metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(Acetonitrile){2-[bis(pyridin-2-ylmethyl- $\kappa^2 N$)amino- κN]-N-(2,6-dimethylphenyl)-acetamide- κO }(perchlorato- κO)zinc (acetonitrile){2-[bis(pyridin-2-ylmethyl- $\kappa^2 N$)amino- κN]-N-(2,6-dimethylphenyl)-acetamide- κO }zinc tris(perchlorate)

Ove Alexander Høgmoen Åstrand,^a Carl Henrik Görbitz,^b Kenneth Aase Kristoffersen^b and Pål Rongved^a*

^aSchool of Pharmacy, University of Oslo, PO Box 1068 Blindern, N-0316 Oslo, Norway, and ^bDepartment of Chemistry, University of Oslo, PO Box 1033 Blindern, N-0315 Oslo, Norway

Correspondence e-mail: pal.rongved@farmasi.uio.no

Received 9 October 2012; accepted 14 January 2013

Key indicators: single-crystal X-ray study; T = 105 K; mean σ (C–C) = 0.005 Å; disorder in solvent or counterion; R factor = 0.045; wR factor = 0.124; data-to-parameter ratio = 14.0.

In the title salt, $[Zn(C_{22}H_{24}N_4O)(CH_3CN)][Zn(ClO_4)(C_{22}H_{24} N_4O$ (CH₃CN)](ClO₄)₃, two differently coordinated zinc cations occur. In the first complex, the metal ion is coordinated by the N, N', N'', O-tetradentate acetamide ligand and an acetonitrile N atom, generating an approximate trigonalbipyramidal coordination geometry, with the O atom in an equatorial site and the acetonitrile N atom in an axial site. In the second complex ion, a perchlorate ion is also bonded to the zinc ion, generating a distorted *trans*-ZnO₂N₄ octahedron. Of the uncoordinating perchlorate ions, one lies on a crystallographic twofold axis and one lies close to a twofold axis and has a site occupancy of 0.5. N-H···O and N- $H \cdots (O,O)$ hydrogen bonds are observed in the crystal. Disordered solvent molecules occupy about 11% of the unitcell volume; their contribution to the scattering was removed with the SQUEEZE routine of the PLATON program [Spek (2009). Acta Cryst. D65, 148-155.].

Related literature

For related structures found in the Cambridge Structural Database (Version 5.33 of November 2011; Allen, 2002), see: Xu *et al.* (2010*a*,*b*); Patten *et al.* (2008); Marlin *et al.* (2006). For biochemical background, see: Makhov *et al.* (2008); Xu *et al.* (2010*a*).

 $\beta = 106.106 \ (2)^{\circ}$ V = 12418 (4) Å³

Mo $K\alpha$ radiation

 $0.91 \times 0.29 \times 0.22$ mm

43906 measured reflections

10987 independent reflections

8503 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $\mu = 1.03 \text{ mm}^-$ T = 105 K

 $R_{\rm int} = 0.051$

8 restraints

 $\Delta \rho_{\rm max} = 0.89 \ {\rm e} \ {\rm \AA}^{-1}$

 $\Delta \rho_{\rm min} = -0.66 \text{ e } \text{\AA}^{-3}$

Z = 8

Experimental

Crystal data

$[Zn(C_{22}H_{24}N_4O)(C_2H_3N)]$ -
$[Zn(ClO_4)(C_{22}H_{24}N_4O)-$
$(C_2H_3N)](ClO_4)_3$
$M_r = 1331.59$
Monoclinic, $C2/c$
a = 41.253 (8) Å
b = 15.057 (3) Å
c = 20.809 (4) Å

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2007) $T_{min} = 0.531, T_{max} = 0.798$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.124$ S = 1.0710987 reflections 782 parameters

Table 1

Selected bond lengths (Å).

Zn1A-N4A	2.058 (3)	Zn1B-N3B	2.020 (3)
Zn1A - N3A	2.059 (3)	Zn1B - O1B	2.025 (2)
Zn1A - N5A	2.060 (3)	Zn1B-N4B	2.040 (3)
Zn1A - O1A	2.087 (2)	Zn1B-N5B	2.043 (3)
Zn1A - N2A	2.236 (2)	Zn1B-N2B	2.240 (2)
Zn1A - O1D	2.310 (2)		

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1A - H1A \cdots O3D^{i}$	0.88	2.00	2.868 (3)	171
$N1B - H1B \cdots O4E^{ii}$	0.88	2.15	2.979 (3)	157
$N1B - H1B \cdots O3E^{ii}$	0.88	2.41	3.138 (4)	141

Symmetry codes: (i) $x, -y + 1, z + \frac{1}{2}$; (ii) $x, -y, z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT-Plus* (Bruker, 2007); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL* and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXTL*.

The work has been partly supported by Statoil Norge AS.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6972).

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Bruker (2007). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

- Makhov, P., Golovine, K., Uzzo, R. G., Rothman, J., Crispen, P. L., Shaw, T., Scoll, B. J. & Kolenko, V. M. (2008). *Cell Death Differ.* 15, 1745–1751.
- Marlin, D. S., Cabrera, D. G., Leigh, D. A. & Slawin, A. M. Z. (2006). Angew. Chem. Int. Ed. 45, 77-83.
- Patten, T. E., Olmstead, M. M. & Troeltzsch, C. (2008). Inorg. Chim. Acta, 361, 365–372.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Xu, Z., Baek, K.-H., Kim, H. N., Cui, J., Qian, X., Spring, D. R., Shin, I. & Yoon, J. (2010a). J. Am. Chem. Soc. 132, 601–610.
- Xu, Z., Han, S. J., Lee, C., Yoon, J. & Spring, D. R. (2010b). Chem. Commun. 46, 1679–1682.

supporting information

Acta Cryst. (2013). E69, m112-m113 [doi:10.1107/S1600536813001396]

(Acetonitrile){2-[bis(pyridin-2-ylmethyl- $\kappa^2 N$)amino- κN]-N-(2,6-dimethylphenyl)acetamide- κO }(perchlorato- κO)zinc (acetonitrile){2-[bis(pyridin-2-ylmethyl- $\kappa^2 N$)amino- κN]-N-(2,6-dimethylphenyl)acetamide- κO }zinc tris(perchlorate)

Ove Alexander Høgmoen Åstrand, Carl Henrik Görbitz, Kenneth Aase Kristoffersen and Pål Rongved

S1. Comment

The title compound (I) was prepared as part of a series of zinc-binding ligands to be tested biologically. Zinc chelation may induce apoptosis in prostate cancer cells (Makhov *et al.*, 2008), and may be used as Zn^{2+} -selective, cell-permeable, and ratiometric fluorescent sensors (Xu *et al.*, 2010*a*) for biological mapping of disease. The title compound was synthesized from 2,6-dimethyl aniline, chloroacetyl chloride and *N*,*N*'-dipicolylamine in a two-step procedure as a part of a larger work that will be published in due time.

The asymmetric unit is shown in Fig. 1 (*a*). Two independent 2-[bis(pyridin-2-ylmethyl)amino]-*N*-(2,6-dimethylphenyl) acetamides *A* and *B* act as tetradentate ligands for Zn²⁺ ions. Cocrystallized acetonitrile solvent molecules serve as additional ligands. There are five different perchlorate anions *C*, *D*, *E*, *F* and *G*, the latter two being located on (*F*) or very close to (*G*) a twofold axis. Perchlorate *D* serves as ligand number six for Zn1*A*, Fig. 1 (*b*), while perchlorate *E* is only loosely connected to Zn1B, Fig. 1(*c*). This means that Zn1*A* is octahedrally coordinated, while Zn1*B* has distorted trigonal bipyramidal geometry, Fig. 2. The effect on the overall molecular geometries is evident from the overlay in Fig. 3, which yields a RMS deviation of 0.76 Å. Torsion angle deviations between the two complexes are usually in the range $0 - 20^\circ$, but reaches 68.5° for C17—N2—C11—C12 [*A*: -85.1 (3)°; *B*: -153.6 (3)°]. The unit cell and crystal packing arrangement are shown in Fig. 4. Non-identical complexes are stacked on top of each other along the *b* axis. Perchlorate *C* sits between the *A* and *B* complexes and is involved in six C—H···O interactions with H···O distance < 2.7 Å, five out of which have >CH₂ donors. The perchlorate ions *F* and *G* interact primarily with unidentified disordered solvent molecules inside large, but isolated pockets. Amide H-atoms on N1*A* and N1*B* are donated to perchlorate ion *D* and *E*, respectively, to give one normal hydrogen bond and one three-centre hydrogen bond as listed in Table 1.

There are five other structures with a similar hydrocarbon skeleton in the Cambridge Structural Database (version 5.33 of November 2011; Allen 2002) with refcodes CECDOE (Marlin *et al.*, 2006), CECDUK (Marlin *et al.*, 2006), GUQRUG (Xu *et al.*, 2010*b*) XIXWAD (Patten *et al.*, 2008) and YUTTEN (Xu *et al.*, 2010*a*). In four complexes the substituted *N*-phenylacetamide acts as a tetradentate ligand for a metal ion (the fifth is CECDOE where the amid carbonyl group is not coordinated), but the total coordination number is always five. YUTTEN is chemically very similar to I; the metal ion is Zn^{2+} with acetonitrile as an additional ligand, only the two methyl groups on the *N*-phenyl ring are missing. The molecular conformation is almost identical to molecule I *B* except for a slightly different orientation for the *N*-phenyl group.

S2. Experimental

Colourless needles of (I) were obtained by dissolving 50 mg of a 1:1 mixture of the ligand and zinc perchlorate in 1 ml dry acetonitrile and transferring 0.5 ml into a 1.5 ml vial which was capped and a pinhole (0.5 mm) made in the cap. This was placed in a 5 ml vial with diethyl ether to allow slow evaporation of ether into the acetonitrile solution. After approximately 48 h at 4 °C, clear crystals appeared.

S3. Refinement

H atoms were positioned with idealized geometry and fixed C/N—H distances for NH, CH₃, CH₂ and CH (sp^2) at 0.88, 0.98, 0.99 and 0.95 Å, respectively. Two perchlorate anions are located on (F) or close to (G) a twofold rotation axis, and associated atoms have an occupancy of 0.5. Furthermore, displacement ellipsoids for O atoms are large, making an unrestrained refinement difficult. Cl—O distances were thus restrained to be close to 1.43 Å through *SHELX DFIX* 1.430 0.005 commands. Electron density in the solvent regions of the crystal were initially modelled by 8 - 10 partially occupied oxygen atoms, but this proved not to be satisfactory. The electron density was consequently synthetically removed by the SQEEZE routine of the *PLATON* program (Spek, 2009), yielding a significant improvement for *R*(*F*) as well as $wR(F^2)$.

Figure 1

(*a*) The asymmetric unit with H atoms omitted for clarity. C atoms in molecule A (including the associated acetonitrile ligand) are shown in light grey colour, as opposed to C atoms in molecule B which are dark grey. O atoms in perchlorate ion D, coordinating to molecule A, appear in orange, while O atoms in perchlorate ion E close to B are dark red. Perchlorate ions F and G are depicted here as light green and green spheres, respectively, to reduce overlap with A and B. (b) Complex A with perchlorate D. One pyridine ring has been shaded. (c) Complex B with perchlorate E. The indicated distances are $Zn1B\cdotsO1E = 3.077$ (3) Å and $Zn1B\cdotsO2E = 3.827$ (3) Å, which may be compared to 2.310 (3) Å for O1D-Zn1A. Displacement ellipsoids in (b) and (c) are shown at the 50% probability level with H atoms as spheres of arbitrary size.

Figure 2

Octahedral geometry at Zn1*A* (left) and trigonal bipyramidal geometry at Zn1*B* (right). In-plane bond angles (°) have been indicated. N3—Zn1—N4 undergoes an opening of 27.4° from *B* to *A* to accommodate the extra perchlorate ligand O1*D*. In both complexes the N5—Zn1—N3/N4/O1 angles are slightly larger than the N2—Zn1—N3/N4/O1 angles, with ranges 96.0 - 102.8° and 78.7 - 80.3°, respectively.

Figure 3

Stereo view of a molecular overlap between complex A and complex B. Colour coding as in Fig. 1(a), except that for molecule A N and O atoms are shown in lighter colours. The dashed arrow indicates the position of perchlorate D coordinating to A, which mainly serves to push the shaded ring system [see Fig. 1(b)] to the left.

Figure 4

Molecular packing viewed along the *b* axis. Colour coding as in Fig. 1(*a*). The 'Display Voids' tool in Mercury (Macrae *et al.*, 2008), with a 1.2 Å probe radius and 0.4 Å grid spacing, has been used to highlight regions of disordered solvent accounting for about 11% of the unit cell volume.

$(Acetonitrile){2-[bis(pyridin-2-ylmethyl-\kappa^2N)amino-\kappa N]- N-(2,6-dimethylphenyl)acetamide-\kappa O}(perchlorato-\kappa O)zinc (acetonitrile){2-[bis(pyridin-2-ylmethyl-\kappa^2N)amino-\kappa N]- N-(2,6-dimethylphenyl)acetamide-\kappa O}zinc tris(perchlorate)$

Crystal data

$[Zn(C_{22}H_{24}N_4O)(C_2H_3N)][Zn(ClO_4)(C_{22}H_{24}N_4O) (C_2H_3N)](ClO_4)_3 M_r = 1331.59 Monoclinic, C2/c Hall symbol: -C 2yc a = 41.253 (8) Å b = 15.057 (3) Å c = 20 800 (4) Å$	Z = 8 F(000) = 5716 $D_x = 1.490 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8118 reflections $\theta = 2.4-25.0^{\circ}$ $\mu = 1.03 \text{ mm}^{-1}$ T = 105 K
$\beta = 106\ 106\ (2)^{\circ}$	I = 105 K Needle colourless
$V = 12418 (4) Å^3$	$0.91 \times 0.29 \times 0.22 \text{ mm}$
Data collection	
Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 8.3 pixels mm ⁻¹ Sets of exposures each taken over $0.5^{\circ} \omega$ rotation scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2007)	$T_{\min} = 0.531, T_{\max} = 0.798$ 43906 measured reflections 10987 independent reflections 8503 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.051$ $\theta_{\text{max}} = 25.1^{\circ}, \theta_{\text{min}} = 1.7^{\circ}$ $h = -44 \rightarrow 49$ $k = -17 \rightarrow 17$ $l = -24 \rightarrow 24$
Refinement	
Refinement on F^2	782 parameters
Least-squares matrix: full	8 restraints
$R[F^2 > 2\sigma(F^2)] = 0.045$ wR(F ²) = 0.124	Primary atom site location: structure-invariant direct methods
S = 1.07	Secondary atom site location: difference Fourier
10987 reflections	map

Hydrogen site location: inferred from
neighbouring sites $w = 1/[\sigma^2(F_o^2) + (0.0725P)^2 + 5.6036P]$
where $P = (F_o^2 + 2F_c^2)/3$
 $(\Delta/\sigma)_{max} = 0.002$
 $\Delta\rho_{max} = 0.89$ e Å⁻³
 $\Delta\rho_{min} = -0.66$ e Å⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. Electron density from disordered solvent removed by the *PLATON* SQUEEZE routine. Total void volume is approximately 11% of the unit cell volume.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Zn1A	0.853323 (9)	0.59127 (2)	0.162884 (16)	0.02556 (11)	
O1A	0.86383 (6)	0.64960 (14)	0.25739 (10)	0.0357 (6)	
N1A	0.85940 (7)	0.63530 (18)	0.36241 (13)	0.0351 (7)	
H1A	0.8503	0.6055	0.3894	0.042*	
N2A	0.82241 (7)	0.50432 (18)	0.21004 (12)	0.0319 (6)	
N3A	0.80643 (7)	0.64892 (18)	0.12842 (12)	0.0301 (6)	
N4A	0.88783 (7)	0.49269 (16)	0.20125 (11)	0.0277 (6)	
N5A	0.88304 (7)	0.67580 (17)	0.12576 (12)	0.0279 (6)	
C1A	0.88254 (10)	0.7057 (2)	0.39009 (15)	0.0391 (9)	
C2A	0.86923 (10)	0.7820(2)	0.41226 (15)	0.0411 (9)	
C3A	0.89170 (12)	0.8510 (3)	0.43869 (17)	0.0525 (11)	
H3A	0.8836	0.9036	0.4542	0.063*	
C4A	0.92540 (13)	0.8436 (3)	0.44246 (19)	0.0620 (13)	
H4A	0.9402	0.8913	0.4602	0.074*	
C5A	0.93797 (12)	0.7677 (3)	0.42077 (19)	0.0594 (12)	
H5A	0.9614	0.7637	0.4241	0.071*	
C6A	0.91669 (11)	0.6969 (3)	0.39398 (18)	0.0484 (10)	
C7A	0.83236 (10)	0.7897 (2)	0.40674 (17)	0.0465 (10)	
H71A	0.8279	0.8470	0.4251	0.070*	
H72A	0.8256	0.7414	0.4319	0.070*	
H73A	0.8194	0.7858	0.3596	0.070*	
C8A	0.93093 (11)	0.6146 (3)	0.3702 (2)	0.0627 (13)	
H81A	0.9127	0.5722	0.3521	0.094*	
H82A	0.9477	0.5874	0.4079	0.094*	
H83A	0.9416	0.6309	0.3353	0.094*	
C9A	0.85096 (9)	0.6129 (2)	0.29855 (15)	0.0322 (8)	
C10A	0.82307 (9)	0.5447 (2)	0.27544 (16)	0.0363 (8)	
H10A	0.8262	0.4972	0.3095	0.044*	
H9A	0.8011	0.5736	0.2718	0.044*	
C11A	0.78842 (9)	0.5068 (2)	0.16266 (16)	0.0394 (9)	
H11A	0.7715	0.4891	0.1859	0.047*	
H12A	0.7872	0.4640	0.1260	0.047*	

C12A	0.78053 (9)	0.5981 (2)	0.13426 (16)	0.0360 (8)
C13A	0.80065 (9)	0.7317 (2)	0.10342 (15)	0.0358 (8)
H13A	0.8192	0.7668	0.0997	0.043*
C14A	0.76876 (10)	0.7668 (3)	0.08320 (17)	0.0482 (10)
H14A	0.7652	0.8259	0.0669	0.058*
C15A	0.74182 (11)	0.7138 (3)	0.08713 (19)	0.0599 (12)
H15A	0.7194	0.7356	0.0720	0.072*
C16A	0.74785 (10)	0.6298(3)	0.11291 (18)	0.0512 (10)
H16A	0.7296	0.5933	0.1161	0.061*
C17A	0.83855 (9)	0.4168 (2)	0.21700 (16)	0.0343 (8)
H17A	0.8288	0 3819	0.1758	0.041*
H18A	0.8336	0 3848	0 2548	0.041*
C18A	0.87640 (9)	0.3010 0.4226(2)	0.22913 (15)	0.0314(8)
C19A	0.07040(9) 0.92118(8)	0.4220(2) 0.4992(2)	0.22913(15) 0.20791(15)	0.0314(0) 0.0300(7)
H10A	0.9293	0.5486	0.1886	0.036*
C20A	0.9299	0.3468 (2)	0.1000 0.24175(17)	0.030
	0.94391 (10)	0.4308 (2)	0.24175(17)	0.0407 (9)
C21 A	0.3073	0.4430	0.2434 0.27020 (18)	0.0459 (10)
	0.93244 (11)	0.3031(2)	0.27029 (18)	0.0438 (10)
П21А С22А	0.9477	0.3210	0.2930	0.033
U22A	0.89839 (11)	0.3386 (2)	0.20430 (10)	0.0410 (9)
H22A	0.8900	0.5105	0.2844	0.049*
C23A	0.90154 (8)	0.7206 (2)	0.11036 (14)	0.0298 (7)
C24A	0.92560 (10)	0.7789 (3)	0.09111 (17)	0.0472 (10)
H24A	0.9193	0.8410	0.0951	0.071*
H25A	0.9253	0.7667	0.0447	0.071*
H26A	0.9483	0.7682	0.1206	0.071*
Zn1B	0.850909 (9)	0.10724 (2)	0.182215 (16)	0.02359 (11)
O1B	0.86112 (5)	0.16804 (13)	0.27244 (9)	0.0280 (5)
N1B	0.86223 (7)	0.15562 (16)	0.38094 (12)	0.0285 (6)
H1B	0.8530	0.1312	0.4101	0.034*
N2B	0.81877 (7)	0.02712 (17)	0.23148 (12)	0.0283 (6)
N3B	0.80573 (7)	0.12094 (17)	0.11358 (12)	0.0266 (6)
N4B	0.88036 (7)	-0.00293 (17)	0.20878 (11)	0.0295 (6)
N5B	0.88183 (7)	0.18507 (17)	0.14441 (12)	0.0298 (6)
C1B	0.88784 (9)	0.2221 (2)	0.40386 (14)	0.0303 (7)
C2B	0.87858 (9)	0.3043 (2)	0.42471 (15)	0.0331 (8)
C3B	0.90378 (11)	0.3676 (3)	0.44669 (19)	0.0480 (10)
H3B	0.8983	0.4240	0.4613	0.058*
C4B	0.93672 (11)	0.3495 (3)	0.4476 (2)	0.0628 (14)
H4B	0.9536	0.3938	0.4621	0.075*
C5B	0.94530 (10)	0.2678 (3)	0.42749 (18)	0.0554 (12)
H5B	0.9681	0.2560	0.4291	0.066*
C6B	0.92113 (9)	0.2023 (2)	0.40488 (16)	0.0389 (8)
C7B	0.84309 (9)	0.3234 (2)	0.42462 (16)	0.0396 (8)
H71B	0.8416	0.3839	0.4409	0.059*
H72B	0.8361	0.2810	0.4539	0.059*
H73B	0.8283	0.3177	0.3790	0.059*
C8B	0.93100 (11)	0.1128 (3)	0.3822 (2)	0.0536 (11)
	···· · · · · · · · · · · · · · · · · ·			

H81B	0.9109	0.0750	0.3677	0.080*
H82B	0.9476	0.0842	0.4193	0.080*
H83B	0.9408	0.1215	0.3447	0.080*
C9B	0.85185 (8)	0.12953 (19)	0.31777 (14)	0.0264 (7)
C10B	0.82974 (9)	0.0476 (2)	0.30370 (14)	0.0336 (8)
H10B	0.8424	-0.0036	0.3283	0.040*
H9B	0.8096	0.0573	0.3200	0.040*
C11B	0.78361 (9)	0.0504 (2)	0.19832 (16)	0.0355 (8)
H11B	0.7762	0.0973	0.2245	0.043*
H12B	0.7692	-0.0023	0.1974	0.043*
C12B	0.77897 (8)	0.0831 (2)	0.12761 (15)	0.0304 (7)
C13B	0.80221 (9)	0.1555 (2)	0.05235 (14)	0.0305 (7)
H13B	0.8212	0.1819	0.0427	0.037*
C14B	0.77192 (9)	0.1537 (2)	0.00329 (16)	0.0392 (8)
H14B	0.7699	0.1788	-0.0395	0.047*
C15B	0.74445 (9)	0.1144 (3)	0.01802 (18)	0.0443 (9)
H15B	0.7232	0.1120	-0.0148	0.053*
C16B	0.74821 (9)	0.0789 (2)	0.08056 (17)	0.0401 (9)
H16B	0.7296	0.0515	0.0911	0.048*
C17B	0.82742 (9)	-0.0648(2)	0.21670 (15)	0.0341 (8)
H17B	0.8152	-0.0801	0.1700	0.041*
H18B	0.8203	-0.1068	0.2467	0.041*
C18B	0.86462 (10)	-0.0734(2)	0.22624 (14)	0.0347 (8)
C19B	0.91337 (9)	-0.0069(2)	0.21427 (15)	0.0383 (8)
H19B	0.9241	0.0431	0.2012	0.046*
C20B	0.93232 (12)	-0.0811(3)	0.23819 (19)	0.0541 (11)
H20B	0.9558	-0.0819	0.2424	0.065*
C21B	0.91691 (13)	-0.1536(3)	0.25579 (19)	0.0604 (13)
H21B	0.9295	-0.2057	0.2717	0.072*
C22B	0.88279 (13)	-0.1505 (2)	0.25024 (17)	0.0515 (11)
H22B	0.8718	-0.2004	0.2626	0.062*
C23B	0.90020 (8)	0.2236 (2)	0.12319 (15)	0.0281 (7)
C24B	0.92369 (9)	0.2734 (2)	0.09660 (17)	0.0398 (8)
H24B	0.9197	0.3372	0.1000	0.060*
H25B	0.9204	0.2575	0.0496	0.060*
H26B	0.9469	0.2593	0.1222	0.060*
Cl1C	0.75770 (2)	0.28630 (6)	0.23363 (4)	0.0396 (2)
O1C	0.75333 (10)	0.3701 (2)	0.25924 (17)	0.0862 (12)
O2C	0.78840 (7)	0.24711 (19)	0.27441 (14)	0.0571 (7)
O3C	0.73026 (8)	0.2301 (2)	0.23552 (16)	0.0809 (11)
O4C	0.76038 (7)	0.29391 (18)	0.16670 (12)	0.0530(7)
CliD	0.850080 (19)	0.44683 (5)	0.03225 (3)	0.02583 (17)
01D	0.83426 (6)	0.51464 (14)	0.06334 (10)	0.0336 (5)
O2D	0.88496 (6)	0.46675 (16)	0.04288 (11)	0.0383 (6)
O3D	0.83300 (6)	0.44678 (15)	-0.03836(10)	0.0338 (5)
O4D	0.84614 (6)	0.36250 (15)	0.06091 (11)	0.0381 (6)
Cl1E	0.83903 (2)	-0.05427 (5)	0.02203 (4)	0.0377 (2)
O1E	0.86080(8)	0.0128 (2)	0.05791 (13)	0.0635 (8)
		······································	· · · · · · · · · · · · · · · · · · ·	

O2E	0.80982 (8)	-0.06216 (17)	0.04704 (13)	0.0554 (8)	
O3E	0.85568 (9)	-0.13788 (19)	0.02709 (15)	0.0730 (10)	
O4E	0.82850 (6)	-0.02999 (15)	-0.04755 (10)	0.0376 (6)	
Cl1F	1.0000	0.70818 (12)	0.2500	0.0630 (4)	
O1F	0.99954 (17)	0.7857 (4)	0.2109 (4)	0.091 (3)	0.50
O2F	0.9785 (3)	0.6454 (9)	0.2089 (7)	0.201 (9)	0.50
O3F	0.9906 (3)	0.7262 (9)	0.3106 (4)	0.169 (6)	0.50
O4F	1.03261 (14)	0.6715 (6)	0.2706 (4)	0.0487 (17)	0.50
Cl1G	0.9993 (2)	0.18690 (15)	0.2590 (3)	0.0619 (13)	0.50
01G	0.9975 (2)	0.2081 (7)	0.3251 (3)	0.099 (3)	0.50
O2G	0.9977 (2)	0.2677 (5)	0.2198 (4)	0.102 (3)	0.50
O3G	1.0325 (2)	0.1570 (7)	0.2653 (4)	0.058 (2)	0.50
O4G	0.9744 (4)	0.1271 (10)	0.2236 (9)	0.177 (9)	0.50

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
Zn1A	0.0336 (2)	0.0267 (2)	0.02145 (19)	-0.00585 (15)	0.01601 (15)	-0.00028 (13)
O1A	0.0585 (16)	0.0321 (12)	0.0247 (11)	-0.0157 (11)	0.0252 (11)	-0.0058 (9)
N1A	0.0521 (19)	0.0370 (16)	0.0237 (14)	-0.0075 (13)	0.0230 (13)	-0.0007 (11)
N2A	0.0405 (17)	0.0357 (15)	0.0262 (13)	-0.0123 (13)	0.0205 (12)	-0.0069 (11)
N3A	0.0319 (16)	0.0360 (16)	0.0268 (14)	-0.0038 (12)	0.0155 (12)	-0.0065 (11)
N4A	0.0405 (17)	0.0247 (13)	0.0204 (12)	-0.0064 (12)	0.0124 (11)	0.0003 (10)
N5A	0.0360 (16)	0.0282 (14)	0.0220 (13)	-0.0023 (12)	0.0123 (12)	0.0038 (10)
C1A	0.059 (3)	0.045 (2)	0.0185 (15)	-0.0104 (18)	0.0196 (16)	-0.0038 (14)
C2A	0.064 (3)	0.043 (2)	0.0184 (15)	-0.0044 (18)	0.0158 (16)	-0.0033 (14)
C3A	0.080(3)	0.050(2)	0.0283 (19)	-0.011 (2)	0.017 (2)	-0.0108 (16)
C4A	0.084 (4)	0.066 (3)	0.037 (2)	-0.032 (3)	0.018 (2)	-0.021 (2)
C5A	0.068 (3)	0.077 (3)	0.039 (2)	-0.024 (2)	0.024 (2)	-0.022 (2)
C6A	0.066 (3)	0.053 (2)	0.0343 (19)	-0.014 (2)	0.0269 (19)	-0.0153 (17)
C7A	0.069 (3)	0.043 (2)	0.0305 (18)	0.0051 (19)	0.0178 (18)	-0.0040 (15)
C8A	0.055 (3)	0.083 (3)	0.060 (3)	-0.012 (2)	0.033 (2)	-0.032 (2)
C9A	0.047 (2)	0.0301 (17)	0.0269 (17)	-0.0046 (15)	0.0227 (15)	-0.0010 (13)
C10A	0.056 (2)	0.0345 (18)	0.0282 (17)	-0.0119 (17)	0.0275 (16)	-0.0047 (14)
C11A	0.042 (2)	0.049 (2)	0.0333 (18)	-0.0195 (17)	0.0201 (16)	-0.0115 (15)
C12A	0.033 (2)	0.056 (2)	0.0238 (16)	-0.0071 (17)	0.0162 (14)	-0.0118 (15)
C13A	0.039 (2)	0.045 (2)	0.0258 (16)	0.0003 (16)	0.0148 (15)	-0.0082 (14)
C14A	0.051 (3)	0.070 (3)	0.0244 (18)	0.015 (2)	0.0121 (17)	-0.0015 (17)
C15A	0.036 (2)	0.108 (4)	0.038 (2)	0.015 (2)	0.0150 (18)	0.006 (2)
C16A	0.042 (2)	0.085 (3)	0.0302 (19)	-0.007 (2)	0.0166 (17)	0.0027 (19)
C17A	0.053 (2)	0.0292 (17)	0.0286 (17)	-0.0150 (16)	0.0246 (16)	-0.0050 (13)
C18A	0.055 (2)	0.0224 (16)	0.0210 (15)	-0.0104 (15)	0.0178 (15)	-0.0039 (12)
C19A	0.036 (2)	0.0290 (17)	0.0273 (16)	-0.0044 (14)	0.0123 (14)	0.0012 (13)
C20A	0.044 (2)	0.043 (2)	0.0370 (19)	0.0028 (17)	0.0141 (17)	0.0000 (15)
C21A	0.063 (3)	0.035 (2)	0.039 (2)	0.0108 (18)	0.0149 (19)	0.0054 (16)
C22A	0.077 (3)	0.0217 (17)	0.0294 (18)	-0.0029 (17)	0.0233 (18)	0.0018 (13)
C23A	0.035 (2)	0.0377 (18)	0.0165 (14)	-0.0063 (15)	0.0070 (13)	0.0032 (12)
C24A	0.050(2)	0.063 (3)	0.0301 (18)	-0.027(2)	0.0136 (17)	0.0120 (17)

Zn1B	0.0323 (2)	0.02355 (19)	0.01785 (18)	-0.00281 (15)	0.01191 (15)	0.00170 (13)
O1B	0.0390 (13)	0.0292 (12)	0.0199 (10)	-0.0083 (10)	0.0148 (9)	-0.0004 (8)
N1B	0.0420 (17)	0.0286 (14)	0.0200 (12)	-0.0082 (12)	0.0171 (12)	-0.0026 (10)
N2B	0.0417 (17)	0.0279 (14)	0.0186 (12)	-0.0111 (12)	0.0140 (11)	-0.0053 (10)
N3B	0.0317 (16)	0.0276 (13)	0.0244 (13)	-0.0009 (11)	0.0140 (11)	-0.0030 (10)
N4B	0.0459 (18)	0.0264 (14)	0.0195 (12)	0.0023 (12)	0.0143 (12)	0.0006 (10)
N5B	0.0361 (17)	0.0309 (14)	0.0248 (13)	-0.0018 (13)	0.0126 (12)	0.0026 (11)
C1B	0.041 (2)	0.0364 (18)	0.0170 (14)	-0.0105 (15)	0.0134 (13)	-0.0042 (12)
C2B	0.048 (2)	0.0337 (18)	0.0227 (15)	-0.0107 (16)	0.0191 (15)	-0.0046 (13)
C3B	0.067 (3)	0.043 (2)	0.045 (2)	-0.023 (2)	0.033 (2)	-0.0189 (17)
C4B	0.059 (3)	0.086 (3)	0.056 (3)	-0.043(2)	0.037 (2)	-0.039(2)
C5B	0.043 (2)	0.092 (3)	0.038 (2)	-0.022(2)	0.0228 (18)	-0.029(2)
C6B	0.042 (2)	0.053 (2)	0.0247 (16)	-0.0063 (18)	0.0153 (15)	-0.0099(15)
C7B	0.054 (2)	0.0364 (19)	0.0300 (18)	-0.0040(17)	0.0149 (16)	-0.0051(14)
C8B	0.050(3)	0.068 (3)	0.043 (2)	0.008 (2)	0.0126 (19)	-0.0159(19)
C9B	0.0375 (19)	0.0229(15)	0.0231(15)	-0.0012(13)	0.0157 (14)	-0.0019(12)
C10B	0.055(2)	0.0329(18)	0.0181(15)	-0.0144(16)	0.0191(15)	-0.0053(12)
C11B	0.033(2)	0.0323(10)	0.0337(18)	-0.0138(16)	0.0234(16)	-0.0060(12)
C12B	0.0316(19)	0.0346(18)	0.0289(17)	-0.0041(14)	0.0237(10) 0.0148(14)	-0.0005(13)
C13B	0.0310(1))	0.0370(18)	0.0237(16)	0.0019(14)	0.0118(14)	0.00000 (10)
C14B	0.030(2) 0.042(2)	0.0323(10)	0.0257(10) 0.0258(17)	0.0013(17)	0.0110(14)	0.0011(15)
C15B	0.042(2)	0.049(2)	0.0230(17)	0.0093(17)	0.0000(15) 0.0034(16)	-0.0000(13)
C16B	0.030(2) 0.034(2)	0.002(3)	0.037(2)	-0.0012(10)	0.0034(10)	-0.0107(16)
C10D C17B	0.057(2)	0.032(2)	0.030(2)	-0.0105(17)	0.0137(10)	-0.0029(12)
C19P	0.002(3)	0.0224(10)	0.0210(10)	-0.0010(15)	0.0135(10)	-0.0029(12)
CIOD	0.008(3)	0.0233(10)	0.0142(14) 0.0276(17)	-0.0010(10)	0.0135(13)	-0.0031(12) -0.0012(14)
CIAD	0.030(2)	0.040(2)	0.0270(17)	0.0092(17)	0.0133(10)	0.0012(14)
C20B	0.072(3)	0.034(3)	0.041(2)	0.031(2)	0.025(2)	0.0041(18)
C21D	0.100(4)	0.049(3)	0.030(2)	0.037(3)	0.025(2)	0.0030(18)
C22B	0.105(4)	0.0205(19)	0.02/3(18)	0.008(2)	0.025(2)	0.0015(14)
C23D	0.0343(19)	0.0270(17)	0.0240(13)	0.0004(14)	0.0112(14)	0.0011(12)
C24B	0.040(2)	0.048(2)	0.0305(19)	-0.0099(17)	0.0182(10)	0.0063(15)
	0.0416 (5)	0.0407 (5)	0.0386 (5)	-0.0035(4)	0.0145 (4)	0.0062 (4)
	0.14/(4)	0.0483 (19)	0.095 (3)	0.0210 (19)	0.086 (3)	0.0033 (16)
020	0.0470(17)	0.0647 (19)	0.0505 (16)	0.0011 (14)	-0.0019 (13)	0.0012 (14)
03C	0.0491 (19)	0.109 (3)	0.074 (2)	-0.0276 (18)	-0.0015 (16)	0.0512 (19)
O4C	0.0686 (19)	0.0579 (17)	0.0348 (14)	-0.0013 (14)	0.0182 (13)	0.0032 (12)
CIID	0.0305 (4)	0.0283 (4)	0.0233 (4)	-0.0013 (3)	0.0151 (3)	-0.0022 (3)
O1D	0.0405 (14)	0.0354 (13)	0.0281 (11)	0.0048 (10)	0.0151 (10)	-0.0096 (9)
O2D	0.0308 (14)	0.0494 (15)	0.0392 (13)	-0.0029 (11)	0.0174 (11)	0.0063 (11)
O3D	0.0397 (14)	0.0441 (14)	0.0208 (11)	0.0025 (11)	0.0138 (10)	-0.0056 (9)
O4D	0.0473 (16)	0.0306 (12)	0.0406 (13)	-0.0016 (11)	0.0191 (11)	0.0043 (10)
Cl1E	0.0660 (6)	0.0328 (4)	0.0176 (4)	0.0110 (4)	0.0173 (4)	0.0008 (3)
O1E	0.075 (2)	0.076 (2)	0.0349 (15)	-0.0066 (17)	0.0065 (14)	-0.0191 (14)
O2E	0.097 (2)	0.0415 (15)	0.0466 (15)	0.0042 (15)	0.0510 (16)	-0.0005 (12)
O3E	0.116 (3)	0.0520 (18)	0.0602 (19)	0.0424 (18)	0.0406 (19)	0.0181 (14)
O4E	0.0511 (16)	0.0474 (14)	0.0159 (10)	0.0017 (12)	0.0122 (10)	0.0028 (9)
Cl1F	0.0300 (8)	0.0834 (12)	0.0714 (10)	0.000	0.0072 (7)	0.000
O1F	0.048 (4)	0.065 (4)	0.136 (7)	-0.019 (4)	-0.012 (5)	0.066 (4)

supporting information

O2F	0.128 (11)	0.200 (17)	0.201 (17)	-0.126 (12)	-0.077 (10)	0.096 (12)
O3F	0.164 (11)	0.202 (13)	0.201 (12)	0.081 (10)	0.150 (10)	0.073 (10)
O4F	0.034 (4)	0.062 (4)	0.049 (3)	0.014 (3)	0.011 (3)	-0.003 (3)
Cl1G	0.0392 (11)	0.0748 (12)	0.076 (4)	-0.012 (2)	0.024 (2)	-0.030 (2)
01G	0.088 (6)	0.144 (8)	0.080 (5)	0.025 (5)	0.047 (4)	-0.008(5)
O2G	0.077 (5)	0.081 (5)	0.155 (10)	-0.002 (5)	0.043 (8)	0.048 (5)
03G	0.046 (5)	0.078 (6)	0.051 (4)	0.018 (4)	0.016 (3)	-0.002 (3)
O4G	0.103 (11)	0.122 (12)	0.262 (19)	-0.064 (10)	-0.020 (10)	-0.007 (10)

Geometric parameters (Å, °)

Zn1A—N4A	2.058 (3)	N2B—C10B	1.477 (4)
Zn1A—N3A	2.059 (3)	N2B—C17B	1.483 (4)
Zn1A—N5A	2.060 (3)	N3B—C12B	1.344 (4)
Zn1A—O1A	2.087 (2)	N3B—C13B	1.346 (4)
Zn1A—N2A	2.236 (2)	N4B—C19B	1.336 (4)
Zn1A—O1D	2.310 (2)	N4B—C18B	1.346 (4)
O1A—C9A	1.254 (4)	N5B—C23B	1.137 (4)
N1A—C9A	1.321 (4)	C1B—C6B	1.400 (5)
N1A—C1A	1.435 (4)	C1B—C2B	1.400 (4)
N1A—H1A	0.8800	C2B—C3B	1.391 (5)
N2A—C17A	1.466 (4)	C2B—C7B	1.492 (5)
N2A—C11A	1.474 (4)	C3B—C4B	1.381 (6)
N2A—C10A	1.484 (4)	C3B—H3B	0.9500
N3A—C13A	1.346 (4)	C4B—C5B	1.377 (6)
N3A—C12A	1.347 (4)	C4B—H4B	0.9500
N4A—C19A	1.347 (4)	C5B—C6B	1.388 (5)
N4A—C18A	1.351 (4)	C5B—H5B	0.9500
N5A—C23A	1.129 (4)	C6B—C8B	1.521 (5)
C1A—C6A	1.395 (5)	C7B—H71B	0.9800
C1A—C2A	1.406 (5)	C7B—H72B	0.9800
C2A—C3A	1.399 (5)	С7В—Н73В	0.9800
C2A—C7A	1.498 (5)	C8B—H81B	0.9800
C3A—C4A	1.375 (6)	C8B—H82B	0.9800
СЗА—НЗА	0.9500	C8B—H83B	0.9800
C4A—C5A	1.381 (6)	C9B—C10B	1.513 (4)
C4A—H4A	0.9500	C10B—H10B	0.9900
C5A—C6A	1.396 (5)	C10B—H9B	0.9900
C5A—H5A	0.9500	C11B—C12B	1.513 (4)
C6A—C8A	1.512 (6)	C11B—H11B	0.9900
C7A—H71A	0.9800	C11B—H12B	0.9900
C7A—H72A	0.9800	C12B—C16B	1.372 (5)
С7А—Н73А	0.9800	C13B—C14B	1.377 (5)
C8A—H81A	0.9800	C13B—H13B	0.9500
C8A—H82A	0.9800	C14B—C15B	1.386 (5)
С8А—Н83А	0.9800	C14B—H14B	0.9500
C9A—C10A	1.517 (5)	C15B—C16B	1.376 (5)
C10A—H10A	0.9900	C15B—H15B	0.9500

С10А—Н9А	0.9900	C16B—H16B	0.9500
C11A—C12A	1.496 (5)	C17B—C18B	1.497 (5)
C11A—H11A	0.9900	C17B—H17B	0.9900
C11A—H12A	0.9900	C17B—H18B	0.9900
C12A—C16A	1.382 (5)	C18B—C22B	1.396 (5)
C13A—C14A	1.371 (5)	C19B—C20B	1.375 (5)
С13А—Н13А	0.9500	C19B—H19B	0.9500
C14A—C15A	1.389 (6)	C20B—C21B	1.363 (6)
C14A—H14A	0.9500	C20B—H20B	0.9500
C15A—C16A	1.369 (6)	C21B—C22B	1.381 (6)
C15A—H15A	0.9500	C21B—H21B	0.9500
C16A—H16A	0.9500	C22B—H22B	0.9500
C17A—C18A	1.514 (5)	C23B—C24B	1.451 (4)
C17A—H17A	0.9900	C24B—H24B	0.9800
С17А—Н18А	0.9900	C24B—H25B	0.9800
C18A—C22A	1.386 (5)	C24B—H26B	0.9800
C19A—C20A	1.376 (5)	Cl1C—O1C	1.401 (3)
C19A—H19A	0.9500	Cl1C—O3C	1.422 (3)
C20A—C21A	1.378 (5)	Cl1C—O4C	1.432 (3)
C20A—H20A	0.9500	Cl1C—O2C	1.441 (3)
$C_{21}A - C_{22}A$	1.379 (5)	Cl1D—O2D	1.426 (2)
C21A—H21A	0.9500	Cl1D—O4D	1.431 (2)
C22A—H22A	0.9500	Cl1D—O3D	1.443 (2)
C23A—C24A	1.462 (4)	Cl1D—O1D	1.456 (2)
C24A—H24A	0.9800	Cl1E—O1E	1.418 (3)
С24А—Н25А	0.9800	Cl1E—O3E	1.424 (3)
C24A—H26A	0.9800	Cl1E—O4E	1.439 (2)
Zn1B—N3B	2.020 (3)	Cl1E—O2E	1.444 (3)
Zn1B—O1B	2.025 (2)	Cl1F—O4F	1.406 (4)
Zn1B—N4B	2.040 (3)	Cl1F—O2F	1.411 (5)
Zn1B—N5B	2.043 (3)	Cl1F—O1F	1.420 (4)
Zn1B—N2B	2.240 (2)	Cl1F—O3F	1.443 (5)
O1B—C9B	1.254 (3)	Cl1G—O3G	1.410 (5)
N1B—C9B	1.324 (4)	Cl1G—O4G	1.412 (5)
N1B—C1B	1.437 (4)	Cl1G—O1G	1.436 (5)
N1B—H1B	0.8800	Cl1G—O2G	1.456 (4)
N2B—C11B	1.466 (4)		
N4A—Zn1A—N3A	157.06 (10)	C1B—N1B—H1B	118.6
N4A—Zn1A—N5A	99.87 (10)	C11B—N2B—C10B	114.4 (3)
N3A—Zn1A—N5A	102.02 (10)	C11B—N2B—C17B	112.9 (3)
N4A—Zn1A—O1A	89.86 (9)	C10B—N2B—C17B	112.5 (2)
N3A—Zn1A—O1A	94.60 (10)	C11B—N2B—Zn1B	106.84 (18)
N5A—Zn1A—O1A	95.95 (9)	C10B—N2B—Zn1B	107.45 (18)
N4A—Zn1A—N2A	79.92 (10)	C17B—N2B—Zn1B	101.59 (18)
N3A—Zn1A—N2A	78.72 (10)	C12B—N3B—C13B	119.3 (3)
N5A—Zn1A—N2A	176.00 (9)	C12B—N3B—Zn1B	117.1 (2)
O1A—Zn1A—N2A	80.06 (9)	C13B—N3B—Zn1B	123.0 (2)

N4A—Zn1A—O1D	90.82 (9)	C19B—N4B—C18B	119.9 (3)
N3A—Zn1A—O1D	81.08 (9)	C19B—N4B—Zn1B	125.2 (2)
N5A—Zn1A—O1D	93.57 (9)	C18B—N4B—Zn1B	114.8 (2)
O1A—Zn1A—O1D	170.19 (8)	C23B—N5B—Zn1B	175.6 (3)
N2A—Zn1A—O1D	90.42 (9)	C6B—C1B—C2B	122.3 (3)
C9A—O1A—Zn1A	116.2 (2)	C6B—C1B—N1B	119.0 (3)
C9A—N1A—C1A	123.5 (3)	C2B—C1B—N1B	118.7 (3)
C9A—N1A—H1A	118.2	C3B—C2B—C1B	117.7 (3)
C1A—N1A—H1A	118.2	C3B—C2B—C7B	120.8 (3)
C17A—N2A—C11A	114.3 (3)	C1B—C2B—C7B	121.5 (3)
C17A—N2A—C10A	112.7 (3)	C4B—C3B—C2B	120.8 (4)
C11A—N2A—C10A	112.0 (3)	C4B—C3B—H3B	119.6
C17A—N2A—Zn1A	105.74 (18)	С2В—С3В—Н3В	119.6
C11A—N2A—Zn1A	104.13 (19)	C5B—C4B—C3B	120.5 (4)
C10A—N2A—Zn1A	107.15 (18)	C5B—C4B—H4B	119.8
C13A—N3A—C12A	120.1 (3)	C3B—C4B—H4B	119.8
C13A—N3A—Zn1A	125.0 (2)	C4B—C5B—C6B	121.1 (4)
C12A—N3A—Zn1A	114.9 (2)	C4B—C5B—H5B	119.4
C19A—N4A—C18A	118.7 (3)	C6B—C5B—H5B	119.4
C19A—N4A—Zn1A	124.3 (2)	C5B—C6B—C1B	117.6 (3)
C18A—N4A—Zn1A	116.3 (2)	C5B—C6B—C8B	120.4 (3)
C23A—N5A—Zn1A	173.9 (3)	C1B—C6B—C8B	122.0 (3)
C6A—C1A—C2A	122.6 (3)	C2B—C7B—H71B	109.5
C6A—C1A—N1A	120.1 (3)	C2B—C7B—H72B	109.5
C2A—C1A—N1A	117.3 (3)	H71B—C7B—H72B	109.5
C3A—C2A—C1A	117.4 (4)	C2B—C7B—H73B	109.5
C3A—C2A—C7A	121.4 (3)	H71B—C7B—H73B	109.5
C1A—C2A—C7A	121.2 (3)	Н72В—С7В—Н73В	109.5
C4A—C3A—C2A	120.7 (4)	C6B—C8B—H81B	109.5
С4А—С3А—НЗА	119.6	C6B—C8B—H82B	109.5
С2А—С3А—НЗА	119.6	H81B—C8B—H82B	109.5
C3A—C4A—C5A	120.9 (4)	C6B—C8B—H83B	109.5
C3A—C4A—H4A	119.5	H81B—C8B—H83B	109.5
C5A—C4A—H4A	119.5	H82B—C8B—H83B	109.5
C4A—C5A—C6A	120.7 (4)	O1B—C9B—N1B	121.8 (3)
C4A—C5A—H5A	119.6	O1B—C9B—C10B	121.6 (3)
C6A—C5A—H5A	119.6	N1B-C9B-C10B	116.4 (2)
C1A—C6A—C5A	117.6 (4)	N2B—C10B—C9B	111.4 (2)
C1A—C6A—C8A	122.4 (3)	N2B-C10B-H10B	109.3
C5A—C6A—C8A	119.9 (4)	C9B—C10B—H10B	109.3
C2A—C7A—H71A	109.5	N2B—C10B—H9B	109.3
C2A—C7A—H72A	109.5	C9B—C10B—H9B	109.3
H71A—C7A—H72A	109.5	H10B—C10B—H9B	108.0
С2А—С7А—Н73А	109.5	N2B—C11B—C12B	112.2 (2)
H71A—C7A—H73A	109.5	N2B—C11B—H11B	109.2
H72A—C7A—H73A	109.5	C12B—C11B—H11B	109.2
C6A—C8A—H81A	109.5	N2B—C11B—H12B	109.2
C6A—C8A—H82A	109.5	C12B—C11B—H12B	109.2

H81A—C8A—H82A	109.5	H11B—C11B—H12B	107.9
C6A—C8A—H83A	109.5	N3B-C12B-C16B	121.2 (3)
H81A—C8A—H83A	109.5	N3B—C12B—C11B	117.3 (3)
H82A—C8A—H83A	109.5	C16B—C12B—C11B	121.4 (3)
O1A—C9A—N1A	122.1 (3)	N3B—C13B—C14B	122.1 (3)
O1A—C9A—C10A	120.6 (3)	N3B—C13B—H13B	118.9
N1A—C9A—C10A	117.2 (3)	C14B—C13B—H13B	118.9
N2A—C10A—C9A	112.8 (2)	C13B—C14B—C15B	118.3 (3)
N2A—C10A—H10A	109.0	C13B—C14B—H14B	120.9
C9A—C10A—H10A	109.0	C15B—C14B—H14B	120.9
N2A—C10A—H9A	109.0	C16B—C15B—C14B	119.4 (3)
С9А—С10А—Н9А	109.0	C16B—C15B—H15B	120.3
H10A—C10A—H9A	107.8	C14B—C15B—H15B	120.3
N2A—C11A—C12A	110.5 (3)	C12B—C16B—C15B	119.7 (3)
N2A—C11A—H11A	109.6	C12B—C16B—H16B	120.1
C12A—C11A—H11A	109.6	C15B—C16B—H16B	120.1
N2A—C11A—H12A	109.6	N2B—C17B—C18B	110.5 (3)
C12A—C11A—H12A	109.6	N2B—C17B—H17B	109.5
H11A—C11A—H12A	108.1	C18B—C17B—H17B	109.5
N3A—C12A—C16A	120.1 (4)	N2B—C17B—H18B	109.5
N3A—C12A—C11A	117.8 (3)	C18B—C17B—H18B	109.5
C16A—C12A—C11A	122.0 (3)	H17B—C17B—H18B	108.1
N3A—C13A—C14A	121.8 (4)	N4B—C18B—C22B	120.0 (4)
N3A—C13A—H13A	119.1	N4B—C18B—C17B	116.7 (3)
C14A—C13A—H13A	119.1	C22B—C18B—C17B	123.3 (3)
C13A—C14A—C15A	118.4 (4)	N4B—C19B—C20B	122.1 (4)
C13A—C14A—H14A	120.8	N4B—C19B—H19B	118.9
C15A—C14A—H14A	120.8	C20B—C19B—H19B	118.9
C16A—C15A—C14A	119.5 (4)	C21B—C20B—C19B	119.1 (4)
C16A—C15A—H15A	120.2	C21B—C20B—H20B	120.4
C14A—C15A—H15A	120.2	C19B—C20B—H20B	120.4
C15A—C16A—C12A	120.0 (4)	C20B—C21B—C22B	119.4 (4)
C15A—C16A—H16A	120.0	C20B—C21B—H21B	120.3
C12A—C16A—H16A	120.0	C22B—C21B—H21B	120.3
N2A—C17A—C18A	112.6 (3)	C21B—C22B—C18B	119.4 (4)
N2A—C17A—H17A	109.1	C21B—C22B—H22B	120.3
C18A—C17A—H17A	109.1	C18B—C22B—H22B	120.3
N2A—C17A—H18A	109.1	N5B—C23B—C24B	179.5 (4)
C18A—C17A—H18A	109.1	C23B—C24B—H24B	109.5
H17A—C17A—H18A	107.8	C23B—C24B—H25B	109.5
N4A—C18A—C22A	121.0 (3)	H24B—C24B—H25B	109.5
N4A—C18A—C17A	116.1 (3)	C23B—C24B—H26B	109.5
C22A—C18A—C17A	122.8 (3)	H24B—C24B—H26B	109.5
N4A—C19A—C20A	122.3 (3)	H25B—C24B—H26B	109.5
N4A—C19A—H19A	118.8	O1C—Cl1C—O3C	109.8 (2)
C20A—C19A—H19A	118.8	O1C—Cl1C—O4C	110.52 (18)
C19A—C20A—C21A	119.3 (4)	O3C—C11C—O4C	110.57 (19)
C19A—C20A—H20A	120.4	O1C—Cl1C—O2C	109.3 (2)

120.4	O3C—Cl1C—O2C	108.43 (18)
118.7 (3)	O4C—Cl1C—O2C	108.26 (17)
120.7	O2DCl1DO4D	110.39 (15)
120.7	O2D-C11D-O3D	110.17 (13)
120.0(3)	04D—C11D—O3D	110.13(14)
120.0	$O^2 D - C^{11} D - O^{11} D$	109.92(14)
120.0	$O_{4}D$ $C_{1}D$ $O_{1}D$	109.92(14) 108.68(14)
120.0	$O^{2}D$ $C^{1}D$ $O^{1}D$	103.03(14) 107.48(12)
1/9.4 (4)	$C_{11}D = C_{11}D = C_{11}D$	107.46(13) 121.72(14)
109.5		131.72 (14)
109.5	OIE—CIIE—O3E	111.6 (2)
109.5	OIE—CIIE—O4E	108.61 (16)
109.5	O3E—CIIE—O4E	107.69 (16)
109.5	O1E—C11E—O2E	109.80 (17)
109.5	O3E—C11E—O2E	109.52 (18)
121.54 (9)	O4E—Cl1E—O2E	109.54 (16)
129.65 (10)	O4F—Cl1F—O2F	108.0 (7)
99.28 (9)	O4F—Cl1F—O1F	110.9 (4)
102.79 (10)	O2F—Cl1F—O1F	107.3 (7)
96.10 (9)	O4F—Cl1F—O3F	105.8 (6)
100.51 (11)	O2F—Cl1F—O3F	112.3 (9)
80.29 (10)	O1F—C11F—O3F	112.4 (8)
79.43 (8)	O3G—Cl1G—O4G	113.2 (8)
79.72 (10)	O3G—Cl1G—O1G	106.8 (6)
175.48 (9)	04G—C11G—01G	114.6 (9)
117 38 (19)	03G-C11G-02G	102.2(7)
122 8 (2)	04G-C11G-02G	102.2(7)
118.6	016-C116-026	109.1(10) 110.2(7)
110.0		110.2 (7)
-76.9(3)	N3B 7n1B O1B C0B	843(2)
80.6.(3)	N/AB $7n^{1}B$ $O^{1}B$ $O^{2}B$	-64.9(2)
-176.8(3)	N5B Zn1B O1B C0B	-1667(2)
-1/0.8(3)	$N3D = Z_{m1} D = O1D = C9D$	-100.7(2)
2.9(2)	N2B—ZIIIB—UIB—C9B	12.7(2)
1/.1(/)	N3B—ZIIIB—N2B—CIIB	-15.95 (19)
-20.83(19)	OIB—ZnIB—N2B—CIIB	108.93 (19)
150.8 (2)	N4B—Zn1B—N2B—C11B	-149.5 (2)
-108.1 (15)	N5B—Zn1B—N2B—C11B	117.2 (13)
-112.5 (2)	N3B—Zn1B—N2B—C10B	-139.1 (2)
69.94 (19)	O1B—Zn1B—N2B—C10B	-14.2 (2)
-141.6 (2)	N4B—Zn1B—N2B—C10B	87.4 (2)
30.02 (19)	N5B—Zn1B—N2B—C10B	-5.9 (14)
131.2 (15)	N3B—Zn1B—N2B—C17B	102.59 (19)
126.8 (2)	O1B—Zn1B—N2B—C17B	-132.5 (2)
-50.80 (19)	N4B—Zn1B—N2B—C17B	-30.95 (19)
99.6 (2)	N5B—Zn1B—N2B—C17B	-124.2 (13)
-88.8 (2)	O1B—Zn1B—N3B—C12B	-68.6 (2)
12.3 (16)	N4B—Zn1B—N3B—C12B	70.3 (2)
7.9 (2)	N5B—Zn1B—N3B—C12B	-174.1 (2)
-169.7 (2)	N2B—Zn1B—N3B—C12B	2.5 (2)
	120.4 118.7 (3) 120.7 120.7 120.0 (3) 120.0 120.0 179.4 (4) 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 121.54 (9) 129.65 (10) 99.28 (9) 102.79 (10) 96.10 (9) 100.51 (11) 80.29 (10) 79.43 (8) 79.72 (10) 175.48 (9) 117.38 (19) 122.8 (2) 118.6 -76.9 (3) 80.6 (3) -176.8 (3) 2.9 (2) 17.1 (7) -20.83 (19) 150.8 (2) -108.1 (15) -112.5 (2) 69.94 (19) -141.6 (2) 30.02 (19) 131.2 (15) 126.8 (2) -50.80 (19) 99.6 (2) -88.8 (2) 12.3 (16) 7.9 (2) -169.7 (2)	120.4 03C—C11C—02C 118.7 (3) 04C—C11C—02C 120.7 02D—C11D—03D 120.0 (3) 04D—C11D—03D 120.0 (3) 04D—C11D—01D 120.0 02D—C11D—01D 120.0 04D—C11D—01D 120.0 04D—C11D—01D 120.0 04D—C11D—01D 120.0 04D—C11D—01D 190.5 C11D—01D—Zn1A 109.5 01E—C11E—04E 109.5 01E—C11E—04E 109.5 01E—C11E—02E 129.65 (10) 04F—C11F—02F 99.28 (9) 04F—C11F—01F 102.79 (10) 02F—C11F—03F 80.29 (10) 01F—C11F—03F 80.29 (10) 04F—C11G—03G 79.43 (8) 03G—C11G—04G 79.72 (10) 03G—C11G—02G 175.48 (9) 04G—C11G—02G 175.48 (9) 04G—C11G—02G 122.8 (2) 04G—C11G—02G 122.8 (2) 04G—C11G—02G 122.8 (2) 04G—C11G—02G 175.48 (9) 04G—C11G—02G 122.8 (2) 04G—C11G—02G 122.8 (2) 04G—C1

N4A—Zn1A—N3A—C13A	-176.7 (2)	O1B—Zn1B—N3B—C13B	120.1 (2)
N5A—Zn1A—N3A—C13A	-14.4 (3)	N4B—Zn1B—N3B—C13B	-101.0(2)
O1A—Zn1A—N3A—C13A	82.7 (2)	N5B—Zn1B—N3B—C13B	14.6 (3)
N2A—Zn1A—N3A—C13A	161.6 (2)	N2B—Zn1B—N3B—C13B	-168.8(2)
O1D—Zn1A—N3A—C13A	-106.1 (2)	N3B—Zn1B—N4B—C19B	131.4 (2)
N4A—Zn1A—N3A—C12A	5.3 (4)	O1B—Zn1B—N4B—C19B	-83.1(2)
N5A—Zn1A—N3A—C12A	167.6 (2)	N5B—Zn1B—N4B—C19B	14.9 (3)
O1A—Zn1A—N3A—C12A	-95.3 (2)	N2B—Zn1B—N4B—C19B	-160.5 (2)
N2A—Zn1A—N3A—C12A	-16.4 (2)	N3B—Zn1B—N4B—C18B	-53.5 (2)
O1D—Zn1A—N3A—C12A	75.9 (2)	O1B—Zn1B—N4B—C18B	92.0 (2)
N3A—Zn1A—N4A—C19A	173.0 (2)	N5B—Zn1B—N4B—C18B	-170.0(2)
N5A—Zn1A—N4A—C19A	10.6 (2)	N2B—Zn1B—N4B—C18B	14.6 (2)
O1A—Zn1A—N4A—C19A	-85.5 (2)	N3B—Zn1B—N5B—C23B	-119 (3)
N2A—Zn1A—N4A—C19A	-165.4 (2)	O1B—Zn1B—N5B—C23B	116 (3)
O1D—Zn1A—N4A—C19A	104.3 (2)	N4B—Zn1B—N5B—C23B	16 (3)
N3A—Zn1A—N4A—C18A	-15.9 (4)	N2B—Zn1B—N5B—C23B	108 (3)
N5A—Zn1A—N4A—C18A	-178.4 (2)	C9B—N1B—C1B—C6B	-68.9 (4)
O1A—Zn1A—N4A—C18A	85.6 (2)	C9B—N1B—C1B—C2B	111.4 (3)
N2A—Zn1A—N4A—C18A	5.7 (2)	C6B—C1B—C2B—C3B	0.3 (5)
O1D—Zn1A—N4A—C18A	-84.6 (2)	N1B—C1B—C2B—C3B	180.0 (3)
N4A—Zn1A—N5A—C23A	-40 (3)	C6B—C1B—C2B—C7B	-178.7 (3)
N3A—Zn1A—N5A—C23A	146 (3)	N1B—C1B—C2B—C7B	1.0 (4)
O1A—Zn1A—N5A—C23A	50 (3)	C1B—C2B—C3B—C4B	0.2 (5)
N2A—Zn1A—N5A—C23A	46 (3)	C7B—C2B—C3B—C4B	179.2 (4)
O1D—Zn1A—N5A—C23A	-132 (3)	C2B—C3B—C4B—C5B	-0.9 (6)
C9A—N1A—C1A—C6A	-68.6 (5)	C3B—C4B—C5B—C6B	1.1 (6)
C9A—N1A—C1A—C2A	111.2 (4)	C4B-C5B-C6B-C1B	-0.6 (6)
C6A—C1A—C2A—C3A	0.4 (5)	C4B—C5B—C6B—C8B	179.3 (4)
N1A—C1A—C2A—C3A	-179.4 (3)	C2B-C1B-C6B-C5B	-0.1 (5)
C6A—C1A—C2A—C7A	179.4 (3)	N1B-C1B-C6B-C5B	-179.8 (3)
N1A—C1A—C2A—C7A	-0.4 (4)	C2B-C1B-C6B-C8B	180.0 (3)
C1A—C2A—C3A—C4A	0.1 (5)	N1B-C1B-C6B-C8B	0.3 (5)
C7A—C2A—C3A—C4A	-178.9 (3)	Zn1B—O1B—C9B—N1B	168.3 (2)
C2A—C3A—C4A—C5A	-0.5 (6)	Zn1B—O1B—C9B—C10B	-8.3 (4)
C3A—C4A—C5A—C6A	0.5 (6)	C1B—N1B—C9B—O1B	-7.9 (5)
C2A—C1A—C6A—C5A	-0.4 (5)	C1B—N1B—C9B—C10B	168.9 (3)
N1A—C1A—C6A—C5A	179.4 (3)	C11B—N2B—C10B—C9B	-104.3 (3)
C2A—C1A—C6A—C8A	179.9 (3)	C17B-N2B-C10B-C9B	125.1 (3)
N1A—C1A—C6A—C8A	-0.4 (5)	Zn1B—N2B—C10B—C9B	14.1 (3)
C4A—C5A—C6A—C1A	-0.1 (6)	O1B-C9B-C10B-N2B	-5.3 (5)
C4A—C5A—C6A—C8A	179.7 (4)	N1B-C9B-C10B-N2B	177.9 (3)
Zn1A—O1A—C9A—N1A	170.2 (3)	C10B—N2B—C11B—C12B	144.5 (3)
Zn1A—O1A—C9A—C10A	-14.0 (4)	C17B—N2B—C11B—C12B	-85.1 (3)
C1A—N1A—C9A—O1A	3.1 (5)	Zn1B—N2B—C11B—C12B	25.7 (3)
C1A—N1A—C9A—C10A	-172.8 (3)	C13B—N3B—C12B—C16B	0.3 (5)
C17A—N2A—C10A—C9A	99.8 (3)	Zn1B—N3B—C12B—C16B	-171.4 (3)
C11A—N2A—C10A—C9A	-129.7 (3)	C13B—N3B—C12B—C11B	-176.3 (3)
Zn1A—N2A—C10A—C9A	-16.1 (3)	Zn1B—N3B—C12B—C11B	12.1 (4)

O1A $C0A$ $C10A$ $N2A$			
UIA-C9A-CIUA-NZA	21.3 (5)	N2B-C11B-C12B-N3B	-26.7 (4)
N1A—C9A—C10A—N2A	-162.7 (3)	N2B-C11B-C12B-C16B	156.8 (3)
C17A—N2A—C11A—C12A	-153.6 (3)	C12B—N3B—C13B—C14B	0.2 (5)
C10A—N2A—C11A—C12A	76.8 (3)	Zn1B—N3B—C13B—C14B	171.3 (2)
Zn1A—N2A—C11A—C12A	-38.7 (3)	N3B—C13B—C14B—C15B	-0.4 (5)
C13A—N3A—C12A—C16A	1.8 (4)	C13B—C14B—C15B—C16B	0.1 (5)
Zn1A—N3A—C12A—C16A	179.9 (2)	N3B-C12B-C16B-C15B	-0.5 (5)
C13A—N3A—C12A—C11A	-179.7 (3)	C11B—C12B—C16B—C15B	175.9 (3)
Zn1A—N3A—C12A—C11A	-1.6 (3)	C14B—C15B—C16B—C12B	0.3 (5)
N2A—C11A—C12A—N3A	29.7 (4)	C11B—N2B—C17B—C18B	156.5 (2)
N2A—C11A—C12A—C16A	-151.8 (3)	C10B-N2B-C17B-C18B	-72.2 (3)
C12A—N3A—C13A—C14A	-0.1 (4)	Zn1B—N2B—C17B—C18B	42.4 (3)
Zn1A—N3A—C13A—C14A	-178.0 (2)	C19B—N4B—C18B—C22B	0.2 (4)
N3A—C13A—C14A—C15A	-1.9 (5)	Zn1B—N4B—C18B—C22B	-175.1 (2)
C13A—C14A—C15A—C16A	2.1 (5)	C19B—N4B—C18B—C17B	-178.2 (3)
C14A—C15A—C16A—C12A	-0.5 (6)	Zn1B—N4B—C18B—C17B	6.5 (3)
N3A—C12A—C16A—C15A	-1.5 (5)	N2B-C17B-C18B-N4B	-36.1 (3)
C11A—C12A—C16A—C15A	-179.9 (3)	N2B-C17B-C18B-C22B	145.5 (3)
C11A—N2A—C17A—C18A	146.0 (3)	C18B—N4B—C19B—C20B	-0.8 (5)
C10A—N2A—C17A—C18A	-84.6 (3)	Zn1B—N4B—C19B—C20B	174.1 (3)
Zn1A—N2A—C17A—C18A	32.1 (3)	N4B-C19B-C20B-C21B	1.2 (5)
C19A—N4A—C18A—C22A	0.4 (4)	C19B—C20B—C21B—C22B	-1.0 (6)
Zn1A—N4A—C18A—C22A	-171.2 (2)	C20B-C21B-C22B-C18B	0.4 (5)
C19A—N4A—C18A—C17A	-177.1 (3)	N4B—C18B—C22B—C21B	0.0 (5)
Zn1A—N4A—C18A—C17A	11.3 (3)	C17B—C18B—C22B—C21B	178.2 (3)
N2A—C17A—C18A—N4A	-30.9 (4)	Zn1B—N5B—C23B—C24B	-129 (51)
N2A—C17A—C18A—C22A	151.6 (3)	O2D—Cl1D—O1D—Zn1A	-38.5 (2)
C18A—N4A—C19A—C20A	0.4 (4)	O4D—Cl1D—O1D—Zn1A	82.4 (2)
Zn1A—N4A—C19A—C20A	171.2 (2)	O3D—Cl1D—O1D—Zn1A	-158.46 (16)
N4A—C19A—C20A—C21A	-0.3 (5)	N4A—Zn1A—O1D—Cl1D	-22.45 (19)
C19A—C20A—C21A—C22A	-0.4 (5)	N3A—Zn1A—O1D—C11D	179.11 (19)
C20A—C21A—C22A—C18A	1.2 (5)	N5A—Zn1A—O1D—C11D	77.49 (19)
N4A—C18A—C22A—C21A	-1.2 (5)	O1A—Zn1A—O1D—Cl1D	-116.4 (5)
C17A—C18A—C22A—C21A	176.2 (3)	N2A—Zn1A—O1D—Cl1D	-102.37 (19)
Zn1A—N5A—C23A—C24A	-46 (40)		

Hydrogen-bond geometry (Å, °)

<i>D</i> —Н	H…A	$D \cdots A$	D—H··· A
0.88	2.00	2.868 (3)	171
0.88	2.15	2.979 (3)	157
0.88	2.41	3.138 (4)	141
	<i>D</i> —H 0.88 0.88 0.88 0.88	D—H H…A 0.88 2.00 0.88 2.15 0.88 2.41	D—H H···A D···A 0.88 2.00 2.868 (3) 0.88 2.15 2.979 (3) 0.88 2.41 3.138 (4)

Symmetry codes: (i) x, -y+1, z+1/2; (ii) x, -y, z+1/2.