metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Tetrabromido[4-(triphenylphosphanyloxy)butyl]tellurium acetonitrile monosolvate

Sari M. Närhi, Raija Oilunkaniemi* and Risto S. Laitinen

Department of Chemistry, PO Box 3000, FI-90014 University of Oulu, Finland Correspondence e-mail: raija.oilunkaniemi@oulu.fi

Received 10 December 2012; accepted 22 December 2012

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.011 Å; R factor = 0.048; wR factor = 0.135; data-to-parameter ratio = 16.1.

In the title compound, $[TeBr_4(C_{22}H_{23}OP)] \cdot CH_3CN$, the Te atom exhibits a square-pyramidal coordination with an apical Te-C bond and four basal Te-Br bonds. The conformation of the aliphatic C-C-C-C chain is gauche [torsion angle = $-67.7 (8)^{\circ}$]. A weak C $-H \cdots Br$ interaction helps to establish the conformation. In the crystal, there is a weak secondary bonding interaction $[\text{Te} \cdot \cdot \cdot \text{N} = 3.456 (11) \text{ Å}]$ between the Te atom and the N atom of the solvent molecule, which completes a distorted TeNCBr₄ octahedron. Inversion dimers linked by pairs of $C-H\cdots Br$ interactions are also observed.

Related literature

For the formation of Ph₃PO(CH₂)₄TeBr₄ and the structure of the dichloromethane monosolvate, see: Kunnari et al. (2001). For Te···N interactions, see: Cozzolino et al. (2011); Pauling (1960).

Experimental

Crystal data [TeBr₄(C₂₂H₂₃OP)]·C₂H₃N $M_r = 822.67$ Monoclinic, $P2_1/n$ a = 9.3195 (19) Åb = 13.899 (3) Å c = 21.962 (4) Å $\beta = 94.92 (3)^{\circ}$

 $V = 2834.3 (10) \text{ Å}^3$ Z = 4Mo Ka radiation $\mu = 6.76 \text{ mm}^{-1}$ T = 150 K0.10 \times 0.10 \times 0.05 mm

Data collection

Bruker-Nonius KappaCCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2008) $T_{\min} = 0.551, T_{\max} = 0.729$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.048$	291 parameters
$wR(F^2) = 0.135$	H-atom parameters constrained
S = 1.07	$\Delta \rho_{\rm max} = 0.88 \ {\rm e} \ {\rm \AA}^{-3}$
4684 reflections	$\Delta \rho_{\rm min} = -0.79 \ {\rm e} \ {\rm \AA}^{-3}$

11187 measured reflections

 $R_{\rm int} = 0.073$

4684 independent reflections

3714 reflections with $I > 2\sigma(I)$

Table 1

Selected bond lengths (Å).

Te1-C4	2.176 (7)	Te1-Br1	2.6944 (11)
Te1-Br2	2.6652 (10)	Te1-Br3	2.7201 (10)
Te1-Br4	2.6814 (11)		

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C3−H3B···Br1	0.99	2.82	3.450 (7)	122
$C26-H26\cdots Br3^{i}$	0.95	2.75	3.619 (8)	152

Symmetry code: (i) -x + 1, -y + 1, -z.

Data collection: COLLECT (Bruker, 2008); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

Financial support from the Academy of Finland is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB7012).

References

Brandenburg, K. (2006). DIAMOND. Crystal Impact GmbH, Bonn, Germany. Bruker (2008). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA. Cozzolino, A. F., Elder, P. J. & Vargas-Baca, I. (2011). Coord. Chem. Rev. pp.

1426-1438.

- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Kunnari, S. M., Oilunkaniemi, R., Laitinen, R. S. & Ahlgren, M. (2001). J. Chem. Soc. Dalton Trans. pp. 3417-3418.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol 276. Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed. Ithaca: Cornell University Press.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2013). E69, m88 [doi:10.1107/S1600536812051707]

Tetrabromido[4-(triphenylphosphanyloxy)butyl]tellurium acetonitrile monosolvate

Sari M. Närhi, Raija Oilunkaniemi and Risto S. Laitinen

S1. Comment

The formation of $Ph_3PO(CH_2)_4TeBr_4$ has been reported earlier by us (Kunnari *et al.* 2001). The formally zwitterionic compound was isolated by treating $TeBr_4$ with an equimolar amount of triphenylphosphine in tetrahydrofuran. The compound was crystallized from dichloromethane and its molecular structure was determined as a dichloromethane solvate. The title compound was recrystallized from acetonitrile and consequently contains acetonitrile solvent molecules. It is isomorphic with the CH_2Cl_2 solvate.

The molecular structure of the title compound indicating the numbering of the atoms is shown in Fig. 1. The Te—Br bond lengths range from 2.6652 (10) to 2.7201 (10) Å. The Te—C bond length is 2.176 (7) Å and the P—O bond length is 1.568 (5) Å. These can be compared to the bond lengths in the corresponding CH_2Cl_2 solvate in which the Te—Br bond lengths range 2.6776 (8) - 2.6952 (9) Å, Te—C bond length is 2.177 (6) Å, and P—O bond length is 1.581 (4) Å (Kunnari *et al.* 2001).

The closest internuclear contact from tellurium atom to the nitrogen atom of the solvent molecule is 3.456 (11) Å expanding the square pyramidal coordination polyhedron into a distorted octahedron. This is typical for Te⁻⁻N secondary bonding interactions (Cozzolino *et al.* 2011). Interestingly, the Te⁻N interaction is stronger [Pauling (1960) bond order is 0.15] compared to the Te⁻⁻Cl interaction in the CH₂Cl₂ solvate (Kunnari *et al.* 2001), for which the contact is 4.175 (3) Å corresponding to the Pauling bond order of only 0.09. This is also reflected in the C—Te—E (E = N, Cl) bond angles which are 165.0 (3) and 144.0 (1) °, respectively.

Intra- and intermolecular hydrogen bonds link the zwitterions into a three- dimensional network, as shown in Fig. 2. The shortest intermolecular C—H^{...}Br contacts span a range of 2.75 (1)–2.96 (1) Å and the short C—H^{...}N contacts are 2.68 (1) and 2.96 (1) Å.

S2. Experimental

Yellow plates of the title compound were obtained from the acetonitrile solution of $Ph_3PO(CH_2)_4TeBr_4$ by slow evaporation of the solvent.

S3. Refinement

H atoms were positioned geometrically and refined using a riding model with C—H = 0.99 Å and with $U_{iso}(H) = 1.2$ $U_{eq}(C)$, 0.98 Å and $U_{iso}(H) = 1.5$ $U_{eq}(C)$ and 0.95 Å and $U_{iso}(H) = 1.2$ $U_{eq}(C)$ for the methylene, methyl and aromatic H atoms, respectively.

Figure 1

The molecular structure with displacement ellipsoids drawn at 50% probability.

Figure 2

The packing of the zwitterions and the solvent indicating the short inter- and intramolecular contacts < 3.00 Å.

Tetrabromo[4-(triphenylphosphanyloxy)butyl]tellurium acetonitrile monosolvate

4.3 (10) Å ³
= 1568
28 Mg m ⁻³
adiation, $\lambda = 0.71073$ Å
ameters from 3714 reflections
25.0°
mm^{-1}

T = 150 KPlate, yellow

Data collection

Dura concerion	
Bruker–Nonius KappaCCD diffractometer	11187 measured reflections 4684 independent reflections
Radiation source: fine-focus sealed tube	3714 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.073$
φ scans, and ω scans with κ offsets	$\theta_{\rm max} = 25.0^\circ, \theta_{\rm min} = 2.3^\circ$
Absorption correction: multi-scan	$h = -11 \rightarrow 10$
(SADABS; Sheldrick, 2008)	$k = -15 \rightarrow 16$
$T_{\min} = 0.551, \ T_{\max} = 0.729$	$l = -24 \rightarrow 26$
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.048$	H-atom parameters constrained
$wR(F^2) = 0.135$	$w = 1/[\sigma^2(F_o^2) + (0.0606P)^2 + 8.1058P]$
S = 1.07	where $P = (F_o^2 + 2F_c^2)/3$
4684 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
291 parameters	$\Delta \rho_{\rm max} = 0.88 \ { m e} \ { m \AA}^{-3}$
0 restraints	$\Delta ho_{ m min} = -0.79 \ { m e} \ { m \AA}^{-3}$
Primary atom site location: structure-invariant	Extinction correction: SHELXS97 (Sheldric
direct methods	2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/2}$

Secondary atom site location: difference Fourier map

 $0.10 \times 0.10 \times 0.05 \text{ mm}$

k, Extinction coefficient: 0.0024 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor w*R* and goodness of fit S are based on F^2 ,

conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Te1	0.55868 (5)	0.29462 (3)	-0.09855 (2)	0.02466 (19)	
Br1	0.40006 (9)	0.21866 (6)	-0.19512 (3)	0.0335 (2)	
Br2	0.50893 (9)	0.14024 (6)	-0.03152 (4)	0.0356 (2)	
Br3	0.59404 (9)	0.45190 (6)	-0.16944 (4)	0.0388 (2)	
Br4	0.71342 (9)	0.37800 (6)	-0.00436 (4)	0.0380 (2)	
P1	0.0720(2)	0.26347 (14)	0.10968 (8)	0.0248 (4)	
01	0.0848 (5)	0.2852 (3)	0.0403 (2)	0.0275 (11)	
C1	0.1193 (8)	0.3822 (5)	0.0189 (3)	0.0288 (17)	
H1A	0.2167	0.4017	0.0361	0.035*	
H1B	0.0488	0.4295	0.0321	0.035*	
C2	0.1130 (8)	0.3783 (6)	-0.0504 (3)	0.0303 (17)	
H2A	0.1202	0.4447	-0.0660	0.036*	

H2B	0.0177	0.3527	-0.0660	0.036*
C3	0.2297 (7)	0.3172 (5)	-0.0764 (3)	0.0269 (16)
H3A	0.2302	0.2520	-0.0582	0.032*
H3B	0.2090	0.3108	-0.1212	0.032*
C4	0.3740 (8)	0.3632 (5)	-0.0625 (3)	0.0285 (17)
H4A	0.3930	0.3671	-0.0175	0.034*
H4B	0.3680	0.4300	-0.0781	0.034*
C11	-0.0254 (8)	0.1540 (5)	0.1093 (3)	0.0281 (16)
C12	-0.0930 (9)	0.1166 (6)	0.0554 (4)	0.041 (2)
H12	-0.0853	0.1485	0.0176	0.049*
C13	-0.1719 (10)	0.0320 (6)	0.0577 (4)	0.049 (2)
H13	-0.2202	0.0065	0.0214	0.059*
C14	-0.1801 (9)	-0.0147 (6)	0.1125 (4)	0.042 (2)
H14	-0.2315	-0.0737	0.1134	0.050*
C15	-0.1146 (9)	0.0226 (6)	0.1663 (4)	0.0385 (19)
H15	-0.1236	-0.0098	0.2039	0.046*
C16	-0.0364 (9)	0.1066 (5)	0.1656 (3)	0.0329 (18)
H16	0.0093	0.1323	0.2024	0.039*
C21	-0.0209 (8)	0.3556 (5)	0.1456 (3)	0.0284 (17)
C22	-0.1690 (8)	0.3508 (5)	0.1482 (3)	0.0304 (17)
H22	-0.2204	0.2960	0.1323	0.036*
C23	-0.2421(9)	0.4246 (6)	0.1736 (3)	0.0371 (19)
H23	-0.3432	0.4202	0.1758	0.045*
C24	-0.1682(9)	0.5055 (6)	0.1959 (3)	0.0356 (19)
H24	-0.2189	0.5570	0.2128	0.043*
C25	-0.0214(9)	0.5113 (6)	0.1936 (4)	0.039(2)
H25	0.0288	0.5665	0.2096	0.046*
C26	0.0539 (9)	0.4379(5)	0.1684 (3)	0.0340 (18)
H26	0 1551	0 4428	0 1665	0.041*
C31	0.2498 (8)	0.2506 (5)	0.1460 (3)	0.0294 (17)
C32	0.2787 (9)	0.2633 (6)	0.2092 (3)	0.0364 (19)
H32	0 2041	0.2809	0 2339	0.044*
C33	0 4197 (9)	0.2496 (6)	0.2351 (4)	0.040(2)
H33	0 4415	0.2593	0.2777	0.048*
C34	0 5280 (9)	0.2221 (6)	0 1991 (4)	0.042(2)
H34	0.6233	0.2132	0.2172	0.050*
C35	0.4976 (9)	0.2076 (6)	0.1372 (4)	0.030 0.045(2)
H35	0 5709	0.1867	0.1128	0.054*
C36	0.3595 (8)	0.2239 (6)	0.1110(4)	0.0371(19)
H36	0.3397	0.2165	0.0681	0.0371(19)
N1	0.8684(11)	0.1649 (8)	-0.1169(5)	0.075(3)
C5	0.7977 (12)	0.1045 (8)	-0.1349(5)	0.073(3)
C6	0.7977(12) 0.7060(13)	0.1025(8)	-0.1577(6)	0.032(2)
H6A	0.6813	-0.0153	-0.1235	0.110*
H6B	0.7565	-0.0139	-0.1864	0.110*
HGC	0.7505	0.0139	-0.1788	0.110*
1100	0.01//	0.0010	0.1/00	0.110

supporting information

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Te1	0.0209 (3)	0.0284 (3)	0.0246 (3)	0.00017 (19)	0.00156 (19)	-0.00170 (19)
Br1	0.0357 (5)	0.0387 (5)	0.0257 (4)	-0.0025 (3)	0.0001 (3)	-0.0071 (3)
Br2	0.0376 (5)	0.0335 (5)	0.0356 (4)	0.0018 (3)	0.0013 (3)	0.0055 (3)
Br3	0.0325 (5)	0.0403 (5)	0.0441 (5)	-0.0040 (4)	0.0061 (3)	0.0102 (4)
Br4	0.0295 (5)	0.0459 (5)	0.0370 (4)	-0.0024 (4)	-0.0062 (3)	-0.0085 (4)
P1	0.0229 (10)	0.0277 (10)	0.0240 (9)	-0.0022 (8)	0.0038 (7)	0.0036 (8)
01	0.029 (3)	0.027 (3)	0.026 (3)	0.000 (2)	0.001 (2)	0.004 (2)
C1	0.034 (4)	0.027 (4)	0.026 (4)	-0.001 (3)	0.003 (3)	0.007 (3)
C2	0.030 (4)	0.034 (4)	0.027 (4)	-0.002 (3)	0.002 (3)	0.002 (3)
C3	0.023 (4)	0.036 (4)	0.023 (4)	0.000 (3)	0.008 (3)	-0.002 (3)
C4	0.024 (4)	0.029 (4)	0.033 (4)	0.001 (3)	0.005 (3)	-0.001 (3)
C11	0.032 (4)	0.025 (4)	0.027 (4)	-0.001 (3)	0.003 (3)	0.002 (3)
C12	0.048 (5)	0.043 (5)	0.029 (4)	-0.010 (4)	-0.008(4)	0.003 (4)
C13	0.055 (6)	0.044 (5)	0.046 (5)	-0.015 (4)	-0.017 (4)	0.000 (4)
C14	0.027 (5)	0.030 (4)	0.067 (6)	-0.005 (3)	0.001 (4)	-0.001 (4)
C15	0.043 (5)	0.032 (4)	0.043 (5)	-0.008(4)	0.014 (4)	0.000 (4)
C16	0.040 (5)	0.034 (4)	0.026 (4)	-0.004 (4)	0.009 (3)	-0.001 (3)
C21	0.031 (4)	0.031 (4)	0.022 (4)	0.003 (3)	-0.002 (3)	-0.003 (3)
C22	0.026 (4)	0.036 (4)	0.029 (4)	-0.004 (3)	0.001 (3)	0.001 (3)
C23	0.037 (5)	0.043 (5)	0.033 (4)	0.004 (4)	0.012 (4)	0.008 (4)
C24	0.053 (6)	0.033 (4)	0.022 (4)	0.014 (4)	0.009 (4)	0.001 (3)
C25	0.047 (5)	0.031 (4)	0.036 (4)	-0.001 (4)	-0.002 (4)	-0.001 (4)
C26	0.039 (5)	0.029 (4)	0.035 (4)	0.002 (3)	0.007 (4)	0.003 (3)
C31	0.027 (4)	0.026 (4)	0.034 (4)	-0.003 (3)	-0.002 (3)	0.009 (3)
C32	0.040 (5)	0.039 (5)	0.029 (4)	0.003 (4)	-0.004 (3)	0.004 (4)
C33	0.036 (5)	0.036 (5)	0.045 (5)	-0.006 (4)	-0.008(4)	0.013 (4)
C34	0.030 (5)	0.049 (5)	0.045 (5)	-0.003 (4)	-0.006 (4)	0.014 (4)
C35	0.028 (5)	0.058 (6)	0.051 (5)	-0.008(4)	0.006 (4)	0.004 (4)
C36	0.024 (4)	0.047 (5)	0.040 (4)	-0.001 (4)	0.002 (3)	0.005 (4)
N1	0.071 (7)	0.074 (7)	0.084 (7)	0.010 (6)	0.031 (6)	-0.015 (6)
C5	0.054 (6)	0.050 (6)	0.054 (6)	0.021 (5)	0.015 (5)	0.006 (5)
C6	0.071 (8)	0.057 (7)	0.088 (8)	0.016 (6)	-0.016 (6)	-0.019 (6)

Geometric parameters (Å, °)

Te1—C4	2.176 (7)	C15—H15	0.9500
Te1—Br2	2.6652 (10)	C16—H16	0.9500
Te1—Br4	2.6814 (11)	C21—C22	1.387 (11)
Te1—Br1	2.6944 (11)	C21—C26	1.410 (10)
Te1—Br3	2.7201 (10)	C22—C23	1.375 (11)
P101	1.568 (5)	C22—H22	0.9500
P1-C21	1.769 (7)	C23—C24	1.386 (11)
P1-C11	1.772 (7)	С23—Н23	0.9500
P1—C31	1.785 (8)	C24—C25	1.375 (12)
01—C1	1.473 (8)	C24—H24	0.9500

C1—C2	1.518 (10)	C25—C26	1.380 (11)
C1—H1A	0.9900	С25—Н25	0.9500
C1—H1B	0.9900	С26—Н26	0.9500
C2—C3	1.529 (10)	C31—C36	1.382 (11)
C2—H2A	0.9900	C31—C32	1.403 (10)
C2—H2B	0.9900	C32—C33	1.399 (11)
C3—C4	1.497 (10)	С32—Н32	0.9500
С3—НЗА	0.9900	C33—C34	1.388 (12)
С3—Н3В	0.9900	С33—Н33	0.9500
C4—H4A	0.9900	C34—C35	1.380 (12)
C4—H4B	0.9900	C34—H34	0.9500
C11—C12	1.394 (10)	C35—C36	1.383 (11)
C11-C16	1.031(10) 1.412(10)	C35—H35	0.9500
C12-C13	1.112(10) 1 390(11)	C36—H36	0.9500
C12—H12	0.9500	N1	1 140 (14)
C12 - C12	1,375(12)	C_{5}	1.140(14) 1 438(15)
C13 H13	0.9500	C6 H6A	0.0800
C_{13}	1.394(12)		0.9800
C14 - C13	1.364(12)	Со—пов	0.9800
	0.9300	Co-HoC	0.9800
015-016	1.378 (11)		
C4—Te1—Br2	88.4 (2)	C13—C14—H14	119.4
C4—Te1—Br4	85.4 (2)	C15—C14—H14	119.4
Br2—Te1—Br4	91.68 (3)	C16—C15—C14	120.2 (8)
C4—Te1—Br1	93.5 (2)	C16—C15—H15	119.9
Br2—Te1—Br1	90.55 (3)	C14—C15—H15	119.9
Br4—Te1—Br1	177 46 (3)	C_{15} $-C_{16}$ $-C_{11}$	1189(7)
C4—Te1—Br3	89.7 (2)	C15—C16—H16	120.5
Br2—Te1—Br3	176 86 (3)	C11—C16—H16	120.5
Br4—Te1—Br3	90.61.(3)	C^{22} C^{21} C^{26}	120.3 119 2 (7)
Br1—Te1—Br3	87 11 (3)	$C_{22} = C_{21} = C_{20}$	120.7(6)
O1 P1 C21	1120(3)	$C_{22} = C_{21} = P_1$	120.7(0)
O1 P1 C11	104.1(3)	$C_{20} = C_{21} = 11$	120.0(0) 120.7(7)
C_{21} P_1 C_{11}	104.1(5) 110.7(4)	$C_{23} = C_{22} = C_{21}$	120.7 (7)
$O_1 P_1 C_{31}$	10.7(4)	$C_{23} = C_{22} = H_{22}$	119.7
$C_{21} = P_1 = C_{21}$	107.9(3) 110.2(4)	$C_{21} = C_{22} = 1122$	119.7
$C_{21} = 1 = C_{31}$	110.2 (4) 111.8 (3)	$C_{22} = C_{23} = C_{24}$	120.0 (8)
C1 O1 P1	111.6(3)	$C_{22} = C_{23} = H_{23}$	120.0
C1 = O1 = F1	121.0(4)	$C_{24} = C_{23} = H_{23}$	120.0
01 - 01 - 02	107.2 (0)	$C_{25} = C_{24} = C_{25}$	120.0 (7)
	110.3	C_{23} C_{24} H_{24}	120.0
C2—CI—HIA	110.3	C_{23} — C_{24} — H_{24}	120.0
OI-CI-HIB	110.3	$C_{24} = C_{25} = C_{26}$	120.9 (8)
	110.5	$C_{24} = C_{25} = H_{25}$	119.5
	108.5	C25-C25-H25	119.5
C1 = C2 = C3	115.5 (6)	$C_{25} = C_{26} = C_{21}$	119.3 (8)
CI-C2-H2A	108.5	C25—C26—H26	120.4
C3—C2—H2A	108.5	C21—C26—H26	120.4
C1—C2—H2B	108.5	C36—C31—C32	119.7 (7)

C3—C2—H2B	108.5	C36—C31—P1	118.8 (6)
H2A—C2—H2B	107.5	C32—C31—P1	121.4 (6)
C4—C3—C2	110.0 (6)	C33—C32—C31	118.6 (8)
C4—C3—H3A	109.7	С33—С32—Н32	120.7
С2—С3—НЗА	109.7	С31—С32—Н32	120.7
C4—C3—H3B	109.7	C34—C33—C32	120.6 (8)
С2—С3—Н3В	109.7	С34—С33—Н33	119.7
НЗА—СЗ—НЗВ	108.2	С32—С33—Н33	119.7
C3—C4—Te1	117.6 (5)	C35—C34—C33	120.3 (8)
C3—C4—H4A	107.9	C35—C34—H34	119.9
Te1 - C4 - H4A	107.9	C_{33} C_{34} H_{34}	119.9
$C_3 - C_4 - H_4 B$	107.9	C_{34} C_{35} C_{36} C_{36}	119.5 (8)
Tel CA HAB	107.9	C_{34} C_{35} H_{35}	120.3
$H_{AA} = C_{A} = H_{AB}$	107.9	$C_{34} = C_{35} = 1135$	120.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107.2	$C_{30} = C_{35} = 1155$	120.3
C12 - C11 - C10	120.0(7)	$C_{31} = C_{30} = C_{33}$	121.5 (8)
CI2—CII—PI	121.2(0)	C31-C30-H30	119.4
	118.2 (6)	C35—C36—H36	119.4
	119.1 (7)	NIC5C6	178.8 (11)
С13—С12—Н12	120.4	С5—С6—Н6А	109.5
С11—С12—Н12	120.4	C5—C6—H6B	109.5
C14—C13—C12	120.0 (8)	H6A—C6—H6B	109.5
C14—C13—H13	120.0	С5—С6—Н6С	109.5
C12—C13—H13	120.0	H6A—C6—H6C	109.5
C13—C14—C15	121.1 (8)	H6B—C6—H6C	109.5
C21 P1 O1 C1	41.0 (6)	C21 D1 C21 C22	$1.19 \in (6)$
$C_2I = PI = OI = CI$	41.9(0)	$C_{31} = P_{1} = C_{21} = C_{22}$	-148.0(0)
CII = PI = OI = CI	101.5 (5)	OI - PI - C2I - C20	-84.7 (6)
	-/9.6 (6)	CII - PI - C2I - C26	159.7 (6)
PI = OI = CI = C2	-1/6.3(5)	C_{31} P_{1} C_{21} C_{26}	35.5 (7)
01	-67.3 (8)	C26—C21—C22—C23	-1.0 (11)
C1—C2—C3—C4	-67.7 (8)	P1—C21—C22—C23	-176.9 (6)
C2—C3—C4—Te1	-176.9 (5)	C21—C22—C23—C24	1.1 (12)
Br2—Te1—C4—C3	-62.1 (5)	C22—C23—C24—C25	-1.0 (11)
Br4—Te1—C4—C3	-153.9 (6)	C23—C24—C25—C26	0.9 (12)
Br1—Te1—C4—C3	28.3 (6)	C24—C25—C26—C21	-0.8 (12)
Br3—Te1—C4—C3	115.4 (5)	C22—C21—C26—C25	0.9 (11)
O1—P1—C11—C12	-11.4 (8)	P1-C21-C26-C25	176.8 (6)
C21—P1—C11—C12	109.2 (7)	O1—P1—C31—C36	-24.5 (7)
C31—P1—C11—C12	-127.6 (7)	C21—P1—C31—C36	-147.1 (6)
O1—P1—C11—C16	170.5 (6)	C11—P1—C31—C36	89.3 (7)
C21—P1—C11—C16	-69.0 (7)	O1—P1—C31—C32	158.1 (6)
C31—P1—C11—C16	54.2 (7)	C21—P1—C31—C32	35.5 (7)
C16—C11—C12—C13	0.1 (13)	C11—P1—C31—C32	-88.1 (7)
P1-C11-C12-C13	-178.0(7)	C36—C31—C32—C33	0.9 (11)
C11—C12—C13—C14	-1.3 (14)	P1—C31—C32—C33	178.3 (6)
C12—C13—C14—C15	2.1 (14)	C31—C32—C33—C34	-1.3 (12)
C13—C14—C15—C16	-1.7 (13)	C32—C33—C34—C35	-0.1(13)
C14—C15—C16—C11	0.5 (12)	C33—C34—C35—C36	2.1 (13)

C12—C11—C16—C15	0.3 (12)	C32—C31—C36—C35	1.1 (12)
P1-C11-C16-C15	178.5 (6)	P1—C31—C36—C35	-176.3 (6)
O1—P1—C21—C22	91.2 (7)	C34—C35—C36—C31	-2.6 (13)
C11—P1—C21—C22	-24.4 (7)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C3—H3 <i>B</i> ···Br1	0.99	2.82	3.450 (7)	122
C26—H26····Br3 ⁱ	0.95	2.75	3.619 (8)	152

Symmetry code: (i) -x+1, -y+1, -z.