# metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# Bis(2-amino-4-methylpyrimidin-1-ium) hexaaquacobalt(II) disulfate dihydrate

#### M. Mirzaei,<sup>a</sup>\* H. Eshtiagh-Hosseini,<sup>a</sup> S. Zarghami,<sup>a</sup> Z. Karrabi,<sup>a</sup> M. Saeedi<sup>a</sup> and J. T. Mague<sup>b</sup>\*

<sup>a</sup>Department of Chemistry, Ferdowsi University of Mashhad, 917751436 Mashhad, Iran, and <sup>b</sup>Department of Chemistry, Tulane University, New Orleans, LA 70118, USA

Correspondence e-mail: joelt@tulane.edu

Received 20 January 2013; accepted 22 January 2013

Key indicators: single-crystal X-ray study; T = 100 K; mean  $\sigma$ (C–C) = 0.002 Å; R factor = 0.026; wR factor = 0.073; data-to-parameter ratio = 19.2.

In the title hydrated mixed-cation salt,  $(C_5H_8N_3)_2$ [Co- $(H_2O)_6$ ](SO<sub>4</sub>)<sub>2</sub>·2H<sub>2</sub>O, the complete octahedral hexaaqua complex cation is generated by crystallographic inversion symmetry. In the crystal, the components are linked by O-H···O and N-H···O hydrogen bonds, the latter, involving pyrimidinium cations and sulfate anions, generating  $R_2^2(8)$  loops. These, together with  $\pi$ - $\pi$  interactions between centrosymmetrically related pyrimidinium cations [centroid-centroid separation = 3.5460 (8) Å], lead to the formation of a three-dimensional network.

#### **Related literature**

For a report of the structure of the  $[Co(H_2O)_6]^{2+}$  ion, see: Shiu *et al.* (2004).



#### **Experimental**

#### Crystal data

 $\begin{array}{l} (C_{5}H_{8}N_{3})_{2}[Co(H_{2}O)_{6}](SO_{4})_{2}\cdot 2H_{2}O\\ M_{r}=615.49\\ Triclinic, P\overline{1}\\ a=6.4116\ (6)\ Å\\ b=7.7751\ (7)\ Å\\ c=13.0423\ (12)\ Å\\ \alpha=80.136\ (1)^{\circ}\\ \beta=80.413\ (1)^{\circ} \end{array}$ 

 $\gamma = 73.231 (1)^{\circ}$   $V = 608.57 (10) \text{ Å}^3$  Z = 1Mo K\alpha radiation  $\mu = 0.96 \text{ mm}^{-1}$  T = 100 K $0.19 \times 0.19 \times 0.12 \text{ mm}$ 

#### Data collection

Bruker SMART APEX CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2009)  $T_{min} = 0.780, T_{max} = 0.893$ 

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.026$ | 161 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.073$               | H-atom parameters constrained                              |
| S = 1.09                        | $\Delta \rho_{\rm max} = 0.59 \text{ e} \text{ Å}^{-3}$    |
| 3085 reflections                | $\Delta \rho_{\rm min} = -0.40 \ {\rm e} \ {\rm \AA}^{-3}$ |

10780 measured reflections

 $R_{\rm int} = 0.025$ 

3085 independent reflections

2944 reflections with  $I > 2\sigma(I)$ 

#### Table 1

Selected bond lengths (Å).

| Co1-O1 | 2.0838 (9) | Co1-O3 | 2.1140 (10) |
|--------|------------|--------|-------------|
| Co1-O2 | 2.0643 (9) |        |             |
|        |            |        |             |

| Table 2       |          |     |    |
|---------------|----------|-----|----|
| Hydrogen-bond | geometry | (Å, | °) |

| $D - H \cdot \cdot \cdot A$           | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|---------------------------------------|------|-------------------------|--------------|---------------------------|
| O1−H1A···O8                           | 0.84 | 1.92                    | 2.7562 (14)  | 171                       |
| $O1 - H1B \cdots O4$                  | 0.84 | 1.97                    | 2.8050 (13)  | 178                       |
| $O2-H2A\cdots O4^{i}$                 | 0.84 | 1.92                    | 2.7533 (14)  | 173                       |
| $O2-H2B\cdots O5$                     | 0.84 | 1.87                    | 2.7077 (13)  | 174                       |
| $O3-H3C \cdot \cdot \cdot O8^{i}$     | 0.84 | 1.92                    | 2.7508 (13)  | 170                       |
| $O3-H3D\cdots O7^{ii}$                | 0.84 | 1.95                    | 2.7865 (14)  | 177                       |
| $N2 - H2N \cdot \cdot \cdot O6^{iii}$ | 0.91 | 1.81                    | 2.7155 (15)  | 172                       |
| N3-H3A···O5 <sup>iii</sup>            | 0.91 | 1.87                    | 2.7776 (15)  | 175                       |
| $N3-H3B\cdots O6^{iv}$                | 0.91 | 1.98                    | 2.8775 (15)  | 168                       |
| $O8-H8A\cdots O7^{ii}$                | 0.84 | 1.98                    | 2.7684 (14)  | 156                       |
| $O8-H8B\cdots O7^{v}$                 | 0.84 | 2.02                    | 2.8582 (14)  | 172                       |

Symmetry codes: (i) x + 1, y, z; (ii) x, y + 1, z; (iii) -x + 2, -y, -z + 1; (iv) -x + 1, -y, -z + 1; (v) -x + 1, -y + 1, -z.

Data collection: *APEX2* (Bruker, 2010); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXM* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL* (Sheldrick, 2008); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *SHELXTL*.

We thank the Chemistry Department of Tulane University for support of the X-ray crystallographic facility.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB7029).

#### References

Bruker (2009). SAINT. Bruker AXWS Inc., Madison, Wisconsin, USA.
Bruker (2010). APEX2. Bruker AXWS Inc., Madison, Wisconsin, USA.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Sheldrick, G. M. (2009). SADABS. University of Göttingen, Germany.

Shiu, K.-B., Yen, C.-H., Liao, F.-L. & Wang, S.-L. (2004). Acta Cryst. E60, m35– m37.

# supporting information

Acta Cryst. (2013). E69, m128 [doi:10.1107/S1600536813002146]

# Bis(2-amino-4-methylpyrimidin-1-ium) hexaaquacobalt(II) disulfate dihydrate

#### M. Mirzaei, H. Eshtiagh-Hosseini, S. Zarghami, Z. Karrabi, M. Saeedi and J. T. Mague

#### S1. Comment

In an attempt to synthesize a cobalt complex of quinoxaline-2,3-dicarboxylic acid by conventional proton transfer processes, cobalt(II) sulfate hexahydrate and the acid were reacted with 2-amino-4-methylpyrimidine. The crystalline product obtained proved to be  $[Co(H_2O)_6][2a-4m-pym]_2(SO_4)_2.2H_2O$  (2a-4m-pym = 2-amino-4-methylpyrimidinium) with the cobalt cation having crystallographicIly imposed centrosymmetry (Fig. 1). The Co—O distances range from 2.0643 (9) to 2.1140 (10) A° while the O—Co—O angles range from 90.69 (4) to 93.59 (4)° leading to a somewhat distorted octahedral coordination geometry. The  $[Co(H_2O)_6]^{2+}$  cations and uncoordinated water molecules form sheets parallel to [110] which are capped on both sides by sulfate ions and held together by O—H…O hydrogen bonds (Fig. 2). N—H…O interactions bind the pyrimidinium cations to the sulfate ions (Fig. 3) with the cations from adjacent sheets intercalating one another (Fig. 2) and stabilized by pairwise  $\pi \cdots \pi$  (3.546 A°) interactions between them (center pair of cations in Fig. 2). The N2—H2n…O6 and N3—H3a…O5 hydrogen bonding interactions generate  $R_2^2(8)$  synthons.

#### **S2.** Experimental

An aqueous solution of cobalt(II) sulfate hexahydrate (0.4 mmol, 0.8 mg) in distilled water (5 ml) was added to an aqueous solution of quinoxaline-2,3-dicarboxylic acid (0.11 mmol, 25 mg) and 2-amino-4-methyl pyrimidine (0.24 mmol, 26 mg). The mixture refluxed for 5 hrs at 75°C. Orange blocks were obtained by slow evaporation of the reaction mixture at room temperature.



## Figure 1





### Figure 2

Packing of the title compound viewed down *a*. Hydrogen bonds are indicated by dotted lines.



#### Figure 3

N—H···O hydrogen bonds and the  $R_2^2(8)$  synthons (N2, N3, O5 O6).

#### Bis(2-amino-4-methylpyrimidin-1-ium) hexaaquacobalt(II) disulfate dihydrate

#### Crystal data

 $(C_{5}H_{8}N_{3})_{2}[Co(H_{2}O)_{6}](SO_{4})_{2}\cdot 2H_{2}O$   $M_{r} = 615.49$ Triclinic, PIHall symbol: -P 1 a = 6.4116 (6) Å b = 7.7751 (7) Å c = 13.0423 (12) Å a = 80.136 (1)°  $\beta = 80.413$  (1)°  $\gamma = 73.231$  (1)° V = 608.57 (10) Å<sup>3</sup>

#### Data collection

Bruker SMART APEX CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator  $\varphi$  and  $\omega$  scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 2009)  $T_{\min} = 0.780, T_{\max} = 0.893$ 

#### Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.026$  $wR(F^2) = 0.073$ S = 1.093085 reflections 161 parameters 0 restraints Primary atom site location: structure-invariant direct methods Z = 1 F(000) = 321  $D_x = 1.679 \text{ Mg m}^{-3}$ Mo K $\alpha$  radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8977 reflections  $\theta = 2.8-29.2^{\circ}$   $\mu = 0.96 \text{ mm}^{-1}$ T = 100 K Block, orange  $0.19 \times 0.19 \times 0.12 \text{ mm}$ 

10780 measured reflections 3085 independent reflections 2944 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.025$  $\theta_{max} = 29.2^{\circ}, \theta_{min} = 2.8^{\circ}$  $h = -8 \rightarrow 8$  $k = -10 \rightarrow 10$  $l = -17 \rightarrow 17$ 

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained  $w = 1/[\sigma^2(F_o^2) + (0.0386P)^2 + 0.2936P]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} = 0.001$  $\Delta\rho_{max} = 0.59$  e Å<sup>-3</sup>  $\Delta\rho_{min} = -0.40$  e Å<sup>-3</sup>

#### Special details

**Experimental**. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5 °. in omega, collected at phi = 0.00, 90.00 and 180.00 °. and 2 sets of 800 frames, each of width 0.45 ° in phi, collected at omega = -30.00 and 210.00 °. The scan time was 10 sec/frame.

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å) while those attached to nitrogen and oxygen were placed in locations derived from a difference map. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

|     | x            | у             | Z            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|-----|--------------|---------------|--------------|-----------------------------|--|
| Col | 1.0000       | 0.5000        | 0.0000       | 0.00955 (8)                 |  |
| 01  | 0.68016 (15) | 0.50215 (13)  | 0.06589 (8)  | 0.01452 (19)                |  |
| H1A | 0.5761       | 0.5965        | 0.0592       | 0.017*                      |  |
| H1B | 0.6253       | 0.4255        | 0.1061       | 0.017*                      |  |
| O2  | 1.13866 (16) | 0.27066 (13)  | 0.09714 (8)  | 0.0152 (2)                  |  |
| H2A | 1.2384       | 0.2644        | 0.1331       | 0.018*                      |  |
| H2B | 1.0513       | 0.2134        | 0.1317       | 0.018*                      |  |
| O3  | 1.01700 (15) | 0.67088 (13)  | 0.10641 (8)  | 0.01429 (19)                |  |
| H3C | 1.1304       | 0.7080        | 0.0967       | 0.017*                      |  |
| H3D | 0.9025       | 0.7538        | 0.1193       | 0.017*                      |  |
| N1  | 0.77618 (19) | 0.29129 (15)  | 0.48276 (9)  | 0.0141 (2)                  |  |
| N2  | 1.13318 (19) | 0.19273 (15)  | 0.53464 (9)  | 0.0136 (2)                  |  |
| H2N | 1.2214       | 0.1283        | 0.5837       | 0.016*                      |  |
| N3  | 0.8459 (2)   | 0.09569 (16)  | 0.63508 (9)  | 0.0169 (2)                  |  |
| H3A | 0.9370       | 0.0291        | 0.6825       | 0.020*                      |  |
| H3B | 0.7047       | 0.0884        | 0.6443       | 0.020*                      |  |
| C1  | 0.9176 (2)   | 0.19330 (17)  | 0.55062 (10) | 0.0126 (2)                  |  |
| C2  | 1.2141 (2)   | 0.28771 (18)  | 0.44771 (11) | 0.0159 (3)                  |  |
| H2  | 1.3655       | 0.2840        | 0.4361       | 0.019*                      |  |
| C3  | 1.0775 (2)   | 0.38846 (18)  | 0.37710 (11) | 0.0164 (3)                  |  |
| H3  | 1.1307       | 0.4555        | 0.3155       | 0.020*                      |  |
| C4  | 0.8539 (2)   | 0.38965 (18)  | 0.39882 (10) | 0.0143 (2)                  |  |
| C5  | 0.6904 (2)   | 0.50542 (19)  | 0.32901 (11) | 0.0184 (3)                  |  |
| H5A | 0.6319       | 0.4281        | 0.2960       | 0.028*                      |  |
| H5B | 0.7619       | 0.5807        | 0.2746       | 0.028*                      |  |
| H5C | 0.5701       | 0.5834        | 0.3706       | 0.028*                      |  |
| S1  | 0.64309 (5)  | 0.07057 (4)   | 0.22320 (2)  | 0.00995 (8)                 |  |
| O4  | 0.48922 (15) | 0.25043 (12)  | 0.19945 (8)  | 0.01356 (19)                |  |
| O5  | 0.86583 (15) | 0.09036 (13)  | 0.22097 (8)  | 0.0153 (2)                  |  |
| O6  | 0.57348 (16) | -0.01584 (13) | 0.32903 (8)  | 0.0148 (2)                  |  |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

# supporting information

| O7  | 0.64425 (16) | -0.04477 (13) | 0.14342 (8) | 0.0164 (2)   |  |
|-----|--------------|---------------|-------------|--------------|--|
| 08  | 0.36083 (16) | 0.82758 (13)  | 0.05699 (8) | 0.01547 (19) |  |
| H8A | 0.4119       | 0.8803        | 0.0939      | 0.019*       |  |
| H8B | 0.3513       | 0.8994        | 0.0009      | 0.019*       |  |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$     | $U^{22}$     | $U^{33}$     | $U^{12}$      | $U^{13}$      | U <sup>23</sup> |
|-----|--------------|--------------|--------------|---------------|---------------|-----------------|
| Col | 0.00874 (12) | 0.00915 (12) | 0.01048 (13) | -0.00265 (8)  | -0.00139 (9)  | 0.00014 (8)     |
| 01  | 0.0100 (4)   | 0.0120 (4)   | 0.0190 (5)   | -0.0025 (3)   | -0.0001 (4)   | 0.0023 (3)      |
| O2  | 0.0128 (4)   | 0.0151 (4)   | 0.0179 (5)   | -0.0061 (4)   | -0.0050 (4)   | 0.0048 (4)      |
| 03  | 0.0107 (4)   | 0.0149 (4)   | 0.0178 (5)   | -0.0036 (3)   | -0.0001 (4)   | -0.0047 (4)     |
| N1  | 0.0149 (5)   | 0.0136 (5)   | 0.0133 (5)   | -0.0032 (4)   | -0.0032 (4)   | -0.0005 (4)     |
| N2  | 0.0125 (5)   | 0.0137 (5)   | 0.0144 (5)   | -0.0030 (4)   | -0.0024 (4)   | -0.0013 (4)     |
| N3  | 0.0140 (5)   | 0.0206 (6)   | 0.0157 (6)   | -0.0065 (4)   | -0.0047 (4)   | 0.0053 (4)      |
| C1  | 0.0136 (6)   | 0.0114 (6)   | 0.0130 (6)   | -0.0029 (4)   | -0.0018 (5)   | -0.0025 (4)     |
| C2  | 0.0150 (6)   | 0.0150 (6)   | 0.0176 (6)   | -0.0052 (5)   | 0.0031 (5)    | -0.0045 (5)     |
| C3  | 0.0195 (7)   | 0.0142 (6)   | 0.0141 (6)   | -0.0053 (5)   | 0.0031 (5)    | -0.0022 (5)     |
| C4  | 0.0187 (6)   | 0.0119 (6)   | 0.0119 (6)   | -0.0028 (5)   | -0.0015 (5)   | -0.0033 (4)     |
| C5  | 0.0222 (7)   | 0.0171 (6)   | 0.0155 (6)   | -0.0049 (5)   | -0.0061 (5)   | 0.0017 (5)      |
| S1  | 0.00895 (15) | 0.01018 (15) | 0.01081 (15) | -0.00313 (11) | -0.00176 (11) | -0.00010 (11)   |
| O4  | 0.0121 (4)   | 0.0105 (4)   | 0.0172 (5)   | -0.0015 (3)   | -0.0033 (4)   | -0.0003 (3)     |
| O5  | 0.0103 (4)   | 0.0192 (5)   | 0.0165 (5)   | -0.0067 (4)   | -0.0035 (4)   | 0.0039 (4)      |
| O6  | 0.0126 (4)   | 0.0167 (5)   | 0.0139 (5)   | -0.0054 (4)   | -0.0010 (4)   | 0.0033 (4)      |
| O7  | 0.0178 (5)   | 0.0149 (5)   | 0.0171 (5)   | -0.0022 (4)   | -0.0044 (4)   | -0.0054 (4)     |
| 08  | 0.0165 (5)   | 0.0142 (4)   | 0.0172 (5)   | -0.0062 (4)   | -0.0021 (4)   | -0.0024 (4)     |

Geometric parameters (Å, °)

| Co1-01              | 2.0838 (9)  | N3—H3A     | 0.9099      |
|---------------------|-------------|------------|-------------|
| Co1-O1 <sup>i</sup> | 2.0838 (9)  | N3—H3B     | 0.9100      |
| Co1—O2              | 2.0643 (9)  | N3—C1      | 1.3216 (17) |
| Co1—O2 <sup>i</sup> | 2.0643 (9)  | C2—H2      | 0.9500      |
| Co1–O3 <sup>i</sup> | 2.1140 (10) | C2—C3      | 1.362 (2)   |
| Co1—O3              | 2.1140 (10) | С3—Н3      | 0.9500      |
| O1—H1A              | 0.8400      | C3—C4      | 1.412 (2)   |
| O1—H1B              | 0.8400      | C4—C5      | 1.4935 (19) |
| O2—H2A              | 0.8400      | С5—Н5А     | 0.9800      |
| O2—H2B              | 0.8400      | С5—Н5В     | 0.9800      |
| O3—H3C              | 0.8400      | С5—Н5С     | 0.9800      |
| O3—H3D              | 0.8400      | S1—O4      | 1.4772 (10) |
| N1-C1               | 1.3503 (17) | S1—O5      | 1.4749 (9)  |
| N1—C4               | 1.3352 (17) | S1—O6      | 1.4851 (10) |
| N2—H2N              | 0.9101      | S1—O7      | 1.4834 (10) |
| N2—C1               | 1.3621 (17) | O8—H8A     | 0.8400      |
| N2—C2               | 1.3558 (17) | O8—H8B     | 0.8400      |
| $O1^{i}$ Col $O1$   | 180.0       | H3A N3 H3B | 118 7       |
| 01-01-01            | 100.0       | пэа—пэ     | 110./       |

| O1 <sup>i</sup> —Co1—O3              | 89.31 (4)    | C1—N3—H3A   | 121.5       |
|--------------------------------------|--------------|-------------|-------------|
| O1—Co1—O3                            | 90.69 (4)    | C1—N3—H3B   | 119.7       |
| O1 <sup>i</sup> —Co1—O3 <sup>i</sup> | 90.69 (4)    | N1—C1—N2    | 121.68 (12) |
| O1—Co1—O3 <sup>i</sup>               | 89.31 (4)    | N3—C1—N1    | 119.51 (12) |
| O2 <sup>i</sup> —Co1—O1 <sup>i</sup> | 93.59 (4)    | N3—C1—N2    | 118.82 (12) |
| O2—Co1—O1                            | 93.59 (4)    | N2—C2—H2    | 120.1       |
| O2 <sup>i</sup> —Co1—O1              | 86.41 (4)    | N2—C2—C3    | 119.73 (13) |
| O2-Co1-O1 <sup>i</sup>               | 86.41 (4)    | С3—С2—Н2    | 120.1       |
| O2-Co1-O2 <sup>i</sup>               | 180.0        | С2—С3—Н3    | 121.2       |
| O2 <sup>i</sup> —Co1—O3              | 88.21 (4)    | C2—C3—C4    | 117.61 (12) |
| O2 <sup>i</sup> —Co1—O3 <sup>i</sup> | 91.79 (4)    | С4—С3—Н3    | 121.2       |
| O2—Co1—O3 <sup>i</sup>               | 88.21 (4)    | N1—C4—C3    | 122.45 (12) |
| O2—Co1—O3                            | 91.79 (4)    | N1—C4—C5    | 116.47 (12) |
| O3—Co1—O3 <sup>i</sup>               | 180.0        | C3—C4—C5    | 121.07 (12) |
| Co1—O1—H1A                           | 121.3        | C4—C5—H5A   | 109.5       |
| Co1—O1—H1B                           | 133.1        | C4—C5—H5B   | 109.5       |
| H1A—O1—H1B                           | 105.3        | C4—C5—H5C   | 109.5       |
| Co1—O2—H2A                           | 123.6        | H5A—C5—H5B  | 109.5       |
| Co1—O2—H2B                           | 115.8        | H5A—C5—H5C  | 109.5       |
| H2A—O2—H2B                           | 109.5        | H5B—C5—H5C  | 109.5       |
| Со1—О3—НЗС                           | 116.1        | O4—S1—O6    | 110.08 (6)  |
| Co1—O3—H3D                           | 115.8        | O4—S1—O7    | 108.96 (6)  |
| H3C—O3—H3D                           | 112.0        | O5—S1—O4    | 109.75 (6)  |
| C4—N1—C1                             | 117.86 (12)  | O5—S1—O6    | 108.84 (6)  |
| C1—N2—H2N                            | 118.7        | O5—S1—O7    | 109.68 (6)  |
| C2—N2—H2N                            | 120.7        | O7—S1—O6    | 109.52 (6)  |
| C2—N2—C1                             | 120.59 (12)  | H8A—O8—H8B  | 102.1       |
| N2-C2-C3-C4                          | 0.4 (2)      | C2—N2—C1—N3 | 178.45 (12) |
| C1—N1—C4—C3                          | 2.59 (19)    | C2—C3—C4—N1 | -2.6 (2)    |
| C1—N1—C4—C5                          | -176.26 (12) | C2—C3—C4—C5 | 176.18 (12) |
| C1—N2—C2—C3                          | 1.75 (19)    | C4—N1—C1—N2 | -0.37 (19)  |
| C2—N2—C1—N1                          | -1.82 (19)   | C4—N1—C1—N3 | 179.37 (12) |

Symmetry code: (i) -x+2, -y+1, -z.

# Hydrogen-bond geometry (Å, °)

| D—H···A                             | <i>D</i> —Н | H···A | D····A      | <i>D</i> —H··· <i>A</i> |
|-------------------------------------|-------------|-------|-------------|-------------------------|
| 01—H1A···08                         | 0.84        | 1.92  | 2.7562 (14) | 171                     |
| O1—H1 <i>B</i> ···O4                | 0.84        | 1.97  | 2.8050 (13) | 178                     |
| O2—H2A···O4 <sup>ii</sup>           | 0.84        | 1.92  | 2.7533 (14) | 173                     |
| O2—H2 <i>B</i> ···O5                | 0.84        | 1.87  | 2.7077 (13) | 174                     |
| O3—H3 <i>C</i> ···O8 <sup>ii</sup>  | 0.84        | 1.92  | 2.7508 (13) | 170                     |
| O3—H3 <i>D</i> ···O7 <sup>iii</sup> | 0.84        | 1.95  | 2.7865 (14) | 177                     |
| N2—H2 $N$ ···O6 <sup>iv</sup>       | 0.91        | 1.81  | 2.7155 (15) | 172                     |
| N3—H3A····O5 <sup>iv</sup>          | 0.91        | 1.87  | 2.7776 (15) | 175                     |
| N3—H3 $B$ ···O6 <sup>v</sup>        | 0.91        | 1.98  | 2.8775 (15) | 168                     |

# O8—H8.4···O7<sup>iii</sup> 0.84 1.98 2.7684 (14) 156 O8—H8B···O7<sup>vi</sup> 0.84 2.02 2.8582 (14) 172

Symmetry codes: (ii) *x*+1, *y*, *z*; (iii) *x*, *y*+1, *z*; (iv) -*x*+2, -*y*, -*z*+1; (v) -*x*+1, -*y*, -*z*+1; (vi) -*x*+1, -*y*+1, -*z*.