

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(1*SR*,3*RS*,3*aSR*,6*aRS*)-Methyl 5-methyl-4,6-dioxo-3-[2-(trifluoromethyl)phenyl]octahydropyrrolo[3,4-*c*]pyrrole-1carboxylate

Konstantin V. Kudryavtsev,^{a,b}* Polina M. Ivantcova^a and Andrei V. Churakov^c

^aDepartment of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russian Federation, ^bInstitute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka 142432, Moscow Region, Russian Federation, and ^cInstitute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii prosp. 31, Moscow 119991, Russian Federation

Correspondence e-mail: kudr@org.chem.msu.ru

Received 16 December 2012; accepted 20 December 2012

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.002 Å; R factor = 0.041; wR factor = 0.115; data-to-parameter ratio = 16.0.

In the title compound, $C_{16}H_{15}F_3N_2O_4$, the relative stereochemistry of the four stereogenic C atoms has been determined. The carboxymethyl and 2-(trifluoromethyl)phenyl substituents of the pyrrolidine cycle have a *cis* mutual arrangement. The five-membered saturated azacycle adopts an envelope conformation with the N atom occupying the flap position. In the crystal, adjacent molecules are combined in centrosymmetric dimers by two weak $N-H\cdots O$ hydrogen bonds.

Related literature

For general background to the chemistry affording bicyclic pyrrolo[3,4-*c*]pyrrole-based scaffolds and structural determination, see: Kudryavtsev & Irkha (2005); Kudryavtsev (2008); Kudryavtsev & Zagulyaeva (2008); Kudryavtsev *et al.* (2011).

V = 3143.5 (2) Å³

Mo Ka radiation

 $0.35 \times 0.30 \times 0.25 \text{ mm}$

28987 measured reflections

4585 independent reflections

3698 reflections with $I > 2\sigma(I)$

 $\mu = 0.13 \text{ mm}^{-1}$

T = 150 K

 $R_{\rm int} = 0.032$

Z = 8

Experimental

Crystal data

 $\begin{array}{l} C_{16}H_{15}F_{3}N_{2}O_{4}\\ M_{r}=356.30\\ Orthorhombic, Pbca\\ a=11.6168 \ (4) \ {\rm \AA}\\ b=12.7385 \ (5) \ {\rm \AA}\\ c=21.2429 \ (8) \ {\rm \AA} \end{array}$

Data collection

Bruker SMART APEXII diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2008) T_{min} = 0.955, T_{max} = 0.968

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.041 & 286 \text{ parameters} \\ wR(F^2) &= 0.115 & \text{All H-atom parameters refined} \\ S &= 1.05 & \Delta\rho_{\text{max}} = 0.41 \text{ e } \text{ Å}^{-3} \\ 4585 \text{ reflections} & \Delta\rho_{\text{min}} = -0.36 \text{ e } \text{ Å}^{-3} \end{split}$$

Table 1

Hydrogen-bond g	eometry (A, °)).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1 \cdots O3^i$	0.884 (15)	2.363 (15)	3.1738 (13)	152.5 (13)
Symmetry code: (i	-x+1, -v+2,	-z + 1.		

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

This study was partially supported by the Russian Foundation for Basic Research (project Nos 11-03-00630_a, 11-03-91375-ST_a and 12-03-92005-NNS_a).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FF2094).

References

- Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Kudryavtsev, K. V. (2008). Russ. Chem. Bull. 57, 2364–2372.
- Kudryavtsev, K. V., Churakov, A. V. & Dogan, O. (2011). Acta Cryst. E67, o3186.

- Kudryavtsev, K. V. & Irkha, V. V. (2005). *Molecules*, **10**, 755–761. Kudryavtsev, K. V. & Zagulyaeva, A. A. (2008). *Russ. J. Org. Chem.* **44**, 378– 387.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2013). E69, o161-o162 [doi:10.1107/S1600536812051471]

(1*SR*,3*RS*,3*aSR*,6*aRS*)-Methyl 5-methyl-4,6-dioxo-3-[2-(trifluoromethyl)phenyl]octahydropyrrolo[3,4-*c*]pyrrole-1-carboxylate

Konstantin V. Kudryavtsev, Polina M. Ivantcova and Andrei V. Churakov

S1. Comment

The core of the title compound is formed by two fused pyrrolidine cycles. It was effectively synthesized by the threecomponent approach developed by the authors (Fig. 1). Combination of molecular sieves and triethyamine represents an efficient reagent for performing three-component interaction of benzaldehyde, glycine ester and dipolarophile. The product X-ray structure determination indicates that cycloaddition step proceeds as *endo*-process (Fig. 2). Tetrasubstituted pyrrolidine cycle adopts envelope conformation with N1 atom occupying flap position. Amine atom N1 has trigonal pyramidal environment with the sum of valent angles equal to 329.0 °. Hydrogen atom H1 lies in axial position (relative to the mean plane of five-membered ring). As expected, dioxopyrrolidine cycle is planar within 0.0354 (7) Å.

In the crystal, the adjacent molecules are combined in centrosymmetric dimers by two weak N—H…O hydrogen bonds (Fig. 3). The same dimers were previously observed in the structure of (1*SR*,3*RS*,3a*SR*,6a*RS*-methyl 5-methyl-4,6-dioxo-3-phenyloctahydropyrrolo [3,4-*c*]pyrrole-1-carboxylate (Kudryavtsev & Zagulyaeva, 2008).

S2. Experimental

Triethylamine (0.340 ml, 2.41 mmol) was added to the stirred mixture of 2-(trifluoromethyl)benzaldehyde (200 mg, 1.15 mmol), *N*-methylmaleimide (130 mg, 1.15 mmol), glycine methyl ester hydrochloride (158 mg, 1.30 mmol) and 4 Å molecular sieves (200 mg) in toluene under argon atmosphere. Reaction mixture was stirred for 48 h. Volatiles were removed at reduced pressure. CH₂Cl₂ (50 ml) was added to the residue, resulted suspension was filtered through Celite, washed with saturated solution of NH₄Cl (2 *x* 10 ml). Organic phase was dried over Na₂SO₄, concentrated and purified by column chromatography on silica gel 60 (particle size 0.040–0.063 mm) using CH₂Cl₂—MeOH (100:1) as eluent. Yield 168 mg (41%), colorless crystals, mp 183–185°C. ¹H NMR (400 MHz, CDCl₃): δ 2.61 (s, 3H, NCH₃), 3.28 (t, 1H, H-3a, *J* 8.2), 3.40 (t, 1H, H-6a, *J* 7.3), 3.64 (s, 3H, OCH₃), 3.95 (d, 1H, H-1, *J* 6.7), 4.59 (d, 1H, H-3, *J* 8.6), 7.20 (t, 1H, Ar, *J* 7.6), 7.30 (t, 1H, Ar, *J* 7.6), 7.61 (d, 1H, Ar, *J* 7.6). ¹³C NMR (100 MHz, CDCl₃): δ 24.94, 47.31, 48.92, 52.26, 58.89, 61.04, 123.02, 125.89, 128.06, 128.23, 131.96, 135.74, 169.84, 174.30, 175.78. Found, %: C, 54.12; H, 4.27; N, 7.78. C₁₆H₁₅F₃N₂O₄. Calculated, %: C, 53.94; H, 4.24; N, 7.86. The crystals were obtained by slow evaporation of the CDCl₃ solution.

S3. Refinement

All hydrogen atoms were located in a difference Fourier map and refined with isotropic thermal parameters.

Figure 2

The molecular structure of the title compound, showing the numbering scheme adopted. Displacement ellipsoids are shown at the 50% probability level.

Figure 3

Hydrogen-bonded dimers in the structure of the title compound. H-bonds are shown as dashed lines. [Symmetry code: (i) 1 - x, 2 - y, 1 - z.]

(1SR,3RS,3aSR,6aRS)-Methyl 5-methyl-4,6-dioxo-3-[2-(trifluoromethyl)phenyl]octahydropyrrolo[3,4-

c]pyrrole-1-carboxylate

Crystal data	
$C_{16}H_{15}F_{3}N_{2}O_{4}$	F(000) = 1472
$M_r = 356.30$	$D_{\rm x} = 1.506 {\rm ~Mg} {\rm ~m}^{-3}$
Orthorhombic, Pbca	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ac 2ab	Cell parameters from 7037 reflections
a = 11.6168 (4) Å	$\theta = 2.6 - 30.2^{\circ}$
b = 12.7385 (5) Å	$\mu = 0.13 \text{ mm}^{-1}$
c = 21.2429 (8) Å	T = 150 K
$V = 3143.5 (2) Å^3$	Block, colourless
Z = 8	$0.35 \times 0.30 \times 0.25 \text{ mm}$

Data collection

Bruker SMART APEXII diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2008) $T_{min} = 0.955, T_{max} = 0.968$ <i>Refinement</i>	28987 measured reflections 4585 independent reflections 3698 reflections with $I > 2\sigma(I)$ $R_{int} = 0.032$ $\theta_{max} = 30.0^{\circ}, \ \theta_{min} = 2.6^{\circ}$ $h = -16 \rightarrow 16$ $k = -17 \rightarrow 16$ $l = -29 \rightarrow 29$
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.115$ S = 1.05 4585 reflections 286 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: difference Fourier map All H-atom parameters refined $w = 1/[\sigma^2(F_o^2) + (0.0599P)^2 + 0.958P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.41$ e Å ⁻³ $\Delta\rho_{min} = -0.36$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$	
N1	0.37232 (8)	0.96741 (8)	0.58121 (4)	0.01832 (19)	
N2	0.43578 (9)	0.80090 (8)	0.70073 (5)	0.0223 (2)	
01	0.59707 (8)	0.90401 (9)	0.70207 (5)	0.0323 (2)	
02	0.25210 (8)	0.73656 (7)	0.69180 (4)	0.0293 (2)	
03	0.60527 (8)	1.01872 (8)	0.56746 (4)	0.0261 (2)	
04	0.59604 (7)	1.12962 (7)	0.64969 (4)	0.0265 (2)	
F1	0.02339 (7)	0.95536 (7)	0.66222 (4)	0.0360 (2)	
F2	0.01291 (10)	1.04045 (8)	0.57563 (5)	0.0519 (3)	
F3	-0.11317 (8)	0.92265 (11)	0.59782 (7)	0.0708 (4)	
C1	0.49344 (10)	0.89519 (10)	0.69792 (5)	0.0218 (2)	
C2	0.40611 (10)	0.98226 (9)	0.68818 (5)	0.0187 (2)	
C3	0.42693 (10)	1.03976 (9)	0.62520 (5)	0.0182 (2)	
C4	0.25821 (9)	0.94880 (9)	0.60901 (5)	0.0180 (2)	
C5	0.29053 (9)	0.92447 (9)	0.67894 (5)	0.0187 (2)	
C6	0.31822 (10)	0.80982 (9)	0.69077 (5)	0.0206 (2)	
C7	0.49500 (13)	0.70166 (11)	0.71063 (7)	0.0309 (3)	

C8	0.55262 (10)	1.05870 (9)	0.60979 (5)	0.0197 (2)
C9	0.71865 (12)	1.14732 (14)	0.64520 (7)	0.0352 (3)
C10	-0.00083 (11)	0.94442 (12)	0.60086 (7)	0.0342 (3)
C11	0.19231 (9)	0.86470 (9)	0.57357 (5)	0.0182 (2)
C12	0.25319 (10)	0.78516 (10)	0.54317 (6)	0.0238 (2)
C13	0.19746 (11)	0.70890 (10)	0.50777 (6)	0.0246 (2)
C14	0.07863 (11)	0.70963 (10)	0.50236 (6)	0.0241 (2)
C15	0.01667 (11)	0.78587 (10)	0.53409 (6)	0.0265 (3)
C16	0.07221 (10)	0.86314 (10)	0.56912 (6)	0.0224 (2)
H4	0.2122 (13)	1.0153 (12)	0.6103 (7)	0.023 (4)*
H14	0.0394 (13)	0.6570 (12)	0.4770 (7)	0.024 (4)*
Н5	0.2277 (12)	0.9465 (11)	0.7074 (7)	0.018 (3)*
H1	0.3693 (12)	0.9935 (12)	0.5427 (7)	0.021 (4)*
H3	0.3902 (13)	1.1102 (12)	0.6286 (7)	0.025 (4)*
H15	-0.0638 (14)	0.7870 (13)	0.5322 (8)	0.034 (4)*
H2	0.4071 (13)	1.0292 (13)	0.7231 (7)	0.028 (4)*
H12	0.3371 (15)	0.7847 (13)	0.5480 (8)	0.034 (4)*
H13	0.2416 (14)	0.6568 (13)	0.4868 (8)	0.032 (4)*
H73	0.5522 (17)	0.7131 (15)	0.7416 (10)	0.051 (5)*
H72	0.5263 (16)	0.6773 (15)	0.6724 (10)	0.048 (5)*
H93	0.7376 (17)	1.2026 (16)	0.6754 (9)	0.053 (5)*
H71	0.4386 (16)	0.6518 (15)	0.7264 (9)	0.043 (5)*
H92	0.7571 (18)	1.0823 (17)	0.6561 (9)	0.052 (6)*
H91	0.7395 (18)	1.1612 (16)	0.6019 (10)	0.057 (6)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}	
N1	0.0192 (4)	0.0201 (5)	0.0156 (4)	-0.0034 (3)	-0.0001 (3)	-0.0012 (3)	
N2	0.0226 (5)	0.0219 (5)	0.0223 (4)	-0.0002 (4)	-0.0016 (4)	0.0028 (4)	
01	0.0209 (4)	0.0408 (6)	0.0351 (5)	-0.0038 (4)	-0.0069 (4)	0.0116 (4)	
O2	0.0306 (5)	0.0260 (5)	0.0313 (4)	-0.0092 (4)	-0.0024 (4)	0.0040 (4)	
O3	0.0235 (4)	0.0328 (5)	0.0219 (4)	-0.0027 (4)	0.0024 (3)	-0.0044 (3)	
O4	0.0226 (4)	0.0287 (5)	0.0282 (4)	-0.0085 (4)	0.0013 (3)	-0.0080 (4)	
F1	0.0303 (4)	0.0427 (5)	0.0349 (4)	0.0047 (3)	0.0050 (3)	-0.0139 (4)	
F2	0.0706 (7)	0.0358 (5)	0.0493 (6)	0.0292 (5)	-0.0191 (5)	-0.0091 (4)	
F3	0.0184 (4)	0.0833 (8)	0.1107 (10)	0.0122 (5)	-0.0119 (5)	-0.0622 (8)	
C1	0.0222 (5)	0.0272 (6)	0.0162 (5)	-0.0026 (4)	-0.0030 (4)	0.0019 (4)	
C2	0.0199 (5)	0.0206 (5)	0.0157 (4)	-0.0035 (4)	0.0002 (4)	-0.0033 (4)	
C3	0.0191 (5)	0.0176 (5)	0.0178 (4)	-0.0020 (4)	-0.0002 (4)	-0.0017 (4)	
C4	0.0169 (5)	0.0184 (5)	0.0185 (5)	-0.0004 (4)	0.0001 (4)	-0.0024 (4)	
C5	0.0172 (5)	0.0215 (5)	0.0174 (4)	-0.0020 (4)	0.0016 (4)	-0.0021 (4)	
C6	0.0223 (5)	0.0235 (6)	0.0161 (5)	-0.0027 (4)	0.0010 (4)	0.0000 (4)	
C7	0.0309 (7)	0.0268 (7)	0.0352 (7)	0.0057 (5)	-0.0003 (5)	0.0065 (5)	
C8	0.0207 (5)	0.0195 (5)	0.0189 (5)	-0.0022 (4)	-0.0014 (4)	0.0009 (4)	
C9	0.0232 (6)	0.0457 (9)	0.0367 (7)	-0.0127 (6)	0.0005 (5)	-0.0083 (6)	
C10	0.0202 (6)	0.0376 (8)	0.0448 (8)	0.0082 (5)	-0.0101 (5)	-0.0172 (6)	
C11	0.0182 (5)	0.0191 (5)	0.0174 (5)	-0.0019 (4)	-0.0003 (4)	-0.0009 (4)	

supporting information

C12	0.0186 (5)	0.0255 (6)	0.0274 (5)	-0.0036 (4)	0.0050 (4)	-0.0062 (4)
C13	0.0254 (6)	0.0226 (6)	0.0257 (5)	-0.0034 (5)	0.0065 (4)	-0.0061 (4)
C14	0.0262 (6)	0.0228 (6)	0.0231 (5)	-0.0045 (5)	-0.0024 (4)	-0.0039 (4)
C15	0.0198 (5)	0.0290 (6)	0.0307 (6)	0.0000 (5)	-0.0065 (5)	-0.0059 (5)
C16	0.0185 (5)	0.0234 (6)	0.0254 (5)	0.0036 (4)	-0.0044 (4)	-0.0048 (4)

Geometric parameters (Å, °)

N1—C3	1.4578 (14)	C4—C5	1.5633 (15)
N1—C4	1.4704 (14)	C4—H4	1.002 (15)
N1—H1	0.884 (15)	C5—C6	1.5164 (17)
N2—C1	1.3766 (16)	С5—Н5	0.988 (14)
N2—C6	1.3866 (15)	С7—Н73	0.95 (2)
N2—C7	1.4545 (16)	С7—Н72	0.94 (2)
01—C1	1.2124 (14)	C7—H71	0.972 (19)
O2—C6	1.2089 (15)	С9—Н93	0.98 (2)
O3—C8	1.2008 (14)	С9—Н92	0.97 (2)
O4—C8	1.3375 (14)	С9—Н91	0.97 (2)
O4—C9	1.4451 (15)	C10—C16	1.4990 (17)
F1-C10	1.3406 (17)	C11—C12	1.3942 (16)
F2-C10	1.3452 (19)	C11—C16	1.3984 (15)
F3—C10	1.3357 (16)	C12—C13	1.3886 (16)
C1—C2	1.5173 (17)	C12—H12	0.980 (17)
C2—C5	1.5437 (15)	C13—C14	1.3852 (17)
C2—C3	1.5444 (15)	C13—H13	0.950 (17)
С2—Н2	0.953 (16)	C14—C15	1.3842 (18)
C3—C8	1.5157 (16)	C14—H14	0.973 (15)
С3—Н3	0.997 (16)	C15—C16	1.3923 (17)
C4—C11	1.5168 (15)	C15—H15	0.936 (17)
C3—N1—C4	103.70 (8)	N2—C7—H72	110.1 (12)
C3—N1—H1	112.0 (10)	H73—C7—H72	112.3 (16)
C4—N1—H1	113.3 (9)	N2—C7—H71	107.4 (11)
C1—N2—C6	113.64 (10)	H73—C7—H71	109.5 (16)
C1—N2—C7	122.31 (11)	H72—C7—H71	110.0 (16)
C6—N2—C7	124.00 (11)	O3—C8—O4	124.67 (11)
C8—O4—C9	115.80 (10)	O3—C8—C3	125.80 (10)
O1-C1-N2	124.12 (12)	O4—C8—C3	109.51 (9)
O1—C1—C2	127.31 (11)	O4—C9—H93	106.9 (12)
N2—C1—C2	108.57 (10)	O4—C9—H92	107.7 (12)
C1—C2—C5	104.50 (9)	H93—C9—H92	110.8 (17)
C1—C2—C3	111.11 (9)	O4—C9—H91	109.7 (12)
C5—C2—C3	104.61 (9)	Н93—С9—Н91	115.8 (17)
C1—C2—H2	110.2 (10)	H92—C9—H91	105.6 (17)
С5—С2—Н2	114.1 (10)	F3—C10—F1	105.89 (13)
С3—С2—Н2	112.0 (10)	F3—C10—F2	106.58 (12)
N1—C3—C8	112.42 (9)	F1—C10—F2	105.55 (11)
N1—C3—C2	100.80 (9)	F3—C10—C16	112.82 (11)

C8—C3—C2	114.43 (9)	F1-C10-C16	112.98 (11)
N1—C3—H3	115.4 (9)	F2-C10-C16	112.44 (13)
С8—С3—Н3	106.6 (9)	C12—C11—C16	117.67 (10)
С2—С3—Н3	107.3 (9)	C12—C11—C4	119.15 (10)
N1-C4-C11	111.69 (9)	C16—C11—C4	123.17 (10)
N1—C4—C5	101.36 (8)	C13—C12—C11	121.52 (11)
C11—C4—C5	116.93 (9)	C13—C12—H12	121.0 (10)
N1—C4—H4	110.8 (9)	C11—C12—H12	117.4 (10)
C11—C4—H4	109.9 (9)	C14—C13—C12	120.32 (11)
C5—C4—H4	105.7 (8)	C14—C13—H13	120.2 (10)
C6—C5—C2	104.70 (9)	С12—С13—Н13	119.4 (10)
C6—C5—C4	113.54 (9)	C15—C14—C13	118.85 (11)
C2—C5—C4	103.61 (9)	C15—C14—H14	120.6 (9)
С6—С5—Н5	109.2 (8)	C13—C14—H14	120.5 (9)
С2—С5—Н5	115.4 (8)	C14—C15—C16	121.01 (11)
C4—C5—H5	110.4 (8)	C14—C15—H15	120.6 (10)
O2—C6—N2	124.03 (11)	C16—C15—H15	118.4 (10)
O2—C6—C5	127.72 (11)	C15—C16—C11	120.57 (11)
N2—C6—C5	108.25 (9)	C15—C16—C10	117.79 (11)
N2—C7—H73	107.4 (12)	C11—C16—C10	121.63 (11)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H…A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1···O3 ⁱ	0.884 (15)	2.363 (15)	3.1738 (13)	152.5 (13)

Symmetry code: (i) -x+1, -y+2, -z+1.