metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(4,4"-difluoro-1,1':3',1"-terphenyl-2'carboxylato- κO)tetrakis(methanol- κO)calcium methanol tetrasolvate

Namseok Kim,^a Heeso Noh,^b Sungho Yoon^a* and Chan Ryang Park^a*

^aDepartment of Bio & Nano Chemistry, College of Natural Sciences, Kookmin University, 861-1 Jeongneung-dong, Seongbuk-gu, Seoul 136-702, Republic of Korea, and ^bDepartment of Physics, College of Natural Sciences, Kookmin University, 861-1 Jeongneung-dong, Seongbuk-gu, Seoul 136-702, Republic of Korea.

Correspondence e-mail: yoona@kookmin.ac.kr, crpark@kookmin.ac.kr

Received 21 November 2012; accepted 2 January 2013

Key indicators: single-crystal X-ray study; T = 200 K; mean σ (C–C) = 0.004 Å; *R* factor = 0.064; *wR* factor = 0.165; data-to-parameter ratio = 19.0.

In the title compound, $[Ca(C_{19}H_{11}F_2O_2)_2(CH_3OH)_4]$ -4CH₃OH, the Ca²⁺ ion is located on an inversion centre and is hexacoordinated by two O atoms of two 4,4"-difluoro-1,1':3',1"-terphenyl-2'-carboxylate ligands and four O atoms of four methanol ligands, forming a CaO₆ polyhedron with a slightly distorted octahedral coordination geometry. The Ca– O–C angle between the carboxylate group and the calcium ion is 171.8 (2)°. Two types of intermolecular hydrogen-bond interactions (C=O···H and O–H···O) between the carboxylate ligand, the methanol solvent molecules and the coordinating methanol ligands generate a two-dimensional network parallel to (001).

Related literature

For background to metal complexes with 4,4"-difluoro-1,1':3',1"-terphenyl-2'-carboxylate ligands, see: Kannan *et al.* (2011); Chavez *et al.* (2001). For mononuclear calcium complexes with carboxylate ligands, see: Perrin *et al.* (2009); Godino Salido *et al.* (2004); Huang *et al.* (2010). For their polymerization behavior, see: Jisha *et al.* (2010); Murugavel & Banerjee (2003); Yang *et al.* (2004).

V = 4599.5 (10) Å³

Mo $K\alpha$ radiation

 $0.32 \times 0.23 \times 0.14 \text{ mm}$

32627 measured reflections

5709 independent reflections

2624 reflections with $I > 2\sigma(I)$

 $\mu = 0.21 \text{ mm}^{-1}$

T = 200 K

 $R_{\rm int} = 0.143$

Z = 4

Experimental

Crystal data

 $[Ca(C_{19}H_{11}F_2O_2)_2(CH_4O)_4] \cdot 4CH_4O$ $M_r = 914.97$ Orthorhombic, *Pbca* a = 15.4611 (19) Å b = 14.2436 (18) Åc = 20.886 (3) Å

Data collection

```
Bruker SMART CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
T<sub>min</sub> = 0.521, T<sub>max</sub> = 1.00
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.064$	H atoms treated by a mixture of
$wR(F^2) = 0.165$	independent and constrained
S = 0.98	refinement
5709 reflections	$\Delta \rho_{\rm max} = 0.43 \text{ e} \text{ \AA}^{-3}$
300 parameters	$\Delta \rho_{\rm min} = -0.45 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Selected bond lengths (Å).

Ca1—O1 Ca1—O4	2.2693 (19) 2.325 (2)	Ca1-O3	2.346 (2)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} 03 - H1 \cdots 06^{ii} \\ 04 - H2 \cdots 05^{iii} \\ 06 - H6A \cdots 02^{iv} \\ 05 - H5A \cdots 02^{v} \end{array}$	0.89 (4) 0.91 (4) 0.84 0.84	1.78 (4) 1.76 (4) 1.96 1.92	2.636 (3) 2.660 (3) 2.804 (3) 2.755 (3)	162 (4) 172 (4) 177 170

Symmetry codes: (ii) x, y - 1, z; (iii) x + 1, y - 1, z; (iv) $-x + \frac{3}{2}, y + \frac{1}{2}, z$; (v) -x + 1, -y + 1, -z + 1.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics:

SHELXTL (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported by the International Collaborative R&D Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by Korea Government Ministry of Knowledge Economy (20118520010020).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RU2047).

References

Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

- Chavez, F. A., Que, L. & Tolman, W. B. (2001). Chem. Commun. pp. 111-112. Godino Salido, M. L., Arranz Mascarós, P., López Garzón, R., Gutiérrez
- Valero, M. D., Low, J. N., Gallagher, J. F. & Glidewell, C. (2004). Acta Cryst. B60, 46–64. Huang, L., Zhong, A. G., Chen, D. B., Qiu, D. & Liang, H. D. (2010). J. Mol.
- Struct. 984, 39–50.
 Jisha, K. R., Suma, S. & Sudarsanakumar, M. R. (2010). Polyhedron, 29, 3164–
- 3169.
- Kannan, S., Venkatachalam, G., Lee, H.-J., Kim, W., Koo, E., Do, Y. R. & Yoon, S. (2011). *Polyhedron*, **30**, 340–346.
- Murugavel, R. & Banerjee, S. (2003). Inorg. Chem. Commun. 6, 810-814.
- Perrin, C. L., Lau, J. S., Kim, Y.-J., Karri, P., Moore, C. & Rheingold, A. L. (2009). J. Am. Chem. Soc. 131, 13548–13554.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Yang, Y.-Y., Huang, Z.-Q., Szeto, L. & Wong, W. T. (2004). Appl. Organomet. Chem. 18, 97–98.

supporting information

Acta Cryst. (2013). E69, m122-m123 [doi:10.1107/S1600536813000044]

Bis(4,4''-difluoro-1,1':3',1''-terphenyl-2'-carboxylato- κO)tetrakis(methanol- κO)calcium methanol tetrasolvate

Namseok Kim, Heeso Noh, Sungho Yoon and Chan Ryang Park

S1. Comment

Octahedral mononuclear transition metal complexes with ligated carboxylates are well known structure for basic of inorganic chemistry (Chavez *et al.*, 2001; Kannan *et al.*, 2011). Few mononuclear calcium complexes with carboxylate ligands (Perrin *et al.*, 2009; Godino Salido *et al.*, 2004; Huang *et al.*, 2010) are reported possible due to easy polymerization behavior (Murugavel *et al.*, 2003; Jisha *et al.*, 2010; Yang *et al.*, 2004). Here, we report the structure of an octahedrally coordinated Ca^{2+} complex which crystallizes in the orthorhombic space group *Pbca* with one half molecule in the asymmetric unit. The selected bond distances and angles of $[Ca(C_{19}H_{11}O_2F_2)_2(CH_4O)_4]$ are given in Table 1 with the structure of the molecule shown, in Fig 1, and its crystal packing involving strong intermolecular C=O···H, O—H···O interactions are detailed in Fig 2 and Table 2.

S2. Experimental

To a solution of sodium 4,4"-difluoro-1,1':3',1"-terphenyl-2'-carboxylate (0.200 g, 0.602 mmol) in 15 ml of methanol, $Ca(CF_3SO_3)_2$ (0.204 g, 0.602 mmol) was added at room temperature. After stirring for 30 min, colorless block type crystals were collected from slow evaporization. Yield = 51%, (0.281 g).

S3. Refinement

H atoms were placed at calculated positions and refined as riding with C–H(aromatic) = 0.95 Å, C–H(CH₃) = 0.98 Å, and with $U_{iso}(H) = 1.2 U_{eq}(C)$ or 1.5 $U_{eq}(C)$ for methyl groups. The O-bound H atoms of methanol were located in a difference Fourier map and refined isotropically.

Figure 1

The molecular structure of the title compound, showing the atom-numbering and with displacement ellipsoids drawn at the 50% probability level.

Figure 2

A crystal packing diagram of the title compound, showing the hydrogen bonds and with displacement ellipsoids drawn at the 50% probability level.

Bis(4,4"-difluoro-1,1':3',1"-terphenyl-2'-carboxylato- κO)tetrakis(methanol-κO)calcium methanol tetrasolvate

Crystal data	
$[Ca(C_{19}H_{11}F_{2}O_{2})_{2}(CH_{4}O)_{4}]\cdot 4CH_{4}O$	F(000) = 1928
$M_r = 914.97$	$D_{\rm x} = 1.321 {\rm Mg} {\rm m}^{-3}$
Orthorhombic, Pbca	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: -p 2ac 2ab	Cell parameters from 2898 reflections
a = 15.4611 (19) Å	$\theta = 2.2 - 22.0^{\circ}$
b = 14.2436(18) Å	$\mu = 0.21 \text{ mm}^{-1}$
c = 20.886 (3) Å	T = 200 K
V = 4599.5 (10) Å ³	Block, colorless
Z=4	$0.32 \times 0.23 \times 0.14 \text{ mm}$
Data collection	
Bruker SMART CCD area-detector	32627 measured reflections
diffractometer	5709 independent reflections
Radiation source: fine-focus sealed tube	2624 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.143$
phi and ω scans	$\theta_{\text{max}} = 28.3^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$
Absorption correction: multi-scan	$h = -14 \rightarrow 20$
(SADABS; Bruker, 2000)	$k = -18 \rightarrow 18$
$T_{\min} = 0.521, \ T_{\max} = 1.00$	$l = -23 \rightarrow 27$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.064$	Hydrogen site location: inferred from
$wR(F^2) = 0.165$	neighbouring sites
S = 0.98	H atoms treated by a mixture of independent
5709 reflections	and constrained refinement
300 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0644P)^2]$
0 restraints	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.43 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.45 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used

conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	v	Z	$U_{ m iso}$ */ $U_{ m eq}$
Cal	1.0000	0.0000	0.5000	0.0296 (2)
02	0.79691 (12)	0.20766 (14)	0.46541 (10)	0.0359 (5)
01	0.92097 (13)	0.12979 (14)	0.47660 (10)	0.0382 (6)
03	0.94225 (15)	-0.07389 (16)	0.40917 (11)	0.0416 (6)
O4	1.12075 (14)	0.04631 (15)	0.44165 (11)	0.0436 (6)
F2	1.02858 (13)	0.35764 (16)	0.71251 (10)	0.0657 (6)
F1	0.68180 (14)	0.03347 (16)	0.22211 (11)	0.0698 (7)
C15	0.7834 (2)	0.2459 (2)	0.27894 (15)	0.0414 (8)
H15	0.7766	0.3120	0.2754	0.050*
C1	0.87736 (19)	0.1973 (2)	0.45564 (14)	0.0293 (7)
C8	0.99166 (19)	0.3377 (2)	0.51732 (15)	0.0349 (8)
C2	0.92369 (18)	0.27084 (19)	0.41636 (15)	0.0297 (7)
C6	0.9544 (2)	0.3437 (2)	0.31427 (17)	0.0439 (9)
H6	0.9460	0.3476	0.2693	0.053*
C14	0.8506(2)	0.2098 (2)	0.31613 (15)	0.0353 (8)
C3	0.97877 (18)	0.3349 (2)	0.44720 (16)	0.0327 (8)
C7	0.91018 (19)	0.2756 (2)	0.35003 (15)	0.0344 (8)
C5	1.0100 (2)	0.4050 (2)	0.34434 (17)	0.0455 (9)
H5	1.0407	0.4501	0.3197	0.055*
C9	0.9219 (2)	0.3391 (2)	0.56012 (16)	0.0368 (8)
H9	0.8647	0.3351	0.5436	0.044*
C13	1.0747 (2)	0.3425 (2)	0.54382 (17)	0.0400 (8)
H13	1.1235	0.3414	0.5161	0.048*
C19	0.8596 (2)	0.1135 (2)	0.31971 (16)	0.0451 (9)

H19	0.9049	0.0876	0.3448	0.054*
C10	0.9335 (2)	0.3462 (2)	0.62520 (16)	0.0428 (8)
H10	0.8855	0.3479	0.6535	0.051*
C4	1.0216 (2)	0.4017 (2)	0.40898 (18)	0.0426 (9)
H4	1.0595	0.4455	0.4287	0.051*
C11	1.0168 (2)	0.3508 (2)	0.64801 (17)	0.0454 (9)
C12	1.0876 (2)	0.3486 (2)	0.60847 (17)	0.0439 (9)
H12	1.1444	0.3512	0.6256	0.053*
C17	0.7379 (2)	0.0923 (3)	0.25238 (17)	0.0479 (9)
C21	1.1492 (2)	0.1374 (2)	0.42276 (18)	0.0514 (10)
H21A	1.1019	0.1703	0.4011	0.077*
H21B	1.1984	0.1314	0.3934	0.077*
H21C	1.1669	0.1730	0.4607	0.077*
C20	0.9850(2)	-0.1026 (3)	0.35239 (19)	0.0562 (10)
H20A	1.0103	-0.0477	0.3312	0.084*
H20B	0.9433	-0.1327	0.3236	0.084*
H20C	1.0309	-0.1474	0.3632	0.084*
C18	0.8036 (2)	0.0540 (2)	0.28735 (17)	0.0503 (10)
H18	0.8108	-0.0122	0.2895	0.060*
C16	0.7266 (2)	0.1872 (3)	0.24715 (16)	0.0472 (9)
H16	0.6808	0.2123	0.2222	0.057*
05	0.24558 (14)	0.91787 (15)	0.43929 (12)	0.0451 (6)
H5A	0.2373	0.8828	0.4711	0.068*
O6	0.78040 (14)	0.86827 (15)	0.41295 (12)	0.0483 (6)
H6A	0.7576	0.8192	0.4275	0.073*
C23	0.7269 (2)	0.9463 (2)	0.42684 (19)	0.0504 (10)
H23A	0.7059	0.9417	0.4710	0.076*
H23B	0.6775	0.9468	0.3974	0.076*
H23C	0.7601	1.0044	0.4217	0.076*
C22	0.2469 (2)	0.8631 (3)	0.38278 (18)	0.0554 (10)
H22A	0.2503	0.9045	0.3454	0.083*
H22B	0.1940	0.8254	0.3803	0.083*
H22C	0.2974	0.8215	0.3835	0.083*
H2	1.163 (2)	0.003 (3)	0.4370 (19)	0.078 (13)*
H1	0.892 (3)	-0.104 (3)	0.4134 (19)	0.084 (15)*
		~ /	× /	× /

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cal	0.0215 (4)	0.0302 (4)	0.0370 (5)	0.0015 (4)	0.0028 (4)	0.0044 (4)
O2	0.0218 (12)	0.0384 (12)	0.0474 (15)	0.0003 (9)	0.0029 (9)	0.0063 (11)
O1	0.0323 (13)	0.0324 (12)	0.0498 (15)	0.0075 (10)	-0.0001 (10)	0.0092 (11)
O3	0.0317 (14)	0.0506 (15)	0.0424 (15)	-0.0045 (12)	0.0031 (10)	-0.0080 (11)
O4	0.0311 (13)	0.0363 (13)	0.0635 (17)	0.0029 (11)	0.0164 (11)	0.0084 (12)
F2	0.0575 (14)	0.0938 (17)	0.0456 (15)	-0.0085 (12)	-0.0073 (10)	-0.0017 (12)
F1	0.0726 (16)	0.0703 (15)	0.0663 (16)	-0.0189 (12)	-0.0069 (12)	-0.0205 (12)
C15	0.049 (2)	0.0419 (19)	0.034 (2)	-0.0009 (17)	0.0049 (16)	0.0006 (16)
C1	0.0267 (18)	0.0323 (16)	0.0289 (18)	-0.0018 (14)	-0.0024 (13)	-0.0011 (14)

C8	0.0302 (18)	0.0283 (16)	0.046 (2)	-0.0047 (14)	0.0023 (15)	-0.0028 (14)
C2	0.0221 (16)	0.0286 (16)	0.039 (2)	0.0030 (13)	0.0053 (13)	0.0005 (14)
C6	0.046 (2)	0.048 (2)	0.038 (2)	-0.0018 (17)	0.0053 (16)	0.0051 (17)
C14	0.038 (2)	0.0380 (18)	0.0298 (19)	0.0003 (15)	0.0071 (14)	0.0016 (15)
C3	0.0244 (17)	0.0344 (17)	0.039 (2)	0.0024 (14)	0.0027 (14)	0.0016 (15)
C7	0.0326 (19)	0.0334 (17)	0.037 (2)	0.0036 (14)	0.0092 (14)	0.0017 (15)
C5	0.050 (2)	0.0404 (19)	0.046 (2)	-0.0122 (17)	0.0131 (17)	0.0055 (17)
C9	0.0301 (19)	0.0355 (18)	0.045 (2)	0.0006 (14)	0.0005 (15)	-0.0024 (15)
C13	0.0250 (18)	0.0425 (19)	0.052 (2)	-0.0040 (15)	0.0025 (15)	-0.0006 (17)
C19	0.055 (2)	0.0374 (19)	0.043 (2)	0.0013 (17)	-0.0025 (17)	0.0010 (16)
C10	0.036 (2)	0.047 (2)	0.045 (2)	0.0004 (15)	0.0014 (16)	-0.0009 (17)
C4	0.035 (2)	0.0391 (19)	0.053 (2)	-0.0065 (15)	0.0053 (16)	-0.0005 (17)
C11	0.050 (2)	0.049 (2)	0.038 (2)	-0.0034 (17)	-0.0063 (17)	-0.0002 (17)
C12	0.032 (2)	0.051 (2)	0.049 (2)	-0.0045 (16)	-0.0059 (16)	-0.0017 (18)
C17	0.049 (2)	0.056 (2)	0.039 (2)	-0.0108 (19)	0.0065 (17)	-0.015 (2)
C21	0.051 (2)	0.044 (2)	0.060 (3)	-0.0037 (18)	0.0096 (18)	0.0131 (18)
C20	0.053 (2)	0.053 (2)	0.062 (3)	0.0039 (19)	0.0097 (19)	-0.011 (2)
C18	0.065 (3)	0.037 (2)	0.049 (2)	-0.0060 (19)	0.0053 (19)	-0.0065 (18)
C16	0.047 (2)	0.059 (2)	0.036 (2)	0.0054 (18)	-0.0005 (17)	-0.0051 (18)
05	0.0352 (13)	0.0449 (14)	0.0553 (17)	0.0028 (11)	0.0104 (12)	0.0055 (12)
O6	0.0331 (14)	0.0410 (13)	0.0710 (18)	-0.0088 (11)	0.0044 (11)	0.0040 (13)
C23	0.045 (2)	0.039 (2)	0.067 (3)	-0.0086 (17)	0.0080 (18)	0.0013 (18)
C22	0.054 (2)	0.060 (2)	0.052 (3)	0.006 (2)	0.0038 (18)	0.001 (2)

Geometric parameters (Å, °)

Cal-Oli	2.2692 (19)	С9—С10	1.375 (4)
Ca1—O1	2.2693 (19)	С9—Н9	0.9500
Ca1—O4 ⁱ	2.325 (2)	C13—C12	1.368 (4)
Ca1—O4	2.325 (2)	С13—Н13	0.9500
Ca1—O3	2.346 (2)	C19—C18	1.388 (4)
Ca1—O3 ⁱ	2.346 (2)	C19—H19	0.9500
O2—C1	1.269 (3)	C10-C11	1.375 (5)
O1—C1	1.253 (3)	C10—H10	0.9500
O3—C20	1.418 (4)	C4—H4	0.9500
O3—H1	0.89 (4)	C11—C12	1.371 (5)
O4—C21	1.425 (4)	C12—H12	0.9500
O4—H2	0.91 (4)	C17—C18	1.364 (5)
F2—C11	1.363 (4)	C17—C16	1.367 (5)
F1—C17	1.362 (4)	C21—H21A	0.9800
C15—C16	1.382 (5)	C21—H21B	0.9800
C15—C14	1.395 (4)	C21—H21C	0.9800
С15—Н15	0.9500	C20—H20A	0.9800
C1—C2	1.511 (4)	C20—H20B	0.9800
C8—C13	1.400 (4)	С20—Н20С	0.9800
C8—C9	1.401 (4)	C18—H18	0.9500
C8—C3	1.479 (4)	C16—H16	0.9500
C2—C7	1.403 (4)	O5—C22	1.415 (4)

C2—C3	1.404 (4)	O5—H5A	0.8400
C6—C5	1.377 (5)	O6—C23	1.416 (4)
C6—C7	1.403 (4)	O6—H6A	0.8400
С6—Н6	0.9500	С23—Н23А	0.9800
C14—C19	1.380 (4)	С23—Н23В	0.9800
C14—C7	1.492 (4)	С23—Н23С	0.9800
C3—C4	1.408 (4)	C22—H22A	0.9800
C5—C4	1.363 (5)	С22—Н22В	0.9800
С5—Н5	0.9500	C22—H22C	0.9800
$O1^{i}$ Cal $O1$	180.00 (8)	C12 C13 H13	110 1
$O_1 = Ca_1 = O_1$	130.00(8)	$C_{12} - C_{13} - H_{13}$	119.1
O1 - Ca1 - O4	95.07 (8)	$C_{0} - C_{10} - C_{10}$	119.1
01 - Ca1 - 04	84.93 (8)	C14 - C19 - C18	121.2 (3)
01-Cal-04	84.93 (8)	C14—C19—H19	119.4
OI—Cal—O4	95.07 (8)	C18—C19—H19	119.4
O4 ¹ —Ca1—O4	180.0	C9—C10—C11	117.9 (3)
$O1^{i}$ —Ca1—O3	90.78 (8)	C9—C10—H10	121.0
O1—Ca1—O3	89.22 (8)	C11—C10—H10	121.0
O4 ⁱ —Ca1—O3	89.48 (8)	C5—C4—C3	121.5 (3)
O4—Ca1—O3	90.52 (8)	C5—C4—H4	119.2
O1 ⁱ —Ca1—O3 ⁱ	89.22 (8)	C3—C4—H4	119.2
O1—Ca1—O3 ⁱ	90.78 (8)	F2—C11—C12	119.4 (3)
O4 ⁱ —Ca1—O3 ⁱ	90.52 (8)	F2-C11-C10	118.1 (3)
$O4$ — $Ca1$ — $O3^i$	89.48 (8)	C12—C11—C10	122.5 (3)
$03-Ca1-03^{i}$	180.0	C13—C12—C11	1187(3)
C1-O1-Ca1	171.8 (2)	C13 - C12 - H12	120.6
$C_{20} - C_{31}$	1789(2)	C_{11} C_{12} H_{12}	120.0
$C_{20} = 03 = Cal$	120.9(2) 110(3)	F1 C17 C18	120.0 118.4(3)
$C_{20} = 0.03 = 111$	110(3) 118(2)	$F_1 = C_1 7 = C_{16}$	110.4(3)
Cal = 03 = HI	110(3) 1206(2)	$\Gamma_{1} = C_{1} = C_{10}$	119.3(3)
$C_2I = 04 = C_{a1}$	130.0 (2)	C13 - C17 - C10	122.2 (5)
$C_2I = 04 = H_2$	112 (2)	$04 - C_{21} - H_{21}$	109.5
Cal—O4—H2	116 (2)	04—C21—H21B	109.5
C16—C15—C14	121.2 (3)	H21A—C21—H21B	109.5
C16—C15—H15	119.4	O4—C21—H21C	109.5
C14—C15—H15	119.4	H21A—C21—H21C	109.5
O1—C1—O2	124.1 (3)	H21B—C21—H21C	109.5
O1—C1—C2	117.8 (3)	O3—C20—H20A	109.5
O2—C1—C2	118.1 (3)	O3—C20—H20B	109.5
C13—C8—C9	117.0 (3)	H20A—C20—H20B	109.5
C13—C8—C3	121.1 (3)	O3—C20—H20C	109.5
C9—C8—C3	121.9 (3)	H20A—C20—H20C	109.5
C7—C2—C3	120.8 (3)	H20B-C20-H20C	109.5
C7—C2—C1	119.9 (3)	C17—C18—C19	118.7(3)
$C_{3} - C_{2} - C_{1}$	119.3 (3)	C17—C18—H18	120.6
5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	120.0 (3)	C19—C18—H18	120.6
C5-C6-H6	120.0 (3)	C17 - C16 - C15	120.0
C7 C6 H6	120.0	C17 C16 H16	120.7
$C_1 = C_1 $	120.0	$C_{17} = C_{10} = 1110$	120.7
019-014-013	110.1 (3)	С13—С10—П10	120.7

C19—C14—C7	122.4 (3)	С22—О5—Н5А	109.5
C15—C14—C7	119.5 (3)	С23—О6—Н6А	109.5
C2—C3—C4	117.7 (3)	O6—C23—H23A	109.5
C2—C3—C8	123.6 (3)	O6—C23—H23B	109.5
C4—C3—C8	118.7 (3)	H23A—C23—H23B	109.5
C6—C7—C2	119.1 (3)	O6—C23—H23C	109.5
C6—C7—C14	118.9 (3)	H23A—C23—H23C	109.5
C2—C7—C14	122.0 (3)	H23B—C23—H23C	109.5
C4—C5—C6	120.8 (3)	O5—C22—H22A	109.5
С4—С5—Н5	119.6	O5—C22—H22B	109.5
С6—С5—Н5	119.6	H22A—C22—H22B	109.5
С10—С9—С8	122.1 (3)	O5—C22—H22C	109.5
С10—С9—Н9	119.0	H22A—C22—H22C	109.5
С8—С9—Н9	119.0	H22B—C22—H22C	109.5
C12—C13—C8	121.8 (3)		

Symmetry code: (i) -x+2, -y, -z+1.

Hydrogen-bond geometry (Å, °)

<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
0.89 (4)	1.78 (4)	2.636 (3)	162 (4)
0.91 (4)	1.76 (4)	2.660 (3)	172 (4)
0.84	1.96	2.804 (3)	177
0.84	1.92	2.755 (3)	170
	<i>D</i> —H 0.89 (4) 0.91 (4) 0.84 0.84	D—H H···A 0.89 (4) 1.78 (4) 0.91 (4) 1.76 (4) 0.84 1.96 0.84 1.92	D—H H···A D···A 0.89 (4) 1.78 (4) 2.636 (3) 0.91 (4) 1.76 (4) 2.660 (3) 0.84 1.96 2.804 (3) 0.84 1.92 2.755 (3)

Symmetry codes: (ii) *x*, *y*-1, *z*; (iii) *x*+1, *y*-1, *z*; (iv) -*x*+3/2, *y*+1/2, *z*; (v) -*x*+1, -*y*+1, -*z*+1.