metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

catena-Poly[[bis(4-methylpyridine- κN)cobalt(II)]-di-*u*-dicvanamido- $\kappa^2 N^1: N^5$]

Wenjiang Huang,^a Jinfang Zhang^b and Chi Zhang^a*

^aInstitute of Molecular Engineering and Advanced Materials, School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing 210094, Jiangsu, People's Republic of China, and ^bInstitute of Science and Technology, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, People's Republic of China

Correspondence e-mail: chizhang@mail.njust.edu.cn

Received 5 December 2012; accepted 19 December 2012

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.003 Å; R factor = 0.031; wR factor = 0.085; data-to-parameter ratio = 13.5.

Cobalt(II) nitrate hexahydrate and sodium dicyanamide selfassembled in dimethylformamide (DMF) and 4-methylpyridine solutions to form the title compound, $[Co(C_2N_3)_2 (C_6H_7N)_2]_n$. The Co²⁺ ion lies on an inversion center and adopts an octahedral coordination geometry in which four N atoms from four different dicyanamide ligands lie in the equatorial plane and two 4-methylpyridine N atoms occupy the axial positions. The Co^{II} atoms are connected by two bridging dicyanamide ligands, resulting in a chain parallel to the c axis. The chains are connected into a three-dimensional network by $C-H \cdots N$ hydrogen bonds.

Related literature

The design and syntheses of metal-organic compounds has attracted great attention not only as a result of their intriguing architectures and topologies (Eddaoudi et al., 2001), but also because of their potential applications (Banerjee et al., 2008).

Ś :0% Мe

Crystal data

$[Co(C_2N_3)_2(C_6H_7N)_2]$	V = 856.7 (3) Å ³
$M_r = 377.28$	Z = 2
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 9.3686 (19) Å	$\mu = 1.02 \text{ mm}^{-1}$
b = 13.080 (3) Å	T = 150 K
c = 7.3048 (15) Å	$0.21 \times 0.17 \times 0.15 \text{ mm}$
$\beta = 106.86 \ (3)^{\circ}$	

Data collection

Rigaku Saturn724+ diffractometer Absorption correction: multi-scan (CrystalClear; Rigaku, 2008) $T_{\min} = 0.815, T_{\max} = 1.000$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.031$	115 parameters
$wR(F^2) = 0.085$	H-atom parameters constrained
S = 1.07	$\Delta \rho_{\rm max} = 0.94 \text{ e } \text{\AA}^{-3}$
1549 reflections	$\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$

4994 measured reflections

 $R_{\rm int} = 0.016$

1549 independent reflections

1419 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C4-H4A\cdots N3^{i}$	0.93	2.57	3.487 (3)	168
Symmetry code: (i) _	r + 1 - v - 7 - 1	1		

Symmetry code: (i) -x + 1, -y, -z + 1.

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was supported by the National Natural Science Foundation of China (No. 50472048) and the Program for New Century Excellent Talents in Universities (NCET-05-0499).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ5034).

References

Banerjee, R., Phan, A., Wang, B., Knobler, C., Furukawa, H., O'Keeffe, M. & Yaghi, O. M. (2008). Science, 319, 939-943.

Eddaoudi, M., Moler, D. B., Li, H. L., Chen, B. L., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319-330.

Rigaku (2008). CrystalClear. Rigaku Corp., Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2013). E69, m90 [doi:10.1107/S1600536812051252]

catena-Poly[[bis(4-methylpyridine- κN)cobalt(II)]-di- μ -dicyanamido- $\kappa^2 N^1$: N^5]

Wenjiang Huang, Jinfang Zhang and Chi Zhang

S1. Comment

The design and syntheses of metal-organic compounds have attracted great attention in recent years because of not only their intriguing architectures and topologies (Eddaoudi *et al.*, 2001) but also their potential applications (Banerjee *et al.*, 2008). The title compound $\{Co[N(CN)_2]_2(NC_6H_7)_2\}_n$ is constructed by the flexible dicyanamide bridging ligands through diffusion reaction.

As illustrated in Fig. 1, Co^{2+} ion lies on an inversion center and adopts an octahedral coordination geometry, where four N atoms from four different dicyanamide ligands lie in the equatorial plane and two 4-methylpyridine N atoms occupy the axial positions. The Co atoms are connected by two dicyanamide ligands, resulting in a neutral chain along the *c*-axis. In the crystal, the chains are linked by C—H…N hydrogen bonds (Table 1) into a three-dimensional network.

S2. Experimental

 $Co(NO_3)_2$?6H₂O (116.6 mg, 0.4 mmol) was added into 1 ml dmf with thorough stir for 5 minutes. After filtration, the purple filtrate was carefully laid on the surface with the solution of NaN(CN)₂ (89.1 mg, 1 mmol) in 1 ml dmf, 1 ml 4-methylpyridine and 5 ml *i*-PrOH. Pink block crystals were obtained after two weeks.

S3. Refinement

H atoms were positioned geometrically and refined with riding model, with $U_{iso} = 1.5U_{eq}$ and $1.2U_{eq}$ for methyl and pyridyl H atoms, respectively. The C—H bonds are 0.96 Å in methyl and 0.93 Å in pyridyl.

Figure 1

Portion of the polymeric chain of the title compound, with 30% probability displacement ellipsoids. All H atoms have been omitted. Symmetry code: (i) 2-x, -y, 1-z.

catena-Poly[[bis(4-methylpyridine- κN)cobalt(II)]- di- μ -dicyanamido- $\kappa^2 N^1$: N^5]

Crystal data

 $\begin{bmatrix} \text{Co}(\text{C}_2\text{N}_3)_2(\text{C}_6\text{H}_7\text{N})_2 \end{bmatrix}$ $M_r = 377.28$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 9.3686 (19) Å b = 13.080 (3) Å c = 7.3048 (15) Å $\beta = 106.86 (3)^\circ$ $V = 856.7 (3) \text{ Å}^3$ Z = 2

Data collection

Rigaku Saturn724+	4994 measured reflections
diffractometer	1549 independent reflections
Radiation source: fine-focus sealed tube	1419 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.016$
ω scans	$\theta_{\text{max}} = 25.4^{\circ}, \ \theta_{\text{min}} = 3.3^{\circ}$
Absorption correction: multi-scan	$h = -10 \rightarrow 11$
(CrystalClear; Rigaku, 2008)	$k = -12 \rightarrow 15$
$T_{\min} = 0.815, \ T_{\max} = 1.000$	$l = -8 \rightarrow 8$
Refinement	

F(000) = 386

 $\theta = 3.1 - 28.7^{\circ}$ $\mu = 1.02 \text{ mm}^{-1}$

T = 150 K

Block, pink

 $D_{\rm x} = 1.463 {\rm Mg} {\rm m}^{-3}$

 $0.21 \times 0.17 \times 0.15 \text{ mm}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 3521 reflections

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.031$	Hydrogen site location: inferred from
$wR(F^2) = 0.085$	neighbouring sites
S = 1.07	H-atom parameters constrained
1549 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0483P)^2 + 0.6117P]$
115 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.94 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
1.0000	0.0000	0.5000	0.01854 (16)	
0.86523 (19)	-0.07208 (14)	0.6510(3)	0.0262 (4)	
0.87457 (19)	-0.07142 (14)	1.2428 (2)	0.0249 (4)	
0.76592 (19)	-0.12944 (15)	0.9113 (2)	0.0275 (4)	
	x 1.0000 0.86523 (19) 0.87457 (19) 0.76592 (19)	x y 1.0000 0.0000 0.86523 (19) -0.07208 (14) 0.87457 (19) -0.07142 (14) 0.76592 (19) -0.12944 (15)	x y z 1.0000 0.0000 0.5000 0.86523 (19) -0.07208 (14) 0.6510 (3) 0.87457 (19) -0.07142 (14) 1.2428 (2) 0.76592 (19) -0.12944 (15) 0.9113 (2)	xyz U_{iso}^*/U_{eq} 1.00000.00000.50000.01854 (16)0.86523 (19)-0.07208 (14)0.6510 (3)0.0262 (4)0.87457 (19)-0.07142 (14)1.2428 (2)0.0249 (4)0.76592 (19)-0.12944 (15)0.9113 (2)0.0275 (4)

N4	0.85008 (18)	0.12713 (13)	0.4394 (2)	0.0213 (4)
C1	0.8228 (2)	-0.09665 (15)	0.7775 (3)	0.0203 (4)
C2	0.8276 (2)	-0.09642 (15)	1.0853 (3)	0.0194 (4)
C3	0.7023 (2)	0.11338 (17)	0.3732 (3)	0.0274 (5)
H3B	0.6656	0.0469	0.3562	0.033*
C4	0.6022 (2)	0.19299 (18)	0.3293 (3)	0.0315 (5)
H4A	0.5006	0.1796	0.2828	0.038*
C5	0.6525 (2)	0.29340 (17)	0.3544 (3)	0.0287 (5)
C6	0.5461 (3)	0.3821 (2)	0.3074 (4)	0.0420 (6)
H6A	0.4458	0.3570	0.2615	0.063*
H6B	0.5682	0.4235	0.2105	0.063*
H6C	0.5566	0.4225	0.4203	0.063*
C7	0.8053 (2)	0.30713 (17)	0.4229 (3)	0.0301 (5)
H7A	0.8448	0.3728	0.4420	0.036*
C8	0.8989 (2)	0.22389 (16)	0.4628 (3)	0.0261 (5)
H8A	1.0010	0.2353	0.5083	0.031*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Col	0.0207 (2)	0.0195 (2)	0.0153 (2)	-0.00038 (14)	0.00501 (16)	-0.00061 (14)
N1	0.0278 (9)	0.0278 (10)	0.0236 (9)	-0.0027 (7)	0.0086 (8)	0.0009 (8)
N2	0.0263 (9)	0.0267 (9)	0.0206 (10)	-0.0019 (7)	0.0053 (7)	-0.0036 (7)
N3	0.0242 (9)	0.0401 (11)	0.0181 (9)	-0.0131 (8)	0.0059 (7)	-0.0038 (8)
N4	0.0218 (8)	0.0219 (9)	0.0198 (9)	-0.0009 (7)	0.0053 (7)	-0.0008 (7)
C1	0.0169 (9)	0.0205 (10)	0.0201 (10)	-0.0007 (7)	0.0001 (8)	-0.0034 (8)
C2	0.0167 (9)	0.0191 (9)	0.0227 (11)	-0.0006 (7)	0.0064 (8)	0.0021 (8)
C3	0.0241 (10)	0.0258 (11)	0.0309 (12)	-0.0044 (8)	0.0056 (9)	-0.0032 (9)
C4	0.0193 (10)	0.0349 (12)	0.0386 (13)	-0.0010 (9)	0.0055 (9)	-0.0012 (10)
C5	0.0285 (11)	0.0283 (12)	0.0285 (11)	0.0055 (9)	0.0072 (9)	0.0017 (9)
C6	0.0370 (13)	0.0372 (14)	0.0511 (16)	0.0127 (11)	0.0118 (12)	0.0034 (12)
C7	0.0309 (11)	0.0213 (11)	0.0382 (13)	-0.0014 (9)	0.0102 (10)	-0.0010 (9)
C8	0.0217 (10)	0.0250 (11)	0.0306 (12)	-0.0024 (8)	0.0062 (9)	-0.0005 (9)

Geometric parameters (Å, °)

Co1—N2 ⁱ	2.1219 (18)	C3—C4	1.376 (3)
Co1—N2 ⁱⁱ	2.1219 (18)	C3—H3B	0.9300
Co1—N1 ⁱⁱⁱ	2.1229 (18)	C4—C5	1.389 (3)
Col—N1	2.1229 (18)	C4—H4A	0.9300
Col—N4	2.1385 (17)	C5—C7	1.384 (3)
Co1—N4 ⁱⁱⁱ	2.1385 (17)	C5—C6	1.503 (3)
N1-C1	1.152 (3)	С6—Н6А	0.9600
N2—C2	1.153 (3)	С6—Н6В	0.9600
N2-Co1 ^{iv}	2.1219 (18)	С6—Н6С	0.9600
N3—C2	1.308 (3)	C7—C8	1.375 (3)
N3—C1	1.314 (3)	С7—Н7А	0.9300
N4—C8	1.340 (3)	C8—H8A	0.9300

N4—C3	1.340 (3)		
N2 ⁱ —Co1—N2 ⁱⁱ	180.00 (7)	N2—C2—N3	175.1 (2)
N2 ⁱ —Co1—N1 ⁱⁱⁱ	89.76 (7)	N4—C3—C4	123.1 (2)
N2 ⁱⁱ —Co1—N1 ⁱⁱⁱ	90.24 (7)	N4—C3—H3B	118.5
N2 ⁱ —Co1—N1	90.24 (7)	C4—C3—H3B	118.5
N2 ⁱⁱ —Co1—N1	89.76 (7)	C3—C4—C5	120.2 (2)
N1 ⁱⁱⁱ —Co1—N1	180.00 (9)	C3—C4—H4A	119.9
N2 ⁱ —Co1—N4	89.84 (7)	C5—C4—H4A	119.9
N2 ⁱⁱ —Co1—N4	90.16 (7)	C7—C5—C4	116.5 (2)
N1 ⁱⁱⁱ —Co1—N4	90.06 (7)	C7—C5—C6	122.0 (2)
N1—Co1—N4	89.94 (7)	C4—C5—C6	121.5 (2)
N2 ⁱ —Co1—N4 ⁱⁱⁱ	90.16 (7)	С5—С6—Н6А	109.5
N2 ⁱⁱ —Co1—N4 ⁱⁱⁱ	89.84 (7)	С5—С6—Н6В	109.5
N1 ⁱⁱⁱ —Co1—N4 ⁱⁱⁱ	89.94 (7)	H6A—C6—H6B	109.5
N1—Co1—N4 ⁱⁱⁱ	90.06 (7)	С5—С6—Н6С	109.5
N4—Co1—N4 ⁱⁱⁱ	180.0	H6A—C6—H6C	109.5
C1—N1—Co1	159.33 (16)	H6B—C6—H6C	109.5
C2—N2—Co1 ^{iv}	163.96 (16)	C8—C7—C5	120.2 (2)
C2—N3—C1	117.09 (17)	С8—С7—Н7А	119.9
C8—N4—C3	116.84 (18)	С5—С7—Н7А	119.9
C8—N4—Co1	121.94 (13)	N4—C8—C7	123.2 (2)
C3—N4—Co1	121.22 (14)	N4—C8—H8A	118.4
N1—C1—N3	175.1 (2)	С7—С8—Н8А	118.4

Symmetry codes: (i) *x*, *y*, *z*-1; (ii) –*x*+2, –*y*, –*z*+2; (iii) –*x*+2, –*y*, –*z*+1; (iv) *x*, *y*, *z*+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C4—H4A····N3 ^v	0.93	2.57	3.487 (3)	168

Symmetry code: (v) -x+1, -y, -z+1.