

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Dichloridodi- μ_2 -hydroxido-di- μ_3 -oxidooctaphenyltetratin(IV) dimethyl sulfoxide disolvate

Shahrbano Foladi,^a* Parivash Khazaei,^a Jafar Attar Gharamaleki,^b Behrouz Notash^c and Mohammad Kazem Rofouei^b

^aDepartment of Chemistry, Faculty of Science, Karaj Branch, Islamic Azad, University, Karaj, Iran, ^bFaculty of Chemistry, Tarbiat Moallem University, Tehran, Iran, and ^cDepartment of Chemistry, Shahid Beheshti University, G. C., Evin, Tehran, 1983963113, Iran

Correspondence e-mail: sh-foladi@kiau.ac.ir

Received 27 November 2012; accepted 22 December 2012

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.030; wR factor = 0.079; data-to-parameter ratio = 23.4.

In the centrosymmetric tetranuclear title molecule, $[Sn_4(C_6H_5)_8Cl_2O_2(OH)_2] \cdot 2C_2H_6OS$, the two independent tin^{IV} atoms show distorted trigonal-bipyramidal SnC₂O₃ and SnC₂O₂Cl coordination geometries. The four tin^{IV} atoms are bridged by the hydroxo and oxo ligands, forming a ladder-like array of three edge-connected Sn₂O₂ squares. The solvent molecules are linked to the tetranuclear molecule via O-H···O hydrogen bonds.

Related literature

For biological applications of organotin(IV) complexes, see: Davies & Smith (1982). For the crystal structures of closely related compounds, see: Vollano et al. (1984); Kresinski et al. (1994); Yap et al. (2010).

28831 measured reflections

 $R_{\rm int} = 0.095$

7108 independent reflections

6034 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

[Sn₄(C₆H₅)₈Cl₂O₂(OH)₂]·2C₂H₆OS V = 2640.4 (9) Å³ $M_r = 1384.73$ Z = 2Monoclinic, $P2_1/n$ Mo $K\alpha$ radiation a = 11.521 (2) Å $\mu = 2.10 \text{ mm}^$ b = 19.372 (4) Å T = 298 Kc = 11.854 (2) Å $0.50 \times 0.47 \times 0.45~\text{mm}$ $\beta = 93.61 (3)^{\circ}$

Data collection

STOE IPDS 2T diffractometer Absorption correction: numerical (X-RED32; Stoe & Cie, 2005) $T_{\min} = 0.420, \ T_{\max} = 0.452$

Refinement

D-

02

$R[F^2 > 2\sigma(F^2)] = 0.030$	H atoms treated by a mixture of
$wR(F^2) = 0.079$	independent and constrained
S = 1.05	refinement
7108 reflections	$\Delta \rho_{\rm max} = 0.92 \text{ e} \text{ Å}^{-3}$
304 parameters	$\Delta \rho_{\rm min} = -0.83 \ {\rm e} \ {\rm \AA}^{-3}$
1 restraint	

Table 1 Hydrogen-bond geometry (Å, °).

$-H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$-H2A\cdots O3^{i}$	0.82 (2)	2.04 (2)	2.851 (3)	166 (4)

Symmetry code: (i) x + 1, y, z + 1.

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012): software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5369).

References

- Davies, A. G. & Smith, P. G. (1982). Comprehensive Organometallic Chemistry, edited by G. Wilkinson, F. Gordon, A. Stone & E. W. Abel, pp. 519-616. New York: Pergamon Press.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Kresinski, R. A., Staples, R. J. & Fackler, J. P. (1994). Acta Cryst. C50, 40-41. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Stoe & Cie (2005). X-AREA, X-SHAPE and X-RED32. Stoe & Cie, Darmstadt, Germany.
- Vollano, J. F., Day, R. O. & Holmes, R. R. (1984). Organometallics, 3, 745-750. Yap, Q. L., Lo, K. M. & Ng, S. W. (2010). Acta Cryst. E66, m8.

supporting information

Acta Cryst. (2013). E69, m91 [doi:10.1107/S1600536812051744]

Dichloridodi- μ_2 -hydroxido-di- μ_3 -oxido-octaphenyltetratin(IV) dimethyl sulfoxide disolvate

Shahrbano Foladi, Parivash Khazaei, Jafar Attar Gharamaleki, Behrouz Notash and Mohammad Kazem Rofouei

S1. Comment

Organotin(IV) complexes have been studied due to the diversity of structures that such compounds can form and in view of their potential biological activities (Davies & Smith, 1982). Herewith we present the title compound (I).

In (I) (Fig. 1), all geometric parameters are normal and correspond to those reported for related compounds (Vollano *et al.*, 1984; Kresinski *et al.*, 1994) The similar structure with bromide (instead of chloride) anions was reported by Yap *et al.* (2010). All tin atoms are five-coordinated, form distorted trigonal–bipyramidal environments. Oxide or hydroxide groups play bridging role between Sn atoms. Each of the inner Sn^{IV} atoms is coordinated by three O atoms in the equatorial plane and two phenyl rings in axial position. The equatorial angle is shorter than ideally 180° being only 124.24 (11) °. The Sn2—O1 and Sn2—O2 bond distances are 2.0451 (18) and 2.1630 (19) Å, respectively. Each of the outer Sn^{IV} atoms is coordinated by one chloride and two O atoms in equatorial plane and axial positions are occupied by two phenyl rings. The Sn1—C11 bond distance is 2.4628 (9) Å and axial angle, C1—Sn2—C7 is 120.35 (11) °. The centrosymmetric tetrameric species bears a central part which consists of Sn₂O₂ ring with two adjacent Sn₂O(OH) fourmembered rings. This behavior is also consistent with the reported structure. The DMSO molecules accompany the tetranuclear compound by O2—H2A···O3 hydrogen bonds.

S2. Experimental

The solution of 2-mercaptobenzaldehyde (2.76 g, 20 mmol) in 15 ml e thanol was added to solution of diethylamine (0.6 g, 10 mmol) in 10 ml e thanol. The obtained mixture was refluxed at 60 C for 4 h. The yellow crystals of the product was filtered off and dried. In order to synthesis of the title compound, the obtained ligand and dichloridediphenyltin were dissolved in DMSO at ambient temperature. Colourless crystals of the tetramer suitable for X-ray were obtained by slow evaporation of the solvent within one month.

S3. Refinement

O-bound H atom was found in a difference Fourier map and isotropically refined with O–H distance restraint of 0.824 (19) Å. C-bound H atoms were positioned geometrically and refined as riding atoms with C—H = 0.93-0.96 Å, and $U_{iso}(H) = 1.2-1.5 U_{eq}(C)$.

Figure 1

View of (I) showing the atomic numbering and 50% probability displacement ellipsoids [symmetry code: (a) 2-x, -y, 2-z]. Solvent molecule and C-bound H atoms were omitted for clarity.

 $h = -15 \rightarrow 14$ $k = -26 \rightarrow 26$

 $l = -16 \rightarrow 16$

Dichloridodi- μ_2 -hydroxido-di- μ_3 -oxido-octaphenyltetratin(IV) dimethyl sulfoxide disolvate

Crystal data	
$[Sn_4(C_6H_5)_8Cl_2O_2(OH)_2]\cdot 2C_2H_6OS$	F(000) = 1360
$M_r = 1384.73$	$D_{\rm x} = 1.742 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/n$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 7108 reflections
a = 11.521 (2) Å	$\theta = 2.0-29.2^{\circ}$
b = 19.372 (4) Å	$\mu = 2.10 \text{ mm}^{-1}$
c = 11.854 (2) Å	T = 298 K
$\beta = 93.61 \ (3)^{\circ}$	Block, colourless
V = 2640.4 (9) Å ³	$0.50 \times 0.47 \times 0.45 \text{ mm}$
<i>Z</i> = 2	
Data collection	
STOE IPDS 2T	28831 measured reflections
diffractometer	7108 independent reflections
Radiation source: fine-focus sealed tube	6034 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.095$
Detector resolution: 0.15 pixels mm ⁻¹	$\theta_{\rm max} = 29.2^{\circ}, \ \theta_{\rm min} = 2.0^{\circ}$

(X-RED32; Stoe & Cie, 2005) $T_{\min} = 0.420, T_{\max} = 0.452$

Absorption correction: numerical

rotation method scans

Acta Cryst. (2013). E69, m91

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.030$	Hydrogen site location: inferred from
$wR(F^2) = 0.079$	neighbouring sites
S = 1.05	H atoms treated by a mixture of independent
7108 reflections	and constrained refinement
304 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0328P)^2 + 0.0145P]$
1 restraint	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.002$
direct methods	$\Delta ho_{ m max} = 0.92 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.83 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Sn1	0.923073 (16)	0.109727 (9)	0.801260 (13)	0.03225 (6)
Sn2	1.050659 (15)	0.052478 (9)	1.103601 (13)	0.02920 (5)
Cl1	0.98076 (8)	0.20923 (4)	0.92137 (6)	0.05121 (18)
S1	0.46511 (8)	0.04222 (5)	0.28731 (8)	0.0587 (2)
01	0.96963 (18)	0.04965 (9)	0.93664 (14)	0.0343 (4)
O2	1.12468 (17)	-0.00375 (10)	1.24848 (15)	0.0344 (4)
O3	0.3549 (2)	0.02385 (16)	0.3395 (2)	0.0620 (6)
C1	0.7530(3)	0.14934 (15)	0.7610(2)	0.0386 (6)
C2	0.6974 (3)	0.19241 (18)	0.8329 (3)	0.0491 (7)
H2	0.7309	0.2002	0.9052	0.059*
C3	0.5946 (4)	0.2238 (2)	0.8011 (4)	0.0655 (11)
H3	0.5579	0.2518	0.8517	0.079*
C4	0.5453 (3)	0.2137 (2)	0.6929 (4)	0.0697 (11)
H4	0.4764	0.2360	0.6697	0.084*
C5	0.5987 (4)	0.1705 (2)	0.6196 (3)	0.0676 (11)
H5	0.5652	0.1630	0.5472	0.081*
C6	0.7027 (3)	0.13809 (19)	0.6540 (3)	0.0508 (7)
H6	0.7383	0.1087	0.6046	0.061*
C7	1.0545 (3)	0.11797 (15)	0.6825 (2)	0.0376 (6)
C8	1.0729 (3)	0.06512 (18)	0.6064 (2)	0.0463 (7)
H8	1.0281	0.0253	0.6075	0.056*
C9	1.1578 (3)	0.0713 (2)	0.5289 (3)	0.0558 (8)
Н9	1.1704	0.0354	0.4790	0.067*
C10	1.2236 (3)	0.1309 (2)	0.5260 (3)	0.0581 (9)

H10	1.2792	0.1357	0.4729	0.070*
C11	1.2069 (3)	0.1829 (2)	0.6012 (3)	0.0605 (9)
H11	1.2520	0.2227	0.5999	0.073*
C12	1.1228 (3)	0.17680 (18)	0.6797 (3)	0.0510 (8)
H12	1.1124	0.2124	0.7308	0.061*
C13	1.2033 (2)	0.10738 (14)	1.0699 (2)	0.0343 (5)
C14	1.2472 (3)	0.10957 (18)	0.9635 (3)	0.0491 (7)
H14	1.2115	0.0842	0.9045	0.059*
C15	1.3439 (3)	0.1494 (2)	0.9450 (3)	0.0626 (10)
H15	1.3732	0.1506	0.8736	0.075*
C16	1.3969 (3)	0.1874 (2)	1.0319 (4)	0.0640 (10)
H16	1.4614	0.2144	1.0186	0.077*
C17	1.3556 (3)	0.18588 (19)	1.1379 (3)	0.0585 (9)
H17	1.3923	0.2112	1.1965	0.070*
C18	1.2580 (3)	0.14597 (16)	1.1566 (3)	0.0431 (6)
H18	1.2290	0.1452	1.2281	0.052*
C19	0.9102 (2)	0.09486 (14)	1.1881 (2)	0.0356 (5)
C20	0.9278 (3)	0.11474 (17)	1.3006 (2)	0.0489 (8)
H20	0.9998	0.1075	1.3388	0.059*
C21	0.8387 (4)	0.1453 (2)	1.3562 (3)	0.0680 (12)
H21	0.8512	0.1586	1.4313	0.082*
C22	0.7322 (4)	0.1558 (2)	1.3006 (4)	0.0762 (14)
H22	0.6725	0.1759	1.3384	0.091*
C23	0.7139 (4)	0.1373 (2)	1.1918 (4)	0.0757 (13)
H23	0.6415	0.1450	1.1548	0.091*
C24	0.8021 (3)	0.10635 (18)	1.1330 (3)	0.0501 (8)
H24	0.7883	0.0937	1.0577	0.060*
C25	0.4630 (5)	-0.0023 (3)	0.1581 (4)	0.0878 (16)
H25A	0.4487	-0.0504	0.1708	0.132*
H25B	0.5366	0.0031	0.1255	0.132*
H25C	0.4024	0.0161	0.1074	0.132*
C26	0.5777 (4)	-0.0069 (3)	0.3584 (4)	0.0856 (15)
H26A	0.5851	0.0063	0.4366	0.128*
H26B	0.6498	0.0017	0.3243	0.128*
H26C	0.5590	-0.0551	0.3526	0.128*
H2A	1.1948 (17)	0.000(2)	1.265 (3)	0.056 (11)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sn1	0.03346 (10)	0.03404 (10)	0.02899 (9)	0.00335 (7)	0.00002 (7)	0.00140 (6)
Sn2	0.02770 (9)	0.03127 (9)	0.02838 (9)	0.00062 (6)	-0.00011 (6)	-0.00281 (6)
Cl1	0.0625 (5)	0.0413 (4)	0.0486 (4)	0.0008 (3)	-0.0060 (3)	-0.0099 (3)
S1	0.0438 (5)	0.0623 (6)	0.0697 (5)	0.0040 (4)	0.0006 (4)	0.0115 (4)
01	0.0412 (11)	0.0300 (9)	0.0305 (8)	0.0013 (8)	-0.0078 (7)	-0.0007 (6)
O2	0.0310 (10)	0.0380 (10)	0.0335 (8)	0.0001 (8)	-0.0050 (7)	-0.0015 (7)
03	0.0473 (14)	0.0759 (18)	0.0629 (14)	0.0007 (13)	0.0047 (11)	-0.0011 (13)
C1	0.0339 (14)	0.0383 (14)	0.0435 (14)	0.0037 (11)	0.0002 (11)	0.0092 (11)

supporting information

C2	0.0469 (18)	0.0511 (18)	0.0506 (16)	0.0107 (14)	0.0125 (14)	0.0096 (13)
C3	0.056 (2)	0.058 (2)	0.086 (3)	0.0166 (18)	0.026 (2)	0.0201 (19)
C4	0.0402 (18)	0.068 (3)	0.100 (3)	0.0114 (18)	-0.0023 (19)	0.034 (2)
C5	0.061 (2)	0.072 (3)	0.067 (2)	0.004 (2)	-0.0175 (19)	0.0212 (19)
C6	0.0478 (18)	0.0527 (18)	0.0509 (17)	0.0036 (15)	-0.0049 (14)	0.0092 (14)
C7	0.0392 (15)	0.0417 (15)	0.0318 (12)	0.0018 (12)	0.0014 (11)	0.0048 (10)
C8	0.0459 (17)	0.0531 (18)	0.0400 (14)	-0.0018 (14)	0.0040 (13)	-0.0037 (12)
C9	0.050(2)	0.076 (2)	0.0417 (15)	0.0036 (18)	0.0085 (14)	-0.0083 (15)
C10	0.0400 (17)	0.087 (3)	0.0482 (17)	0.0027 (18)	0.0115 (14)	0.0055 (17)
C11	0.053 (2)	0.060 (2)	0.069 (2)	-0.0105 (17)	0.0147 (18)	0.0113 (17)
C12	0.054 (2)	0.0446 (17)	0.0554 (17)	-0.0063 (14)	0.0116 (15)	-0.0018 (13)
C13	0.0267 (12)	0.0376 (14)	0.0383 (13)	0.0003 (10)	-0.0010 (10)	0.0024 (10)
C14	0.0414 (17)	0.065 (2)	0.0411 (15)	-0.0018 (15)	0.0037 (13)	0.0044 (13)
C15	0.046 (2)	0.081 (3)	0.062 (2)	-0.0063 (19)	0.0154 (17)	0.0149 (18)
C16	0.0386 (18)	0.066 (2)	0.087 (3)	-0.0126 (17)	-0.0001 (18)	0.021 (2)
C17	0.0457 (19)	0.0465 (19)	0.082 (2)	-0.0079 (15)	-0.0082 (17)	-0.0068 (16)
C18	0.0403 (16)	0.0405 (15)	0.0483 (15)	-0.0018 (12)	0.0012 (12)	-0.0045 (12)
C19	0.0350 (14)	0.0334 (13)	0.0389 (13)	0.0036 (11)	0.0073 (11)	0.0028 (10)
C20	0.057 (2)	0.0464 (17)	0.0440 (16)	-0.0026 (14)	0.0115 (15)	-0.0073 (12)
C21	0.091 (3)	0.054 (2)	0.064 (2)	0.003 (2)	0.039 (2)	-0.0101 (16)
C22	0.076 (3)	0.059 (2)	0.099 (3)	0.020 (2)	0.053 (3)	0.010 (2)
C23	0.050(2)	0.077 (3)	0.103 (3)	0.028 (2)	0.026 (2)	0.031 (2)
C24	0.0365 (16)	0.060 (2)	0.0539 (17)	0.0081 (14)	0.0049 (13)	0.0122 (14)
C25	0.074 (3)	0.123 (4)	0.067 (2)	0.034 (3)	0.013 (2)	0.002 (3)
C26	0.050 (2)	0.105 (4)	0.099 (3)	0.007 (2)	-0.014 (2)	0.033 (3)

Geometric parameters (Å, °)

Sn1—O1	2.0271 (18)	C10—C11	1.367 (6)
Sn1—C1	2.130 (3)	C10—H10	0.9300
Sn1—C7	2.137 (3)	C11—C12	1.389 (5)
Sn1—O2 ⁱ	2.196 (2)	C11—H11	0.9300
Sn1—Cl1	2.4628 (9)	C12—H12	0.9300
Sn2—O1 ⁱ	2.0451 (18)	C13—C14	1.388 (4)
Sn2—C13	2.115 (3)	C13—C18	1.390 (4)
Sn2—C19	2.121 (3)	C14—C15	1.385 (5)
Sn2—O1	2.1351 (18)	C14—H14	0.9300
Sn2—O2	2.1630 (19)	C15—C16	1.377 (6)
S1—O3	1.490 (3)	C15—H15	0.9300
S1—C25	1.757 (5)	C16—C17	1.371 (5)
S1—C26	1.777 (4)	C16—H16	0.9300
O1—Sn2 ⁱ	2.0451 (18)	C17—C18	1.394 (5)
O2—Sn1 ⁱ	2.196 (2)	C17—H17	0.9300
O2—H2A	0.824 (19)	C18—H18	0.9300
C1—C2	1.379 (4)	C19—C24	1.387 (4)
C1—C6	1.379 (4)	C19—C20	1.390 (4)
C2—C3	1.363 (5)	C20—C21	1.387 (5)
C2—H2	0.9300	C20—H20	0.9300

C3—C4	1.384 (6)	C21—C22	1.370(7)
С3—Н3	0.9300	C21—H21	0.9300
C4—C5	1.379 (6)	C22—C23	1.343 (7)
C4—H4	0.9300	С22—Н22	0.9300
C5—C6	1.390 (5)	C23—C24	1.402 (5)
C5—H5	0.9300	C23—H23	0.9300
C6—H6	0.9300	C24—H24	0.9300
C7-C12	1 387 (4)	C25—H25A	0.9600
C7 - C8	1 389 (4)	C25—H25B	0.9600
C_{8}	1 389 (4)	C25_H25C	0.9600
	0.0300	C26 H26A	0.9600
$C_0 = C_{10}$	1 384 (6)	C26 H26R	0.9000
C_{9}	1.364 (0)	C26_H26B	0.9000
С9—Н9	0.9300	С20—н20С	0.9000
O1— $Sn1$ — $C1$	125.30 (10)	C11—C10—H10	120.0
O1— $Sn1$ — $C7$	113.66 (10)	C9—C10—H10	120.0
C1— $Sn1$ — $C7$	120.35 (11)	C10-C11-C12	120.5 (4)
$\Omega_1 = Sn_1 = \Omega_2^{i}$	74 05 (7)	C10—C11—H11	119.8
$C1 = Sn1 = O2^{i}$	93 75 (10)	C12-C11-H11	119.8
$C7 = Sn1 = O2^{i}$	93 94 (9)	C7-C12-C11	120.4(3)
$\Omega_1 = Sn_1 = C_1$	86 75 (6)	C7-C12-H12	119.8
C1— $Sn1$ — $C11$	93 34 (9)	$C_{11} - C_{12} - H_{12}$	119.8
C7— $Sn1$ — $C11$	98.39 (8)	C14 - C13 - C18	119.8
O^{2i} Sp1 Cl1	160.17 (5)	$C_{14} = C_{13} = C_{16}$	110.0(3)
$O_2 = S_{11} = C_{11}$	100.17(3) 121.78(0)	C14 - C13 - S12	122.0(2)
O1 - S12 - C13	121.70(9) 112.01(10)	$C_{10} - C_{13} - S_{12}$	110.3(2)
01 - 512 - 019	113.91(10) 124.24(11)	C15 - C14 - C13	120.5 (5)
C13 - Sn2 - C19	124.24(11)	C13—C14—H14	119.9
0101	/3.8/ (8)	C13—C14—H14	119.9
C13 - Sn2 - O1	99.07 (9)	C16-C15-C14	120.1 (3)
C19—Sn2—O1	98.37 (10)	С16—С15—Н15	119.9
01 ¹ —Sn2—O2	74.43 (7)	С14—С15—Н15	119.9
C13—Sn2—O2	96.46 (9)	C17—C16—C15	120.7 (3)
C19—Sn2—O2	95.42 (9)	C17—C16—H16	119.6
O1—Sn2—O2	148.27 (7)	C15—C16—H16	119.6
O3—S1—C25	106.2 (2)	C16—C17—C18	119.2 (3)
O3—S1—C26	106.9 (2)	С16—С17—Н17	120.4
C25—S1—C26	96.9 (3)	C18—C17—H17	120.4
$Sn1-O1-Sn2^{i}$	110.49 (8)	C13—C18—C17	120.8 (3)
Sn1—O1—Sn2	142.90 (9)	C13—C18—H18	119.6
Sn2 ⁱ —O1—Sn2	106.13 (8)	C17—C18—H18	119.6
$Sn2-O2-Sn1^{i}$	100.26 (8)	C24—C19—C20	118.6 (3)
Sn2—O2—H2A	118 (3)	C24—C19—Sn2	121.9 (2)
Sn1 ⁱ —O2—H2A	112 (3)	C20—C19—Sn2	119.4 (2)
C2—C1—C6	118.6 (3)	C21—C20—C19	120.4 (4)
C2C1Sn1	122.4 (2)	C21—C20—H20	119.8
C6—C1—Sn1	118.5 (2)	С19—С20—Н20	119.8
C3—C2—C1	121.9 (4)	C22—C21—C20	120.1 (4)
С3—С2—Н2	119.0	C22—C21—H21	119.9

С1—С2—Н2	119.0	C20—C21—H21	119.9
C2—C3—C4	119.5 (4)	C23—C22—C21	120.2 (3)
С2—С3—Н3	120.3	C23—C22—H22	119.9
С4—С3—Н3	120.3	C21—C22—H22	119.9
C5—C4—C3	119.8 (3)	C22—C23—C24	121.1 (4)
C5—C4—H4	120.1	С22—С23—Н23	119.5
C3—C4—H4	120.1	С24—С23—Н23	119.5
C4—C5—C6	120.0 (4)	C19—C24—C23	119.5 (4)
C4—C5—H5	120.0	C19—C24—H24	120.2
С6—С5—Н5	120.0	C23—C24—H24	120.2
C1—C6—C5	120.2 (4)	S1—C25—H25A	109.5
C1—C6—H6	119.9	S1—C25—H25B	109.5
C5—C6—H6	119.9	H25A—C25—H25B	109.5
C12-C7-C8	118.7 (3)	S1-C25-H25C	109.5
$C_{12} = C_{7} = S_{n1}$	120.2(2)	$H_{25}^{-} = H_{25}^{-} = H_{$	109.5
C8 - C7 - Sn1	120.2(2) 121.1(2)	$H_{25R} = C_{25} = H_{25C}$	109.5
$C_{0} - C_{8} - C_{7}$	121.1(2) 120.6(3)	S1_C26_H26A	109.5
$C_{2} = C_{3} = C_{1}$	120.0 (3)	S1_C26_H26R	109.5
C_{7} C_{8} H_{8}	119.7	H26A C26 H26B	109.5
$C_{10} = C_{0} = C_{0}$	119.7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
$C_{10} = C_{9} = C_{8}$	119.6 (5)	H_{26} C_{26} H_{26} H_{26}	109.5
$C_{10} C_{20} C_{10} $	120.1	H_{20}^{-1120}	109.5
$C_{0} = C_{0} = C_{0}$	120.1	H20B-C20-H20C	109.5
C11—C10—C9	119.9 (3)		
C1 Sp1 $O1$ Sp2 ⁱ	90.30(14)	Ω^{2i} Sp1 C7 C8	30(2)
$C_1 = S_{111} = O_1 = S_{112}$	-80.16(12)	$C_{11} = C_{11} = C_{12} = C_{13}$	3.9(2)
O_{2i}^{i} Sp1 O1 Sp2 ⁱ	7.14(8)	$C_{12} = C_{7} = C_{8} = C_{9}$	-0.3(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-177.00(0)	$C_{12} - C_{7} - C_{8} - C_{9}$	0.3(3)
C1 = Sn1 = O1 = Sn2	-00.21(10)	$S_{11} = C_{1} = C_{0} = C_{10}$	-0.0(5)
$C_1 = S_{111} = O_1 = S_{112}$	-99.31(19)	$C^{2} = C^{2} = C^{2$	-0.9(3)
C = SIII = OI = SII2	90.25 (19)	$C_{0} = C_{10} = C_{11} = C_{12}$	1.0 (0)
02 - 511 - 01 - 512	7.51 (16)	$C_{9} = C_{10} = C_{11} = C_{12}$	-1.0(0)
CII - SnI - OI - Sn2	-7.51(10)		0.9 (5)
OI - Sn2 - OI - SnI	-1/0.6(2)	SnI = C / = CI2 = CII	-1/8.8(3)
C13— $Sn2$ — $O1$ — $Sn1$	-50.03(19)	C10-C11-C12-C/	-0.3(6)
C19— $Sn2$ — $O1$ — $Sn1$	/6.80 (19)		747141
02— $sn2$ — 01 — $sn1$	1 (0, 40, (10)	01 - 312 - 013 - 014	120.0 (2)
() = (n / (- n) / (-	-168.40 (12)	C1 = Sn2 = C13 = C14 C19 = Sn2 = C13 = C14	-129.8(2)
	-168.40 (12) 0.0	C1 = Sn2 = C13 = C14 C19 = Sn2 = C13 = C14 O1 = Sn2 = C13 = C14 O1 = Sn2 = C13 = C14	-129.8(2) -23.1(3)
$C13 - Sn2 - O1 - Sn2^{i}$	-168.40 (12) 0.0 120.60 (10)	C1 = Sn2 = C13 = C14 C19 = Sn2 = C13 = C14 O1 = Sn2 = C13 = C14 O2 = Sn2 = C13 = C14 O2 = Sn2 = C13 = C14	-129.8(2) -23.1(3) 129.2(2)
$C13 - Sn2 - O1 - Sn2^{i}$ $C13 - Sn2 - O1 - Sn2^{i}$ $C19 - Sn2 - O1 - Sn2^{i}$	-168.40 (12) 0.0 120.60 (10) -112.57 (10)	C1 = Sn2 = C13 = C14 C19 = Sn2 = C13 = C14 O1 = Sn2 = C13 = C14 O2 = Sn2 = C13 = C14 $O1^{i} = Sn2 = C13 = C18$	-129.8(2) -23.1(3) 129.2(2) -130.2(2)
$\begin{array}{c} C13 - Sn2 - O1 - Sn2^{i} \\ C13 - Sn2 - O1 - Sn2^{i} \\ C19 - Sn2 - O1 - Sn2^{i} \\ O2 - Sn2 - O1 - Sn2^{i} \\ \end{array}$	-168.40 (12) 0.0 120.60 (10) -112.57 (10) 2.2 (2)	$\begin{array}{c} C1 = Sn2 = C13 = C14 \\ C19 = Sn2 = C13 = C14 \\ O1 = Sn2 = C13 = C14 \\ O2 = Sn2 = C13 = C14 \\ O1^{i} = Sn2 = C13 = C18 \\ C19 = Sn2 \\$	$\begin{array}{c} -129.8 (2) \\ -23.1 (3) \\ 129.2 (2) \\ -130.2 (2) \\ 46.5 (3) \end{array}$
$\begin{array}{c} C13 - Sn2 - O1 - Sn2^{i} \\ C13 - Sn2 - O1 - Sn2^{i} \\ C19 - Sn2 - O1 - Sn2^{i} \\ O2 - Sn2 - O1 - Sn2^{i} \\ O1^{i} - Sn2 - O2 - Sn1^{i} \end{array}$	-168.40 (12) 0.0 120.60 (10) -112.57 (10) 2.2 (2) -6.35 (7)	$\begin{array}{c} C1 = -Sn2 = -C13 = -C14 \\ C19 = -Sn2 = -C13 = -C14 \\ O1 = -Sn2 = -C13 = -C14 \\ O2 = -Sn2 = -C13 = -C14 \\ O1 = -Sn2 = -C13 = -C18 \\ O1 = -Sn2 $	-129.8 (2) -23.1 (3) 129.2 (2) -130.2 (2) 46.5 (3) 153.2 (2)
$\begin{array}{c} C13 - Sn2 - O1 - Sn2^{i} \\ C13 - Sn2 - O1 - Sn2^{i} \\ C19 - Sn2 - O1 - Sn2^{i} \\ O2 - Sn2 - O1 - Sn2^{i} \\ O1^{i} - Sn2 - O2 - Sn1^{i} \\ C13 - Sn2 - O2 - Sn1^{i} \\ \end{array}$	-168.40 (12) 0.0 120.60 (10) -112.57 (10) 2.2 (2) -6.35 (7) -127.59 (9)	$\begin{array}{c} C1 = -Sn2 = -C13 = -C14 \\ C19 = -Sn2 = -C13 = -C14 \\ O1 = -Sn2 = -C13 = -C14 \\ O2 = -Sn2 = -C13 = -C14 \\ O1 = -Sn2 = -C13 = -C18 \\ O1 = -Sn2 = -C13 = -C18 \\ O2 = -Sn2 = -C13 = -C18 \\ O2 = -Sn2 = -C13 = -C18 \\ O2 = -Sn2 = -C13 = -C18 \\ O3 = -Sn2 = -C13 = -C18 \\ O4 = -Sn2 $	$\begin{array}{c} -129.8 (2) \\ -23.1 (3) \\ 129.2 (2) \\ -130.2 (2) \\ 46.5 (3) \\ 153.2 (2) \\ -54.5 (2) \end{array}$
$\begin{array}{c} C13 - Sn2 - O1 - Sn2^{i} \\ C13 - Sn2 - O1 - Sn2^{i} \\ C19 - Sn2 - O1 - Sn2^{i} \\ O2 - Sn2 - O1 - Sn2^{i} \\ O1^{i} - Sn2 - O2 - Sn1^{i} \\ C13 - Sn2 - O2 - Sn1^{i} \\ C19 - Sn2 - Sn2 - Sn2 - Sn2 - Sn2 \\ C19 - Sn2 - Sn2 - Sn2 - Sn2 - Sn2 \\ C19 - Sn2 - Sn2 - Sn2 - Sn2 - Sn2 \\ C19 - Sn2 - Sn2 - Sn2 - Sn2 - Sn2 \\ C19 - Sn2 - Sn2 - Sn2 - Sn2 \\ C19 - Sn2 - Sn2 - Sn2 - Sn2 \\ C19 - Sn2 - Sn2 - Sn2 - Sn2 \\ C19 - Sn2 - Sn2 - Sn2 \\ C19 - Sn2 - Sn2 - Sn2 - Sn2 \\ C19 - $	-168.40 (12) 0.0 120.60 (10) -112.57 (10) 2.2 (2) -6.35 (7) -127.59 (9) 106.98 (10)	$\begin{array}{c} C1 = -Sn2 = -C13 = -C14 \\ C19 = -Sn2 = -C13 = -C14 \\ O1 = -Sn2 = -C13 = -C14 \\ O2 = -Sn2 = -C13 = -C14 \\ O1^{i} = -Sn2 = -C13 = -C18 \\ O1 = -Sn2 = -C13 = -C18 \\ O2 = -Sn2 = -C13 = -C18 \\ O2 = -Sn2 = -C13 = -C18 \\ C18 = -C13 = -C14 = -C15 \\ C18 = -C14 = -C14 = -C14 = -C15 \\ C18 = -C14 = -C14 = -C14 = -C15 \\ C18 = -C14 = -C14 = -C14 = -C15 \\ C18 = -C14 $	$\begin{array}{c} -129.8 (2) \\ -23.1 (3) \\ 129.2 (2) \\ -130.2 (2) \\ 46.5 (3) \\ 153.2 (2) \\ -54.5 (2) \\ 0.2 (5) \end{array}$
$\begin{array}{c} C13 - Sn2 - O1 - Sn2^{i} \\ C13 - Sn2 - O1 - Sn2^{i} \\ C19 - Sn2 - O1 - Sn2^{i} \\ O2 - Sn2 - O1 - Sn2^{i} \\ O1^{i} - Sn2 - O2 - Sn1^{i} \\ C13 - Sn2 - O2 - Sn1^{i} \\ C19 - Sn2 - O2 - Sn1^{i} \\ O1 - Sn2 - Sn2 - Sn2 - Sn2 - Sn2 - Sn2 \\ O1 - Sn2 \\ O1 - Sn2 - S$	-168.40 (12) 0.0 120.60 (10) -112.57 (10) 2.2 (2) -6.35 (7) -127.59 (9) 106.98 (10) -8.58 (18)	$\begin{array}{c} 01$	$\begin{array}{c} -129.8 (2) \\ -23.1 (3) \\ 129.2 (2) \\ -130.2 (2) \\ 46.5 (3) \\ 153.2 (2) \\ -54.5 (2) \\ 0.2 (5) \\ 176.5 (3) \end{array}$
$\begin{array}{c} C13 - Sn2 - O1 - Sn2^{i} \\ C13 - Sn2 - O1 - Sn2^{i} \\ C19 - Sn2 - O1 - Sn2^{i} \\ O2 - Sn2 - O1 - Sn2^{i} \\ O1^{i} - Sn2 - O2 - Sn1^{i} \\ C13 - Sn2 - O2 - Sn1^{i} \\ C19 - Sn2 - O2 - Sn1^{i} \\ O1 - Sn2 - O2 - Sn1^{i} \\ O1 - Sn1 - C1 - C2 \\ \hline \end{array}$	-168.40 (12) 0.0 120.60 (10) -112.57 (10) 2.2 (2) -6.35 (7) -127.59 (9) 106.98 (10) -8.58 (18) 60.3 (3)	$\begin{array}{c} C1 = -Sn2 = -C13 = -C14 \\ C19 = -Sn2 = -C13 = -C14 \\ O1 = -Sn2 = -C13 = -C14 \\ O2 = -Sn2 = -C13 = -C14 \\ O1 = -Sn2 = -C13 = -C18 \\ O1 = -Sn2 = -C13 = -C18 \\ O1 = -Sn2 = -C13 = -C18 \\ O2 = -Sn2 = -C13 = -C18 \\ O2 = -Sn2 = -C13 = -C18 \\ O2 = -Sn2 = -C13 = -C18 \\ O3 = -C13 = -C14 = -C15 \\ Sn2 = -C13 = -C14 = -C15 \\ C13 = -C14 = -C15 = -C16 \\ O1 = -C14 = -C15 \\ O1 = -C14 = -C15 \\ O1 = -C14 = -C15 \\ O1 $	$\begin{array}{c} -129.8 (2) \\ -23.1 (3) \\ 129.2 (2) \\ -130.2 (2) \\ 46.5 (3) \\ 153.2 (2) \\ -54.5 (2) \\ 0.2 (5) \\ 176.5 (3) \\ -0.3 (6) \end{array}$
$\begin{array}{c} C13 - Sn2 - O1 - Sn2^{i} \\ C13 - Sn2 - O1 - Sn2^{i} \\ C19 - Sn2 - O1 - Sn2^{i} \\ O2 - Sn2 - O1 - Sn2^{i} \\ O1^{i} - Sn2 - O2 - Sn1^{i} \\ C13 - Sn2 - O2 - Sn1^{i} \\ C19 - Sn2 - O2 - Sn1^{i} \\ O1 - Sn2 - O2 - Sn1^{i} \\ O1 - Sn1 - C1 - C2 \\ C7 - Sn1 - C1 - C2 \\ \end{array}$	-168.40 (12) 0.0 120.60 (10) -112.57 (10) 2.2 (2) -6.35 (7) -127.59 (9) 106.98 (10) -8.58 (18) 60.3 (3) -129.9 (2)	$\begin{array}{c} C1 = -Sn2 = -C13 = -C14 \\ C19 = -Sn2 = -C13 = -C14 \\ O1 = -Sn2 = -C13 = -C14 \\ O2 = -Sn2 = -C13 = -C14 \\ O1 = -Sn2 = -C13 = -C18 \\ O1 = -Sn2 = -C13 = -C18 \\ O1 = -Sn2 = -C13 = -C18 \\ O2 = -Sn2 = -C13 = -C18 \\ O3 = -Sn2 = -C13 = -C18 \\ O4 = -Sn2 = -C13 = -C18 \\ O5 = -Sn2 = -C13 = -C16 \\ O5 = -C17 = -C17 \\ O5 $	$\begin{array}{c} -129.8 \ (2) \\ -23.1 \ (3) \\ 129.2 \ (2) \\ -130.2 \ (2) \\ 46.5 \ (3) \\ 153.2 \ (2) \\ -54.5 \ (2) \\ 0.2 \ (5) \\ 176.5 \ (3) \\ -0.3 \ (6) \\ 0.6 \ (6) \end{array}$
$\begin{array}{c} C13 - Sn2 - O1 - Sn2^{i} \\ C13 - Sn2 - O1 - Sn2^{i} \\ C19 - Sn2 - O1 - Sn2^{i} \\ O2 - Sn2 - O1 - Sn2^{i} \\ O1^{i} - Sn2 - O2 - Sn1^{i} \\ C13 - Sn2 - O2 - Sn1^{i} \\ C19 - Sn2 - O2 - Sn1^{i} \\ O1 - Sn2 - O2 - Sn1^{i} \\ O1 - Sn1 - C1 - C2 \\ C7 - Sn1 - C1 - C2 \\ O2^{i} - Sn1 - C1 - C2 \\ \end{array}$	-168.40 (12) 0.0 120.60 (10) -112.57 (10) 2.2 (2) -6.35 (7) -127.59 (9) 106.98 (10) -8.58 (18) 60.3 (3) -129.9 (2) 133.3 (2)	$\begin{array}{c} C1 = -Sn2 = -C13 = -C14 \\ C19 = -Sn2 = -C13 = -C14 \\ O1 = -Sn2 = -C13 = -C14 \\ O2 = -Sn2 = -C13 = -C14 \\ O1^{i} = -Sn2 = -C13 = -C18 \\ C19 = -Sn2 = -C13 = -C18 \\ O1 = -Sn2 = -C13 = -C18 \\ O2 = -Sn2 = -C13 = -C18 \\ O2 = -Sn2 = -C13 = -C18 \\ C18 = -C13 = -C14 = -C15 \\ Sn2 = -C13 = -C14 = -C15 \\ Sn2 = -C13 = -C14 = -C15 \\ C13 = -C14 = -C15 = -C16 \\ C14 = -C15 = -C16 = -C17 \\ C15 = -C16 = -C17 = -C18 \\ \end{array}$	$\begin{array}{c} -129.8 \ (2) \\ -23.1 \ (3) \\ 129.2 \ (2) \\ -130.2 \ (2) \\ 46.5 \ (3) \\ 153.2 \ (2) \\ -54.5 \ (2) \\ 0.2 \ (5) \\ 176.5 \ (3) \\ -0.3 \ (6) \\ 0.6 \ (6) \\ -0.8 \ (6) \end{array}$

O1—Sn1—C1—C6	-127.6 (2)	Sn2—C13—C18—C17	-176.9 (3)
C7—Sn1—C1—C6	42.3 (3)	C16—C17—C18—C13	0.7 (5)
O2 ⁱ —Sn1—C1—C6	-54.5 (2)	O1 ⁱ —Sn2—C19—C24	-70.8 (3)
Cl1—Sn1—C1—C6	144.0 (2)	C13—Sn2—C19—C24	112.2 (3)
C6—C1—C2—C3	0.1 (5)	O1—Sn2—C19—C24	5.2 (3)
Sn1—C1—C2—C3	172.2 (3)	O2—Sn2—C19—C24	-146.2 (2)
C1—C2—C3—C4	-1.4 (6)	O1 ⁱ —Sn2—C19—C20	112.1 (2)
C2—C3—C4—C5	1.9 (6)	C13—Sn2—C19—C20	-64.8 (3)
C3—C4—C5—C6	-1.0 (6)	O1—Sn2—C19—C20	-171.9 (2)
C2-C1-C6-C5	0.8 (5)	O2—Sn2—C19—C20	36.8 (2)
Sn1—C1—C6—C5	-171.6 (3)	C24—C19—C20—C21	0.1 (5)
C4—C5—C6—C1	-0.4 (6)	Sn2—C19—C20—C21	177.3 (3)
O1—Sn1—C7—C12	-102.1 (3)	C19—C20—C21—C22	0.3 (6)
C1—Sn1—C7—C12	86.9 (3)	C20—C21—C22—C23	-0.6 (6)
O2 ⁱ —Sn1—C7—C12	-176.4 (3)	C21—C22—C23—C24	0.5 (7)
Cl1—Sn1—C7—C12	-12.0 (3)	C20—C19—C24—C23	-0.2 (5)
O1—Sn1—C7—C8	78.2 (3)	Sn2—C19—C24—C23	-177.3 (3)
C1—Sn1—C7—C8	-92.8 (3)	C22—C23—C24—C19	-0.1 (6)

Symmetry code: (i) -x+2, -y, -z+2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H····A	D····A	<i>D</i> —H··· <i>A</i>
O2—H2 <i>A</i> ···O3 ⁱⁱ	0.82 (2)	2.04 (2)	2.851 (3)	166 (4)

Symmetry code: (ii) x+1, y, z+1.