4	90 8 (4)	$C_{22} = C_{23} = C_{24}$	119.0 (0)
F5—P1—F4	90.4 (4)	$C_{24} = C_{23} = C_{31}$	120 5 (9)
F10-P2-F8	177 8 (6)	$C_{24} = C_{23} = C_{31}$	120.5(9) 118.6(8)
F10 - P2 - F11	86 5 (6)	$N_{2} = C_{2} = C_{2}$	120.0(8)
F8 - P2 - F11	94.6 (7)	$N_{5} = C_{25} = C_{26}$	120.0(0) 113.5(7)
F10-P2-F9	86.5 (6)	C_{24} C_{25} C_{26}	1264(8)
F8_P2_F9	95.4 (6)	N6-C26-C27	121.9 (8)
F11-P2-F9	89.2 (8)	N6-C26-C25	121.9(0) 1144(7)
F10-P2-F7	92 1 (6)	C_{27} C_{26} C_{25}	1237(8)
F8_P2_F7	85.9 (6)	C_{26} C_{20} C_{23} C_{26} C_{27} C_{28}	118 8 (0)
10 12 1/	0.5.0	-0.20 -0.27 -0.20	110.0 (9)

F11—P2—F7	91.1 (8)	C29—C28—C27	119.0 (8)
F9—P2—F7	178.6 (6)	C28—C29—C30	119.9 (9)
F10—P2—F12	92.2 (6)	N6—C30—C29	121.8 (9)
F8—P2—F12	86.8 (6)	C32—C31—C23	179.1 (11)
F11—P2—F12	178.3 (8)	N7—C33—C34	173 (2)
F9—P2—F12	89.6 (7)	N8—C35—C36	176.8 (15)
F7—P2—F12	90.1 (7)	N1—C1—H1	119
F17—P3—F15	88.9 (8)	C2—C1—H1	119
F17—P3—F13	92.5 (6)	С1—С2—Н2	121
F15—P3—F13	85.6 (6)	С3—С2—Н2	120
F17—P3—F16	90.7 (6)	С2—С3—Н3	121
F15—P3—F16	89.8 (7)	С4—С3—Н3	120
F13—P3—F16	174.3 (6)	C3—C4—H4	120
F17—P3—F14	179.5 (8)	C5—C4—H4	120
F15—P3—F14	90.6 (6)	С6—С7—Н7	119
F13—P3—F14	87.7 (6)	С8—С7—Н7	119
F16—P3—F14	89.1 (6)	С7—С8—Н8	121
F17—P3—F18	92.4 (8)	С9—С8—Н8	121
F15—P3—F18	178.6 (8)	С8—С9—Н9	121
F13—P3—F18	94.8 (6)	С10—С9—Н9	121
F16—P3—F18	89.8 (6)	C11—C12—H12	120
F14—P3—F18	88.1 (7)	C13—C12—H12	120
F18 ⁱ —F16—P3	115.0 (10)	С12—С13—Н13	121
F16 ⁱ —F18—P3	149.8 (10)	C14—C13—H13	121
C1—N1—C5	118.6 (6)	C13—C14—H14	120
C1—N1—Ru1	127.3 (5)	C15—C14—H14	119
C5—N1—Ru1	114.1 (5)	N3—C15—H15	120
C10—N2—C6	121.0 (7)	C14—C15—H15	120
C10—N2—Ru1	119.9 (5)	N4—C16—H16	119
C6—N2—Ru1	119.1 (5)	C17—C16—H16	119
C15—N3—C11	119.8 (7)	С16—С17—Н17	120
C15—N3—Ru1	127.2 (6)	C18—C17—H17	120
C11—N3—Ru1	113.0 (5)	C17—C18—H18	121
C16—N4—C20	118.5 (6)	C19—C18—H18	121
C16—N4—Ru1	127.9 (5)	C18—C19—H19	120
C20—N4—Ru1	113.5 (5)	С20—С19—Н19	120
C21—N5—C25	120.5 (7)	C21—C22—H22	121
C21—N5—Ru1	121.4 (5)	C23—C22—H22	120
C25—N5—Ru1	118.1 (5)	C23—C24—H24	121
C30—N6—C26	118.4 (7)	C25—C24—H24	121
C30—N6—Ru1	127.3 (6)	С26—С27—Н27	121
C26—N6—Ru1	114.4 (5)	C28—C27—H27	121
N1—C1—C2	122.2 (7)	C27—C28—H28	120
C3—C2—C1	119.2 (7)	C29—C28—H28	121
C2—C3—C4	119.2 (7)	C28—C29—H29	120
C3—C4—C5	120.3 (7)	С30—С29—Н29	120
N1—C5—C4	120.6 (7)	N6—C30—H30	119

N1—C5—C6	115.2 (6)	С29—С30—Н30	119
C4—C5—C6	124.2 (7)	C31—C32—H32	180

Symmetry code: (i) -x+1, -y+2, -z+1.