metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Di- μ -chlorido-bis{[2-(di-*tert*-butylphosphanyl)biphenyl-3-yl- $\kappa^2 C^3$,*P*]palladium(II)} dichloromethane disolvate

Cedric W. Holzapfel^a and Bernard Omondi^{b*}

^aResearch Centre for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg, Auckland Park Kingsway Campus, PO Box 524, Auckland Park 2006, South Africa, and ^bSchool of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa Correspondence e-mail: owaga@ukzn.ac.za

Received 22 November 2012; accepted 18 December 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.005 Å; R factor = 0.039; wR factor = 0.094; data-to-parameter ratio = 22.9.

The asymmetric unit of the title compound, $[Pd_2Cl_2(C_{20}H_{26}P)_2] \cdot 2CH_2Cl_2$, contains one half-molecule of the palladium complex and a dichloromethane solvent molecule. In the complex, two Pd^{II} atoms are bridged by two Cl atoms, with the other two coordination sites occupied by a C atom of the biphenyl system and a P atom, resulting in a distorted square-planar coordination geometry of the Pd^{II} atom and a cyclometallated four-membered ring. The Pd₂Cl₂ unit is located about an inversion center. The planes of the rings of the biphenyl system make a dihedral angle of 66.36 (11)°.

Related literature

For background to palladacycles, see: Beletskaya & Cheprakov (2004); Orlye & Jutland (2005); Herrmann *et al.* (2003). For their applications as catalysts for methoxycarbonylation, see: Omondi *et al.* (2011); Williams *et al.* (2008). For related structures with Pd^{II} in *ortho*-position, see: Sole *et al.* (2004); Mohr *et al.* (2006); Bennett *et al.* (2010); Christmann *et al.* (2006); Garrou *et al.* (1981).

Experimental

Crystal data

 $[Pd_2Cl_2(C_{20}H_{26}P)_2] \cdot 2CH_2Cl_2$ $M_r = 1048.31$ Triclinic, $P\overline{1}$ a = 9.4741 (15) Å b = 10.1805 (15) Å c = 12.0677 (18) Å $\alpha = 103.250$ (4)° $\beta = 95.443$ (3)°

Data collection

Bruker X8 APEXII 4K KappaCCD	1
diffractometer	5
Absorption correction: multi-scan	4
(SADABS; Bruker, 2008)	I
$T_{\min} = 0.905, T_{\max} = 0.975$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.094$ S = 1.015515 reflections 241 parameters $\begin{array}{l} \gamma = 97.080 \ (3)^{\circ} \\ V = 1115.2 \ (3) \ \text{\AA}^{3} \\ Z = 1 \\ \text{Mo } \kappa \alpha \text{ radiation} \\ \mu = 1.27 \ \text{mm}^{-1} \\ T = 100 \ \text{K} \\ 0.08 \times 0.07 \times 0.02 \ \text{mm} \end{array}$

15104 measured reflections 5515 independent reflections 4344 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.049$

 $\begin{array}{l} 1 \mbox{ restraint} \\ \mbox{H-atom parameters constrained} \\ \Delta \rho_{max} = 1.16 \mbox{ e } \mbox{ Å}^{-3} \\ \Delta \rho_{min} = -1.09 \mbox{ e } \mbox{ Å}^{-3} \end{array}$

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT-Plus* (Bruker, 2008); data reduction: *SAINT-Plus* and *XPREP* (Bruker, 2008); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 2012); software used to prepare material for publication: *WinGX* (Farrugia, 2012).

We would like to acknowledge the University of Johannesburg for financial assistance.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KJ2217).

References

- Beletskaya, I. P. & Cheprakov, A. V. (2004). J. Organomet. Chem. 689, 4055– 4082.
- Bennett, M. A., Bhargava, S. K., Bond, A. M., Burgar, I. M., Guo, S.-X., Kar, G., Priv'er, S. H., Wagler, J., Willis, A. C. & Torriero, A. A. J. (2010). *Dalton Trans.* **39**, 9079–9090.
- Bruker (2008). APEX2, SAINT-Plus, SADABS and XPREP. Bruker AXS Inc, Madison, Wisconsin, USA.
- Christmann, U., Pantazis, D. A., Benet-Buchholz, J., McGrady, J. E., Maseras, F. & Vilar, R. (2006). J. Am. Chem. Soc. **128**, 6376–6390.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Garrou, P. E. (1981). Chem. Rev. 81, 229-266.
- Herrmann, W. A., Öfele, K., Von Preysing, D. & Schneider, S. K. (2003). J. Organomet. Chem. 687, 229–248.
- Mohr, F., Priver, S. H., Bhargava, S. K. & Bennett, M. A. (2006). Coord. Chem. Rev. 250, 1851–1888.
- Omondi, B., Shaw, M. L. & Holzapfel, C. W. (2011). J. Organomet. Chem. 696, 3091–3096.
- Orlye, F. d' & Jutland, A. (2005). Tetrahedron, 61, 9670–9678.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sole, D., Vallverdu', L., Solans, X., Font-Bardia, M. & Bonjoch, J. (2004). Organometallics, 23, 1438–1447.
- Williams, D. G. B., Shaw, M. L., Green, M. J. & Holzapfel, C. W. (2008). Angew. Chem. Int. Ed. 47, 560–563.

supporting information

Acta Cryst. (2013). E69, m86 [doi:10.1107/S1600536812051136]

Di- μ -chlorido-bis{[2-(di-*tert*-butylphosphanyl)biphenyl-3-yl- $\kappa^2 C^3$,*P*]palladium(II)} dichloromethane disolvate

Cedric W. Holzapfel and Bernard Omondi

S1. Comment

Palladacycles (Beletskaya & Cheprakov, 2004; Orlye & Jutland, 2005; Herrmann *et al.*, 2003) appear as long-sought thermally stable and structurally defined catalysts for Heck, cross-coupling and for methoxycarbonylation of alkenes (Omondi *et al.*, 2011, Williams *et al.*, 2008). However, with the exception of 2-(2'-di-*tert*-butylphosphine)bipheryl palladium(II) acetate, shown in the Fluka and Aldrich catalogues, this complex and other four membered ring phosphapalladacycles (Garrou, 1981) have shown little success in this regard.

The title compound crystallizes as a dichloromethane solvate, with half a molecule of the complex in the asymmetric unit, in which the the two Pd centres are bridged by two chlorides and are part of a constrained four-membered ring along with two carbon atoms of a phenyl ring and a phosphorus atom (Fig. 1). The four-membered rings are *trans* across the planar Pd₂Cl₂ unit, the planar Pd₂Cl₂ unit being on the center of inversion at 1/2, 0, 0. The coordination around the palladium atom is distorted square planar, with the angles around the metal deviating significantly from orthogonallity yet very planar. The smallest of the angles around the metal centre is $68.84 (10)^{\circ}$ and is similar to that previously reported dinuclear cyclopalladate, $68.89 (3)^{\circ}$ (Christmann *et al.*, 2006) and of related *ortho*-metallated Pd-structures from literature (Sole *et al.*, 2004; Mohr *et al.*, 2006; Bennett *et al.*, 2010). The other angles around the Pd centers are 85.85 (11), 95.0 (2) and 106.44 (3)° all probably due to steric hindrance caused by *tert*-butyl groups. The Pd—C distance (1.978 (3) Å) is shorter than the Pd—P distance (2.2327 (9) Å) which is in good agreement with the Pd—P separation in similar four-membered compounds with a *sp*²-hybridized carbon. The carbon-phosphorus distance that is part of the constrained ring is significantly shorter [1.824 (3) Å] compared to the other two [1.860 (3) and 1.879 (4) Å] as observed in most cyclopalladates. The planes of the phenyl rings of the biphenyl moiety have a dihedral angle of 66.36 (11)°.

S2. Experimental

(2-Biphenyl)-di-*tert*-butylphosphine (597 mg, 2 mmol) was added to the solution of lithium chloride (170 mg, 4 mmol) and palladium chloride (355 mg, 2 mmol) in 2:1 methanol-dichloromethane (15 ml) under argon. The mixture was heated under reflux under argon for 1 h. The solvent was evaporated *in vacuo*. To the residue was added dichloromethane (15 ml) and water (10 ml) and the mixture stirred for 30 minutes. The organic phase was separated, dried (anhydrous sodium sulfate) and the solvent evaporated to leave a residue (823 mg) which was chromographed over silica gel (Davisil, 20 g) using 5% methanol in dichloromethane as mobile phase. The eluent (120 ml) was evaporated to leave 1 as a colourless crystalline mass (676 mg, 82%). Good quality crystals (m.p. 162–165 °C, decomp) were obtained by diffusion of the vapours of ether into a solution of the title compound in dichloromethane at room temperature.

1H NMR (300 MHz, CDCl3): δ = 1.37 (d, *J*PH = 1.3 Hz, 36H, C(CH₃)₃), 7.05 (d, J = 3.2 Hz, 2H), 7.25 (dd, J = 7.5 and 3.2 Hz, 2H), 7.30–7.50 (m, 8H), 7.58 (t, J = 7.5 Hz, 2H), 7.85 (t, J = 7.5 Hz, 2H);

¹³C{¹H} NMR (75 Mz, CDCl₃): δ = 30.37 (d, *J*PC = 5 Hz, C(CH₃)₃), 35.97 (d, *J*PC = 12 Hz, C(CH₃)₃), 127.44 (d, *J*PC = 8.5 Hz, C-aromatic), 127.78 (s, C-aromatic), 127.44 (d, *J*PC = 8.5 Hz, C-aromatic), 127.78 (s, C-aromatic), 128.18 (s, C-aromatic), 129.19 (s, C-aromatic), 129.28 (s, C-aromatic), 133.55 (d, *J*PC = 26.0 Hz, C- aromatic), 138.55 (d, *J*PC = 32.0, C-aromatic), 141.90 (d, *J*PC = 3.9 Hz, C-aromatic), 142.81 (s, C- aromatic);

³¹P{1H} (97 MHz, CDCl₃): δ = -17.80.

The title compound was also obtained in essentially quantitative yield by reacting the above phosphine with an equimolar amount of (*cis*, *cis*-1,5-cyclooctadiene) palladium (ll)-chloride in dichloromethane under reflux (1 hr) or at room temperature (18 hrs).

S3. Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.98 Å for Me H atoms, 0.99 Å for Methylene H atoms and 0.95 Å for aromatic H atoms; $U_{iso}(H) = 1.2U_{eq}(C)$ (1.5 for Me groups)] and were included in the refinement in the riding model approximation.

Figure 1

The molecular structure and atom-numbering scheme for (I), with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms have been omited for clarity. The assymetric unit only has only half a molecule of the palladium complex, the other half generated by the symetry operator -x, -y, -z.

Di- μ -chlorido-bis{[2-(di-tert-butylphosphanyl)biphenyl-3-yl- $\kappa^2 C^3$,P]palladium(II)} dichloromethane disolvate

Z = 1
F(000) = 532
$D_{\rm x} = 1.561 {\rm ~Mg} {\rm ~m}^{-3}$
Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Cell parameters from 15104 reflections
$\theta = 1.8 - 28.3^{\circ}$
$\mu = 1.27 \text{ mm}^{-1}$
T = 100 K
Block, yellow
$0.08 \times 0.07 \times 0.02 \text{ mm}$

Data collection

Bruker X8 APEXII 4K KappaCCD diffractometer Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2008) $T_{min} = 0.905, T_{max} = 0.975$ 15104 measured reflections <i>Refinement</i>	5515 independent reflections 4344 reflections with $I > 2\sigma(I)$ $R_{int} = 0.049$ $\theta_{max} = 28.3^{\circ}, \theta_{min} = 1.8^{\circ}$ $h = -12 \rightarrow 12$ $k = -13 \rightarrow 13$ $l = -15 \rightarrow 16$
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.039$	Hydrogen site location: inferred from
$wR(F^2) = 0.094$	neighbouring sites
S = 1.01	H-atom parameters constrained
5515 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0476P)^2]$
241 parameters	where $P = (F_o^2 + 2F_c^2)/3$
1 restraint	$(\Delta/\sigma)_{max} = 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 1.16$ e Å ⁻³
direct methods	$\Delta\rho_{min} = -1.09$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. >>> The Following ALERTS were generated <<< Format: alert-number_ALERT_alert-type_alert-level text 232_ALERT_2_C Hirshfeld Test Diff (M—X) Pd1 – C11.. 5.30 su Apllying DELU restraints does not remove this alert. 250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor … 2.23 Visual inspections of ellipsoids show no abnormalities. *R* = 3.8%. 911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 3 912_ALERT_4_C Missing # of FCF Reflections Above STh/L= 0.600 62 Noted, no measures taken

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.4506 (3)	0.2051 (4)	0.3645 (3)	0.0143 (7)	
C2	0.5538 (3)	0.1684 (4)	0.2933 (3)	0.0144 (7)	
C3	0.6977 (3)	0.1820 (4)	0.3385 (3)	0.0178 (7)	
H3	0.7687	0.1578	0.2902	0.021*	
C4	0.7336 (3)	0.2319 (4)	0.4564 (3)	0.0189 (7)	
H4	0.831	0.2437	0.4889	0.023*	
C5	0.6289 (3)	0.2652 (4)	0.5278 (3)	0.0178 (7)	
Н5	0.6566	0.2975	0.6082	0.021*	
C6	0.4844 (3)	0.2521 (3)	0.4840 (3)	0.0133 (7)	
C7	0.3771 (3)	0.2810 (4)	0.5662 (3)	0.0161 (7)	
C8	0.3568 (4)	0.1982 (4)	0.6430 (3)	0.0198 (8)	
H8	0.4105	0.1251	0.6417	0.024*	

C9	0.2587 (4)	0.2219 (4)	0.7209 (3)	0.0245 (8)
H9	0.2457	0.1656	0.773	0.029*
C10	0.1794 (4)	0.3281 (4)	0.7226 (3)	0.0288 (9)
H10	0.1098	0.3426	0.7741	0.035*
C11	0.2018 (4)	0.4135 (4)	0.6489 (3)	0.0259 (9)
H11	0.1495	0.4878	0.6517	0.031*
C12	0.3009 (4)	0.3899 (4)	0.5708 (3)	0.0201 (8)
H12	0.3164	0.4484	0.5207	0.024*
C13	0.1586 (3)	0.0291 (4)	0.2698 (3)	0.0161 (7)
C14	0.2346 (4)	-0.0917 (4)	0.2839 (3)	0.0221 (8)
H14A	0.3069	-0.0628	0.3518	0.033*
H14B	0.2812	-0.1234	0.2156	0.033*
H14C	0.1642	-0.1661	0.2933	0.033*
C15	0.0822 (4)	0.0747 (4)	0.3750 (3)	0.0215 (8)
H15A	0.0348	0.1531	0.3674	0.032*
H15B	0.1524	0.1008	0.4443	0.032*
H15C	0.0104	-0.0006	0.3809	0.032*
C16	0.0503 (4)	-0.0164 (4)	0.1600 (3)	0.0210 (8)
H16A	-0.0155	-0.097	0.1637	0.032*
H16B	0.1018	-0.0389	0.0931	0.032*
H16C	-0.0043	0.0577	0.1532	0.032*
C17	0.2358 (4)	0.3161 (4)	0.2158 (3)	0.0178 (7)
C18	0.1118 (4)	0.3638 (4)	0.2795 (3)	0.0239 (8)
H18A	0.1377	0.3755	0.3622	0.036*
H18B	0.0258	0.2954	0.2527	0.036*
H18C	0.0927	0.451	0.2645	0.036*
C19	0.1888 (4)	0.2829 (4)	0.0851 (3)	0.0217 (8)
H19A	0.1082	0.208	0.0641	0.033*
H19B	0.2692	0.2557	0.0442	0.033*
H19C	0.1593	0.3638	0.0641	0.033*
C20	0.3659 (4)	0.4295 (4)	0.2461 (3)	0.0207 (8)
H20A	0.3418	0.5083	0.2185	0.031*
H20B	0.4469	0.3958	0.2095	0.031*
H20C	0.3922	0.4568	0.3295	0.031*
C21	0.3306 (4)	0.6222 (4)	-0.0511 (3)	0.0265 (9)
H21A	0.3451	0.6825	-0.1041	0.032*
H21B	0.3437	0.5292	-0.0916	0.032*
C11	0.32540 (8)	-0.02556 (9)	-0.05326 (7)	0.01603 (17)
C12	0.15439 (10)	0.61906 (11)	-0.01468 (10)	0.0332 (2)
C13	0.46013 (9)	0.68133 (10)	0.07196 (8)	0.0267 (2)
P7	0.30128 (8)	0.16081 (9)	0.24901 (7)	0.01217 (18)
Pd1	0.46067 (2)	0.08342 (3)	0.13497 (2)	0.01217 (8)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
C1	0.0082 (14)	0.0204 (18)	0.0149 (16)	0.0042 (13)	-0.0005 (12)	0.0051 (14)
C2	0.0097 (15)	0.0189 (17)	0.0145 (16)	0.0039 (13)	-0.0009 (12)	0.0040 (14)

Acta Cryst. (2013). E69, m86

supporting information

C3	0.0091 (15)	0.0250 (19)	0.0186 (18)	0.0056 (14)	0.0036 (13)	0.0016 (15)
C4	0.0058 (14)	0.029 (2)	0.0196 (18)	0.0048 (14)	-0.0031 (13)	0.0029 (16)
C5	0.0126 (16)	0.0218 (18)	0.0170 (17)	0.0037 (14)	-0.0014 (13)	0.0018 (15)
C6	0.0103 (15)	0.0157 (17)	0.0134 (16)	0.0029 (13)	0.0014 (12)	0.0022 (13)
C7	0.0079 (14)	0.0224 (18)	0.0123 (16)	-0.0026 (13)	0.0005 (12)	-0.0042 (14)
C8	0.0131 (16)	0.027 (2)	0.0156 (17)	-0.0011 (14)	-0.0021 (13)	0.0022 (15)
C9	0.0169 (17)	0.037 (2)	0.0172 (18)	-0.0062 (16)	0.0018 (14)	0.0069 (17)
C10	0.0174 (18)	0.040 (2)	0.021 (2)	-0.0046 (17)	0.0088 (15)	-0.0054 (18)
C11	0.0153 (17)	0.027 (2)	0.032 (2)	0.0062 (15)	0.0051 (15)	-0.0019 (18)
C12	0.0136 (16)	0.025 (2)	0.0191 (18)	0.0023 (14)	0.0015 (14)	0.0012 (15)
C13	0.0090 (15)	0.0232 (19)	0.0148 (16)	0.0007 (13)	-0.0006 (12)	0.0036 (14)
C14	0.0157 (17)	0.0221 (19)	0.029 (2)	-0.0014 (15)	0.0012 (15)	0.0091 (16)
C15	0.0147 (16)	0.032 (2)	0.0166 (18)	-0.0025 (15)	0.0038 (13)	0.0055 (16)
C16	0.0121 (16)	0.031 (2)	0.0161 (17)	-0.0043 (15)	0.0001 (13)	0.0023 (16)
C17	0.0142 (16)	0.0217 (18)	0.0171 (17)	0.0050 (14)	0.0038 (13)	0.0017 (15)
C18	0.0174 (17)	0.029 (2)	0.026 (2)	0.0107 (16)	0.0057 (15)	0.0034 (17)
C19	0.0218 (18)	0.028 (2)	0.0159 (18)	0.0101 (16)	-0.0006 (14)	0.0053 (16)
C20	0.0211 (18)	0.0208 (19)	0.0203 (18)	0.0043 (15)	0.0045 (14)	0.0039 (15)
C21	0.0205 (18)	0.031 (2)	0.027 (2)	0.0032 (16)	0.0027 (15)	0.0062 (18)
Cl1	0.0066 (3)	0.0255 (5)	0.0139 (4)	0.0042 (3)	0.0010 (3)	-0.0001 (3)
Cl2	0.0144 (4)	0.0346 (6)	0.0501 (7)	0.0044 (4)	0.0032 (4)	0.0093 (5)
C13	0.0176 (4)	0.0300 (5)	0.0311 (5)	0.0015 (4)	-0.0002 (4)	0.0073 (4)
P7	0.0049 (3)	0.0191 (4)	0.0116 (4)	0.0028 (3)	0.0008 (3)	0.0014 (3)
Pd1	0.00434 (11)	0.01965 (14)	0.01151 (13)	0.00282 (9)	0.00054 (8)	0.00138 (10)

Geometric parameters (Å, °)

C1—C2	1.391 (5)	C14—H14C	0.98
C1—C6	1.403 (5)	C15—H15A	0.98
C1—P7	1.824 (3)	C15—H15B	0.98
C2—C3	1.398 (4)	C15—H15C	0.98
C2—Pd1	1.978 (3)	C16—H16A	0.98
C3—C4	1.389 (5)	C16—H16B	0.98
С3—Н3	0.95	C16—H16C	0.98
C4—C5	1.397 (5)	C17—C18	1.532 (5)
C4—H4	0.95	C17—C20	1.535 (5)
C5—C6	1.399 (4)	C17—C19	1.544 (5)
С5—Н5	0.95	C17—P7	1.879 (4)
C6—C7	1.495 (4)	C18—H18A	0.98
C7—C12	1.389 (5)	C18—H18B	0.98
С7—С8	1.400 (5)	C18—H18C	0.98
C8—C9	1.387 (5)	C19—H19A	0.98
С8—Н8	0.95	C19—H19B	0.98
C9—C10	1.388 (6)	C19—H19C	0.98
С9—Н9	0.95	C20—H20A	0.98
C10-C11	1.391 (6)	C20—H20B	0.98
C10—H10	0.95	C20—H20C	0.98
C11—C12	1.396 (5)	C21—C12	1.764 (4)

C11H11	0.95	C21_C13	1 771 (4)
C12 H12	0.95	C_{21} H21A	0.00
C_{12} $- C_{12}$ C_{13} $- C_{15}$	1 529 (5)	C21—H21B	0.99
C13 - C14	1.529(5) 1.534(5)	$C11$ $Pd1^{i}$	2 4154 (8)
C13— $C16$	1 539 (4)	Cl1—Pd1	2 4444 (9)
C13—P7	1.860 (3)	P7Pd1	2 2328 (9)
C14—H14A	0.98	$Pd1 - Cl1^{i}$	2.2326(9) 2 4154(8)
C14—H14B	0.98		2.1151(0)
	0.90		
$C_{2} - C_{1} - C_{6}$	122 1 (3)	H15A—C15—H15C	109.5
$C_2 - C_1 - P_7$	950(2)	H15B $C15$ $H15C$	109.5
C6-C1-P7	142 8 (3)	C13 - C16 - H16A	109.5
$C_1 - C_2 - C_3$	1207(3)	C13 - C16 - H16B	109.5
C1 - C2 - Pd1	109.9(2)	H_{16A} C_{16} H_{16B}	109.5
$C_3 = C_2 = Pd1$	109.9 (2)	C13 - C16 - H16C	109.5
$C_{4} - C_{3} - C_{2}^{2}$	129.1(3) 117.9(3)	$H_{16A} - C_{16} - H_{16C}$	109.5
$C_4 = C_3 = C_2$	121	HIGH CIG HIGC	109.5
$C_{1} = C_{2} = H_{2}$	121	$C_{18} C_{17} C_{20}$	109.5
$C_2 = C_3 = H_3$	121 121 1 (3)	$C_{18} = C_{17} = C_{20}$	110.1(3) 109.4(3)
$C_3 = C_4 = C_3$	121.1 (3)	$C_{10} = C_{17} = C_{19}$	109.4(3)
$C_{5} = C_{4} = H_{4}$	119.4	$C_{20} = C_{17} = C_{13}$	108.0(3)
$C_{3} - C_{4} - 114$	117.4 121.7(2)	$C_{10} = C_{17} = 17$	115.1(3) 106.2(2)
C4 = C5 = U5	121.7 (5)	$C_{20} = C_{17} = F_{7}$	100.2(2) 107.3(2)
C4 - C5 - H5	119.1	C17 - C17 - P7	107.5 (2)
C6C5H5	119.1	C17 - C18 - H18A	109.5
C5-C6-C1	116.4 (3)	C17—C18—H18B	109.5
C5-C6-C7	118.7 (3)	H18A—C18—H18B	109.5
C1—C6—C7	124.8 (3)	C17—C18—H18C	109.5
C12—C7—C8	119.3 (3)	H18A—C18—H18C	109.5
C12—C7—C6	121.9 (3)	H18B—C18—H18C	109.5
C8—C7—C6	118.7 (3)	C17—C19—H19A	109.5
C9—C8—C7	120.5 (4)	C17—C19—H19B	109.5
С9—С8—Н8	119.8	H19A—C19—H19B	109.5
С7—С8—Н8	119.8	C17—C19—H19C	109.5
C8—C9—C10	119.9 (4)	H19A—C19—H19C	109.5
С8—С9—Н9	120.1	H19B—C19—H19C	109.5
С10—С9—Н9	120.1	C17—C20—H20A	109.5
C9—C10—C11	120.1 (4)	C17—C20—H20B	109.5
С9—С10—Н10	120	H20A—C20—H20B	109.5
C11—C10—H10	120	С17—С20—Н20С	109.5
C10-C11-C12	120.0 (4)	H20A—C20—H20C	109.5
C10—C11—H11	120	H20B-C20-H20C	109.5
C12—C11—H11	120	Cl2—C21—Cl3	111.6 (2)
C7—C12—C11	120.2 (4)	Cl2—C21—H21A	109.3
C7—C12—H12	119.9	Cl3—C21—H21A	109.3
C11—C12—H12	119.9	Cl2—C21—H21B	109.3
C15—C13—C14	109.0 (3)	Cl3—C21—H21B	109.3
C15—C13—C16	110.7 (3)	H21A—C21—H21B	108
C14—C13—C16	108.7 (3)	Pd1 ⁱ —Cl1—Pd1	92.33 (3)

C15—C13—P7	114.4 (2)	C1—P7—C13	112.74 (15)
C14—C13—P7	105.4 (2)	C1—P7—C17	112.13 (16)
C16—C13—P7	108.4 (2)	C13—P7—C17	114.90 (15)
C13—C14—H14A	109.5	C1—P7—Pd1	85.84 (11)
C13—C14—H14B	109.5	C13—P7—Pd1	115.73 (12)
H14A—C14—H14B	109.5	C17—P7—Pd1	112.17 (11)
C13—C14—H14C	109.5	C2—Pd1—P7	68.84 (10)
H14A—C14—H14C	109.5	C2—Pd1—Cl1 ⁱ	97.07 (10)
H14B—C14—H14C	109.5	$P7$ — $Pd1$ — $Cl1^i$	165.87 (3)
C13—C15—H15A	109.5	C2—Pd1—Cl1	174.81 (10)
C13—C15—H15B	109.5	P7—Pd1—Cl1	106.44 (3)
H15A—C15—H15B	109.5	Cl1 ⁱ —Pd1—Cl1	87.67 (3)
C13—C15—H15C	109.5		
	10,10		
C6—C1—C2—C3	-2.4(5)	C14—C13—P7—C1	-55.2 (3)
P7—C1—C2—C3	179.9 (3)	C16—C13—P7—C1	-171.4 (2)
C6-C1-C2-Pd1	172.0 (3)	C15—C13—P7—C17	-65.6(3)
P7-C1-C2-Pd1	-5.8(2)	C14—C13—P7—C17	174.7(2)
C1 - C2 - C3 - C4	0.5(5)	C16-C13-P7-C17	58.4 (3)
Pd1 - C2 - C3 - C4	-172.6(3)	C15 - C13 - P7 - Pd1	1611(2)
$C_{2}^{-}C_{3}^{-}C_{4}^{-}C_{5}^{-}$	1 2 (6)	C14— $C13$ — $P7$ — $Pd1$	414(3)
C_{3} C_{4} C_{5} C_{6}	-1.2(6)	C16-C13-P7-Pd1	-749(2)
C4-C5-C6-C1	-0.6(5)	C18 - C17 - P7 - C1	-93.1(3)
C4 - C5 - C6 - C7	1761(3)	$C_{10} = C_{17} = P_{7} = C_{1}$	28.9 (3)
$C_1 C_2 C_1 C_6 C_5$	24(5)	$C_{20} = C_{17} = 17 = C_{17}$	144.9(2)
$P_{7}^{2} = C_{1}^{1} = C_{0}^{2} = C_{3}^{2}$	2.7(3)	C19 - C17 - 17 - C1 C18 - C17 - P7 - C13	37 4 (3)
17 - 01 - 00 - 03	-1741(3)	$C_{10} - C_{17} - P_7 - C_{13}$	37.4(3)
$C_2 - C_1 - C_0 - C_7$	174.1(3)	$C_{20} - C_{17} - P_{7} - C_{13}$	-84.6(3)
F = C = C = C / C = C / C = C / C = C / C = C / C = C =	2.2(7)	C19 - C17 - F - C13	-64.0(3)
$C_{3} = C_{0} = C_{7} = C_{12}$	-60.1(5)	C_{10} C_{17} P_{7} P_{41}	1/2.3(2)
$C_1 = C_0 = C_1 = C_{12}$	-09.1(3)	C_{20} C_{17} P_{7} P_{41}	-03.7(2)
$C_{3} = C_{0} = C_{7} = C_{8}$	-03.4(4)	C19 - C1 / - P / - P d1	50.5(3)
C1 = C0 = C7 = C8	113.0(4)	C1 - C2 - Pd1 - P7	3.1(2)
$C_{12} - C_{3} - C_{9}$	1.8(3)	$C_3 - C_2 - PdI - P/$	1/8.8 (4)
$C_{6} - C_{7} - C_{8} - C_{9}$	1/9.8 (3)	$C1 - C2 - Pd1 - Cl1^4$	-1/6.0(2)
C/-C8-C9-C10	0.3 (5)	$C_3 - C_2 - P_0 - C_1^{12}$	-2.3(3)
	-2.2(6)	C1 - P' - Pd1 - C2	-3.63 (15)
C9—C10—C11—C12	1.9 (6)	C13— $P/$ — $Pd1$ — $C2$	-116.91 (16)
C8—C7—C12—C11	-2.0 (5)	C17—P7—Pd1—C2	108.59 (16)
C6—C7—C12—C11	-180.0 (3)	$C1$ — $P7$ — $Pd1$ — $C11^{1}$	-8.08 (19)
C10—C11—C12—C7	0.2 (5)	$C13$ — $P7$ — $Pd1$ — $Cl1^{1}$	-121.36 (17)
C2—C1—P7—C13	121.0 (2)	$C17$ — $P7$ — $Pd1$ — $C11^{1}$	104.15 (17)
C6—C1—P7—C13	-55.8 (5)	C1—P7—Pd1—Cl1	174.08 (11)
C2—C1—P7—C17	-107.4 (2)	C13—P7—Pd1—Cl1	60.80 (12)
C6—C1—P7—C17	75.7 (5)	C17—P7—Pd1—Cl1	-73.70 (12)
C2-C1-P7-Pd1	4.8 (2)	Pd1 ⁱ —Cl1—Pd1—P7	179.47 (3)

C6—C1—P7—Pd1	-172.0 (4)	Pd1 ⁱ —Cl1—Pd1—Cl1 ⁱ	0
C15—C13—P7—C1	64.6 (3)		

Symmetry code: (i) -x+1, -y, -z.