

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

catena-Poly[μ_2 -iodido-diiodidobis(μ_3 pyridine-2-thione- κ^3 S:S:S)(μ_2 -pyridine-2thione- κ^2 S:S)tricopper(I)]

Fang Ke^a* and Wen Wu^b

^aCollege of Pharmacy, Fujian Medical University, Fuzhou 350004, People's Republic of China, and ^bXiamen Maternity and Child Health Care Hospital, Xiamen 361001, People's Republic of China

Correspondence e-mail: carsten.ke@hotmail.com

Received 29 November 2012; accepted 29 December 2012

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.014 Å; R factor = 0.040; wR factor = 0.115; data-to-parameter ratio = 16.4.

In the title compound, $[Cu_3I_3(C_5H_5NS)_3]_n$, a polymeric structure is formed along [100] through bridging iodide and pyridine-2-thione ligands. The metal atoms are engaged in $[Cu_3S_3]$ and $[Cu_2S_2]$ rings sharing Cu-S edges, with the $[Cu_2S_2]$ rings located about inversion centers. Cu^I atoms bridged by iodide ions exhibit the shortest Cu...Cu separation in the polymer [2.8590 (14) Å]. The three independent Cu^{I} atoms all display distorted tetrahedral coordination geometries.

Related literature

For applications of Cu^I complexes and coordination compounds based on 1H-pyridine-2-thione, see: Kitagawa et al. (1990); Raper (1996, 1997); García-Vázquez et al. (1999); Akrivos (2001); Lobana & Castineiras (2002). For the structure of a polymer isoformular to the title compound, see: Lobana et al. (2003).

Experimental

Crystal data [Cu₃I₃(C₅H₅NS)₃]

 $M_r = 904.80$

V = 1164.1 (2) Å³

Mo $K\alpha$ radiation

 $0.40 \times 0.23 \times 0.15 \text{ mm}$

 $\mu = 6.97 \text{ mm}^{-1}$

T = 298 K

7 - 2

Triclinic, $P\overline{1}$ a = 10.035 (1) Åb = 10.9220 (11) Å c = 12.2500 (15) Å $\alpha = 105.956 (2)^{\circ}$ $\beta = 100.088 (3)^{\circ}$ $\gamma = 109.377 (3)^{\circ}$

Data collection

Bruker SMART CCD	6013 measured reflections
diffractometer	4009 independent reflections
Absorption correction: multi-scan	3215 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.028$
$T_{\min} = 0.167, \ T_{\max} = 0.421$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.040$	244 parameters
$wR(F^2) = 0.115$	H-atom parameters constrained
S = 1.06	$\Delta \rho_{\rm max} = 1.33 \text{ e } \text{\AA}^{-3}$
4009 reflections	$\Delta \rho_{\rm min} = -1.45 \text{ e } \text{\AA}^{-3}$

Table 1 Selected bond lengths (Å).

Cu1-S3	2.315 (2)	Cu2-S1 ⁱ	2.367 (2)
Cu1-S1	2.356 (2)	Cu2-I2	2.5632 (11)
Cu1-S1 ⁱ	2.480 (2)	Cu2-I1	2.6896 (12)
Cu1-I1	2.5917 (11)	Cu3-S3	2.273 (2)
Cu1-Cu2	2.8590 (14)	Cu3-S2 ⁱ	2.290 (2)
Cu1-Cu1 ⁱ	2.928 (2)	Cu3-I3	2.5726 (11)
Cu2-S2	2.315 (2)	Cu3-S2 ⁱⁱ	2.639 (3)

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x - 1, y, z.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors thank the Fujian Provincial Foundation (2012-J05150) and the Research Fund of Fujian Medical University (2011BS006) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2469).

References

- Akrivos, P. D. (2001). Coord. Chem. Rev. 213, 181-210.
- García-Vázquez, J. Á., Romero, J. & Sousa, A. (1999). Coord. Chem. Rev. 193-195, 691-745.
- Kitagawa, S., Munakata, M., Shimono, H., Matsuyama, S. & Masuda, H. (1990). J. Chem. Soc. Dalton Trans. pp. 2105-2109.
- Lobana, T. S. & Castineiras, A. (2002). Polyhedron, 21, 1603-1611.
- Lobana, T. S., Sharma, R., Bermojo, E. & Castineiras, A. (2003). Inorg. Chem. 42, 7728-7730.
- Raper, E. S. (1996). Coord. Chem. Rev. 153, 199-255.
- Raper, E. S. (1997). Coord. Chem. Rev. 165, 475-567.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

supporting information

Acta Cryst. (2013). E69, m87 [doi:10.1107/S1600536812052051]

catena-Poly[μ_2 -iodido-diiodidobis(μ_3 -pyridine-2-thione- $\kappa^3 S:S:S$)(μ_2 -pyridine-2-thione- $\kappa^2 S:S$)tricopper(I)]

Fang Ke and Wen Wu

S1. Comment

The coordination chemistry of Cu(I) is of considerable interest because these complexes have luminescence properties, antimicrobial activity, and potential applications in catalysis, photography, and electrochemical processes (Kitagawa *et al.*, 1990; Raper, 1996, 1997). On the other hand, pyridine-2-thiolate can bind to a metal or a group of metals *via* a variety of bonding modes, and this versatility is attributed to the size of the S atom and its proximity to the pyridyl N atom (García-Vázquez *et al.*, 1999; Akrivos, 2001; Lobana *et al.*, 2002). The large size of the S atom makes it easier to adopt different coordination angles in complexes, which is necessary in order to match different geometries.

We report here the crystal structure of the title compound, which displays a polymeric chain structure (Fig. 1 and 2). The polymer is isoformular, although not isostructural to that previously described by Lobana *et al.* (2003). Two sulfur atoms S1 and S2 act as μ_3 -S donor atoms, while S3 acts as a μ_2 -S donor atom. There are three independent Cu atoms in the asymmetric unit; Cu1 and Cu3 are coordinated to S1, S3, I1, S1ⁱ and S3, I3, S2ⁱ, S2ⁱⁱ, respectively. Atom Cu2 is coordinated to I1, I2, S2 and S1ⁱ (symmetry codes: i: 1-*x*, 1-*y*, 1-*z*; ii: *x*-1, *y*, *z*). From bond lengths and angles around Cu centers, these metals are placed in a distorted tetrahedral coordination geometry. Moreover, metal–metal interactions are observed, with Cu1…Cu1ⁱ and Cu1…Cu2 separations of 2.928 and 2.859 Å, shorter than metal–metal contacts in the isoformular polymer (Lobana *et al.*, 2003).

S2. Experimental

An oven-dried Schlenk tube was charged with CuI (0.4 mmol), and pyridine-2-thione (0.4 mmol). The tube was evacuated and backfilled with N_2 . The reaction mixture was stirred at 333 K for 4 h and then allowed to cool to room temperature. The insoluble residues were removed by filtration, and the filtrate was evaporated slowly at room temperature for about one month, to yield yellow crystals. Crystals suitable for single-crystal X-ray diffraction were selected directly from the sample as prepared.

S3. Refinement

All H atoms were placed in calculated positions and treated as riding on their parent atoms, with bond lengths fixed to 0.93 Å for C—H bonds and 0.86 Å for N—H bonds. Isotropic displacement parameters for H atoms were calculated as $U_{iso}(H) = 1.2U_{eq}(\text{carrier atom}).$

Figure 1

The molecular structure of the title compound, showing 30% probability displacement ellipsoids. H atoms have been omitted for clarity.

Figure 2

View of the one-dimensional extended chain structure in the title compound.

catena-Poly[μ_2 -iodido-diiodidobis(μ_3 -pyridine-2-thione- κ^3 S:S:S)(μ_2 -pyridine-2-thione- κ^2 S:S)tricopper(I)]

Crystal data	
$[Cu_{3}I_{3}(C_{5}H_{5}NS)_{3}]$	$\beta = 100.088 \ (3)^{\circ}$
$M_r = 904.80$	$\gamma = 109.377 \ (3)^{\circ}$
Triclinic, $P\overline{1}$	V = 1164.1 (2) Å ³
Hall symbol: -P 1	Z = 2
a = 10.035 (1) Å	F(000) = 840
b = 10.9220 (11) Å	$D_{\rm x} = 2.581 {\rm ~Mg} {\rm ~m}^{-3}$
c = 12.2500 (15) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
$\alpha = 105.956 \ (2)^{\circ}$	Cell parameters from 3445 reflections

 $\theta = 2.2-26.0^{\circ}$ $\mu = 6.97 \text{ mm}^{-1}$ T = 298 K

Data collection

Bruker SMART CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.167, T_{\max} = 0.421$

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.040$ Hydrogen site location: inferred from $wR(F^2) = 0.115$ neighbouring sites S = 1.06H-atom parameters constrained 4009 reflections $w = 1/[\sigma^2(F_0^2) + (0.0556P)^2 + 2.5913P]$ where $P = (F_o^2 + 2F_c^2)/3$ 244 parameters $(\Delta/\sigma)_{\rm max} < 0.001$ 0 restraints $\Delta \rho_{\rm max} = 1.33 \text{ e} \text{ Å}^{-3}$ 0 constraints Primary atom site location: structure-invariant $\Delta \rho_{\rm min} = -1.45 \ {\rm e} \ {\rm \AA}^{-3}$ direct methods

Block, yellow

 $R_{\rm int} = 0.028$

 $h = -11 \rightarrow 11$

 $k = -12 \rightarrow 12$

 $l = -14 \rightarrow 10$

 $0.40 \times 0.23 \times 0.15 \text{ mm}$

6013 measured reflections

 $\theta_{\rm max} = 25.0^{\circ}, \, \theta_{\rm min} = 1.8^{\circ}$

4009 independent reflections

3215 reflections with $I > 2\sigma(I)$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cu1	0.48634 (11)	0.50567 (10)	0.61815 (8)	0.0417 (3)	
Cu2	0.79614 (11)	0.58824 (10)	0.71789 (8)	0.0432 (3)	
Cu3	0.14805 (12)	0.65287 (11)	0.57965 (8)	0.0495 (3)	
I1	0.58333 (6)	0.39571 (5)	0.75952 (5)	0.04314 (17)	
I2	0.95579 (7)	0.79131 (6)	0.91260 (5)	0.0568 (2)	
I3	0.16049 (6)	0.90228 (5)	0.63917 (5)	0.04906 (18)	
N1	0.1790 (7)	0.0857 (6)	0.3003 (6)	0.0479 (17)	
H1	0.1089	0.1095	0.2766	0.057*	
N2	1.0746 (7)	0.3244 (7)	0.6514 (6)	0.0422 (15)	
H2	1.0476	0.2886	0.5751	0.051*	
N3	0.3203 (7)	0.7738 (6)	0.8801 (5)	0.0410 (15)	
Н3	0.2341	0.7575	0.8377	0.049*	
S1	0.3069 (2)	0.35003 (18)	0.43695 (15)	0.0328 (4)	
S2	0.9240 (2)	0.4776 (2)	0.61847 (16)	0.0403 (5)	
S3	0.3492 (2)	0.6317 (2)	0.67672 (16)	0.0422 (5)	
C1	0.3003 (8)	0.1836 (7)	0.3837 (6)	0.0325 (16)	
C2	0.4146 (10)	0.1418 (8)	0.4198 (7)	0.047 (2)	
H2A	0.5022	0.2054	0.4778	0.057*	
C3	0.3937 (11)	0.0047 (9)	0.3675 (8)	0.055 (2)	
H3A	0.4690	-0.0231	0.3900	0.066*	
C4	0.2641 (11)	-0.0914 (8)	0.2828 (8)	0.053 (2)	
H4	0.2506	-0.1836	0.2491	0.063*	

C5	0.1579 (11)	-0.0491 (8)	0.2500 (9)	0.058 (2)	
Н5	0.0695	-0.1122	0.1926	0.069*	
C6	1.0204 (8)	0.4156 (8)	0.7040 (6)	0.0360 (16)	
C7	1.0588 (9)	0.4641 (8)	0.8276 (7)	0.0438 (19)	
H7	1.0206	0.5237	0.8674	0.053*	
C8	1.1536 (11)	0.4235 (10)	0.8911 (8)	0.061 (3)	
H8	1.1787	0.4547	0.9736	0.073*	
C9	1.2119 (11)	0.3342 (11)	0.8293 (9)	0.063 (3)	
H9	1.2795	0.3095	0.8705	0.075*	
C10	1.1695 (10)	0.2871 (9)	0.7138 (9)	0.055 (2)	
H10	1.2054	0.2260	0.6729	0.066*	
C11	0.4100 (8)	0.7287 (7)	0.8249 (6)	0.0334 (16)	
C12	0.5518 (9)	0.7651 (8)	0.8966 (7)	0.045 (2)	
H12	0.6184	0.7385	0.8625	0.053*	
C13	0.5946 (11)	0.8381 (9)	1.0143 (8)	0.061 (3)	
H13	0.6904	0.8635	1.0603	0.074*	
C14	0.4937 (11)	0.8752 (9)	1.0667 (7)	0.056 (2)	
H14	0.5207	0.9219	1.1482	0.067*	
C15	0.3594 (11)	0.8436 (9)	0.9995 (7)	0.053 (2)	
H15	0.2922	0.8689	1.0337	0.064*	

Atomic displacement parameters $(Å^2)$

Cul 0.0459 (6) 0.0397 (5) 0.0395 (5) 0.0245 (5) 0.0052 (4) 0.0097 (4) Cu2 0.0466 (6) 0.0423 (6) 0.0382 (5) 0.0235 (5) 0.0080 (4) 0.0064 (4) Cu3 0.0618 (7) 0.0513 (6) 0.0355 (5) 0.0371 (5) 0.0002 (4) 0.0065 (4) 1 0.0422 (3) 0.0431 (3) 0.0480 (3) 0.0177 (2) 0.0081 (2) 0.0245 (2) 2 0.0619 (4) 0.0487 (4) 0.0412 (3) 0.0151 (3) 0.0040 (3) 0.0043 (3) 3 0.0481 (3) 0.0371 (3) 0.0573 (4) 0.0208 (3) 0.0090 (3) 0.0095 (2) 41 0.034 (4) 0.047 (4) 0.030 (3) 0.016 (3) 0.024 (3) 42 0.051 (4) 0.043 (4) 0.047 (4) 0.030 (3) 0.016 (3) 0.024 (3) 43 0.039 (4) 0.037 (3) 0.039 (3) 0.015 (2) 0.005 (3) 0.005 (3) 44 0.0351 (9) 0.0313 (9) 0.0152 (8) 0.0038 (7) 0.0058 (7) 52 0.0494		U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
2u2 $0.0466 (6)$ $0.0423 (6)$ $0.0382 (5)$ $0.0235 (5)$ $0.0080 (4)$ $0.0064 (4)$ $2u3$ $0.0618 (7)$ $0.0513 (6)$ $0.0355 (5)$ $0.0371 (5)$ $0.0002 (4)$ $0.0065 (4)$ 1 $0.0422 (3)$ $0.0431 (3)$ $0.0480 (3)$ $0.0177 (2)$ $0.0081 (2)$ $0.0245 (2)$ 2 $0.0619 (4)$ $0.0487 (4)$ $0.0412 (3)$ $0.0151 (3)$ $0.0040 (3)$ $0.0043 (3)$ 3 $0.0481 (3)$ $0.0371 (3)$ $0.0573 (4)$ $0.0208 (3)$ $0.0090 (3)$ $0.0095 (2)$ 41 $0.034 (4)$ $0.029 (3)$ $0.063 (4)$ $0.009 (3)$ $0.004 (3)$ $0.004 (3)$ 42 $0.051 (4)$ $0.043 (4)$ $0.047 (4)$ $0.030 (3)$ $0.016 (3)$ $0.024 (3)$ 43 $0.039 (4)$ $0.037 (3)$ $0.039 (3)$ $0.015 (3)$ $0.009 (3)$ $0.005 (3)$ 41 $0.0351 (9)$ $0.0281 (9)$ $0.0313 (9)$ $0.015 (3)$ $0.009 (3)$ $0.005 (3)$ 41 $0.039 (4)$ $0.037 (3)$ $0.039 (10)$ $0.0116 (3)$ $0.028 (7)$ 22 $0.0494 (11)$ $0.0520 (12)$ $0.0335 (10)$ $0.0285 (9)$ $0.0024 (8)$ $0.0026 (8)$ 21 $0.049 (4)$ $0.032 (4)$ $0.021 (3)$ $0.013 (3)$ $0.011 (3)$ 22 $0.058 (5)$ $0.038 (7)$ $0.026 (4)$ $0.022 (4)$ 23 $0.077 (6)$ $0.048 (5)$ $0.055 (5)$ $0.043 (5)$ $0.011 (3)$ 22 $0.058 (5)$ $0.038 (4)$ $0.022 (4)$ $0.023 (4)$ 0.02	Cu1	0.0459 (6)	0.0397 (5)	0.0395 (5)	0.0245 (5)	0.0052 (4)	0.0097 (4)
$2u_3$ 0.0618 (7) 0.0513 (6) 0.0355 (5) 0.0371 (5) 0.0002 (4) 0.0065 (4)1 0.0422 (3) 0.0431 (3) 0.0480 (3) 0.0177 (2) 0.0081 (2) 0.0245 (2)2 0.0619 (4) 0.0487 (4) 0.0412 (3) 0.0151 (3) 0.0040 (3) 0.0043 (3)3 0.0481 (3) 0.0371 (3) 0.0573 (4) 0.0208 (3) 0.0090 (3) 0.0095 (2) 41 0.034 (4) 0.029 (3) 0.063 (4) 0.009 (3) 0.004 (3) 0.004 (3) 42 0.051 (4) 0.047 (4) 0.030 (3) 0.016 (3) 0.024 (3) 43 0.039 (4) 0.037 (3) 0.039 (3) 0.015 (3) 0.009 (3) 0.005 (3) 41 0.0351 (9) 0.0281 (9) 0.0313 (9) 0.015 (2) 0.0038 (7) 0.0058 (7) 42 0.0494 (11) 0.0546 (12) 0.0292 (9) 0.0364 (10) 0.0111 (8) 0.0142 (8) 33 0.0396 (11) 0.052 (12) 0.0335 (10) 0.0285 (9) 0.0024 (8) 0.0026 (8) 41 0.040 (4) 0.032 (4) 0.021 (3) 0.013 (3) 0.011 (3) 42 0.077 (6) 0.048 (5) 0.058 (5) 0.026 (4) 0.002 (4) 43 0.077 (6) 0.048 (5) 0.058 (5) 0.026 (4) 0.023 (5) 0.012 (4) 44 0.075 (6) 0.026 (4) 0.068 (6) 0.009 (4) 0.012 (5) 0.002 (4) 45 0.066 (6) 0.026 (4) 0.068 (Cu2	0.0466 (6)	0.0423 (6)	0.0382 (5)	0.0235 (5)	0.0080 (4)	0.0064 (4)
1 $0.0422 (3)$ $0.0431 (3)$ $0.0480 (3)$ $0.0177 (2)$ $0.0081 (2)$ $0.0245 (2)$ 2 $0.0619 (4)$ $0.0487 (4)$ $0.0412 (3)$ $0.0151 (3)$ $0.0040 (3)$ $0.0043 (3)$ 3 $0.0481 (3)$ $0.0371 (3)$ $0.0573 (4)$ $0.0208 (3)$ $0.0090 (3)$ $0.0095 (2)$ 11 $0.034 (4)$ $0.029 (3)$ $0.063 (4)$ $0.009 (3)$ $0.004 (3)$ $0.004 (3)$ 12 $0.051 (4)$ $0.043 (4)$ $0.047 (4)$ $0.030 (3)$ $0.016 (3)$ $0.024 (3)$ 13 $0.039 (4)$ $0.037 (3)$ $0.039 (3)$ $0.015 (3)$ $0.009 (3)$ $0.005 (3)$ 14 $0.0351 (9)$ $0.0281 (9)$ $0.0313 (9)$ $0.0152 (8)$ $0.0038 (7)$ $0.0058 (7)$ 12 $0.0494 (11)$ $0.0546 (12)$ $0.0292 (9)$ $0.0364 (10)$ $0.0111 (8)$ $0.0142 (8)$ 13 $0.039 (6)$ $0.032 (4)$ $0.021 (3)$ $0.015 (4)$ $0.0026 (8)$ 11 $0.040 (4)$ $0.032 (4)$ $0.023 (4)$ $0.012 (4)$ $0.022 (4)$ $0.049 (11)$ $0.052 (12)$ $0.0335 (10)$ $0.028 (9)$ $0.0024 (8)$ $0.0026 (8)$ 11 $0.040 (4)$ $0.032 (4)$ $0.021 (3)$ $0.011 (3)$ $0.011 (3)$ 12 $0.049 (4)$ $0.032 (4)$ $0.023 (4)$ $0.005 (4)$ $0.012 (4)$ 13 $0.077 (6)$ $0.048 (5)$ $0.055 (5)$ $0.043 (5)$ $0.018 (5)$ $0.020 (4)$ 14 $0.075 (6)$ $0.029 (4)$ $0.058 (5)$ $0.026 (4)$ $0.023 (5)$	Cu3	0.0618 (7)	0.0513 (6)	0.0355 (5)	0.0371 (5)	0.0002 (4)	0.0065 (4)
2 0.0619 (4) 0.0487 (4) 0.0412 (3) 0.0151 (3) 0.0040 (3) 0.0043 (3) 3 0.0481 (3) 0.0371 (3) 0.0573 (4) 0.0208 (3) 0.0090 (3) 0.0095 (2) 41 0.034 (4) 0.029 (3) 0.063 (4) 0.009 (3) 0.004 (3) 0.004 (3) 42 0.051 (4) 0.043 (4) 0.047 (4) 0.030 (3) 0.016 (3) 0.024 (3) 43 0.039 (4) 0.037 (3) 0.039 (3) 0.015 (3) 0.009 (3) 0.005 (3) 41 0.0351 (9) 0.0281 (9) 0.0313 (9) 0.0152 (8) 0.0038 (7) 0.0058 (7) 52 0.0494 (11) 0.0546 (12) 0.0292 (9) 0.0364 (10) 0.0111 (8) 0.0142 (8) 63 0.0396 (11) 0.0502 (12) 0.0335 (10) 0.0285 (9) 0.0024 (8) 0.0026 (8) 51 0.040 (4) 0.032 (4) 0.021 (3) 0.013 (3) 0.011 (3) 52 0.058 (5) 0.026 (4) 0.026 (4) 0.020 (4) 0.022 (4) 53 0.077 (6) <td>I1</td> <td>0.0422 (3)</td> <td>0.0431 (3)</td> <td>0.0480 (3)</td> <td>0.0177 (2)</td> <td>0.0081 (2)</td> <td>0.0245 (2)</td>	I1	0.0422 (3)	0.0431 (3)	0.0480 (3)	0.0177 (2)	0.0081 (2)	0.0245 (2)
3 0.0481 (3) 0.0371 (3) 0.0573 (4) 0.0208 (3) 0.0090 (3) 0.0095 (2) 41 0.034 (4) 0.029 (3) 0.063 (4) 0.009 (3) 0.004 (3) 0.004 (3) 42 0.051 (4) 0.043 (4) 0.047 (4) 0.030 (3) 0.016 (3) 0.024 (3) 43 0.039 (4) 0.037 (3) 0.039 (3) 0.015 (3) 0.009 (3) 0.005 (3) 41 0.0351 (9) 0.0281 (9) 0.0313 (9) 0.0152 (8) 0.0038 (7) 0.0058 (7) 52 0.0494 (11) 0.0546 (12) 0.0292 (9) 0.0364 (10) 0.0111 (8) 0.0142 (8) 63 0.0396 (11) 0.0502 (12) 0.0335 (10) 0.0285 (9) 0.0024 (8) 0.0026 (8) 61 0.040 (4) 0.032 (4) 0.042 (4) 0.021 (3) 0.013 (3) 0.011 (3) 62 0.058 (5) 0.038 (4) 0.042 (4) 0.023 (4) 0.005 (4) 0.012 (4) 63 0.077 (6) 0.048 (5) 0.055 (5) 0.043 (5) 0.018 (5) 0.020 (4) <	I2	0.0619 (4)	0.0487 (4)	0.0412 (3)	0.0151 (3)	0.0040 (3)	0.0043 (3)
M1 0.034 (4) 0.029 (3) 0.063 (4) 0.009 (3) 0.004 (3) 0.004 (3) $M2$ 0.051 (4) 0.043 (4) 0.047 (4) 0.030 (3) 0.016 (3) 0.024 (3) $M3$ 0.039 (4) 0.037 (3) 0.039 (3) 0.015 (3) 0.009 (3) 0.005 (3) $M1$ 0.0351 (9) 0.0281 (9) 0.0313 (9) 0.0152 (8) 0.0038 (7) 0.0058 (7) 12 0.0494 (11) 0.0546 (12) 0.0292 (9) 0.0364 (10) 0.0111 (8) 0.0142 (8) 3 0.0396 (11) 0.0502 (12) 0.0335 (10) 0.0285 (9) 0.0024 (8) 0.0026 (8) $C1$ 0.040 (4) 0.032 (4) 0.032 (4) 0.021 (3) 0.013 (3) 0.011 (3) $C2$ 0.058 (5) 0.038 (4) 0.042 (4) 0.023 (4) 0.005 (4) 0.012 (4) $C3$ 0.077 (6) 0.048 (5) 0.055 (5) 0.043 (5) 0.018 (5) 0.020 (4) $C4$ 0.075 (6) 0.029 (4) 0.058 (5) 0.026 (4) 0.023 (5) 0.013 (4) $C5$ 0.060 (6) 0.026 (4) 0.068 (6) 0.009 (4) 0.012 (5) 0.002 (4) $C6$ 0.037 (4) 0.040 (4) 0.019 (3) 0.014 (3) 0.021 (3) $C7$ 0.054 (5) 0.046 (5) 0.032 (4) 0.021 (4) 0.009 (3) 0.017 (3) $C6$ 0.037 (4) 0.040 (4) 0.019 (3) 0.014 (3) 0.021 (3) $C7$ 0.054 (5) 0.046 (5) 0.03	I3	0.0481 (3)	0.0371 (3)	0.0573 (4)	0.0208 (3)	0.0090 (3)	0.0095 (2)
42 $0.051(4)$ $0.043(4)$ $0.047(4)$ $0.030(3)$ $0.016(3)$ $0.024(3)$ 43 $0.039(4)$ $0.037(3)$ $0.039(3)$ $0.015(3)$ $0.009(3)$ $0.005(3)$ 41 $0.0351(9)$ $0.0281(9)$ $0.0313(9)$ $0.0152(8)$ $0.0038(7)$ $0.0058(7)$ 42 $0.0494(11)$ $0.0546(12)$ $0.0292(9)$ $0.0364(10)$ $0.0111(8)$ $0.0142(8)$ 43 $0.0396(11)$ $0.0502(12)$ $0.0335(10)$ $0.0285(9)$ $0.0024(8)$ $0.0026(8)$ 41 $0.040(4)$ $0.032(4)$ $0.021(3)$ $0.013(3)$ $0.011(3)$ 42 $0.058(5)$ $0.038(4)$ $0.042(4)$ $0.023(4)$ $0.005(4)$ $0.012(4)$ 43 $0.077(6)$ $0.048(5)$ $0.055(5)$ $0.043(5)$ $0.018(5)$ $0.020(4)$ 44 $0.075(6)$ $0.029(4)$ $0.058(5)$ $0.026(4)$ $0.023(5)$ $0.013(4)$ 45 $0.060(6)$ $0.026(4)$ $0.068(6)$ $0.009(4)$ $0.012(5)$ $0.002(4)$ 46 $0.037(4)$ $0.046(5)$ $0.032(4)$ $0.021(4)$ $0.009(3)$ $0.017(3)$ 47 $0.054(5)$ $0.046(5)$ $0.032(4)$ $0.021(4)$ $0.009(3)$ $0.017(3)$ 48 $0.066(6)$ $0.072(7)$ $0.076(7)$ $0.032(5)$ $0.006(5)$ $0.049(6)$ 49 $0.056(6)$ $0.057(6)$ $0.084(7)$ $0.044(5)$ $0.032(5)$ $0.006(5)$ $0.049(6)$ 41 $0.023(3)$ $0.032(4)$ $0.012(3)$ $0.007(3)$ $0.007(3)$ </td <td>N1</td> <td>0.034 (4)</td> <td>0.029 (3)</td> <td>0.063 (4)</td> <td>0.009 (3)</td> <td>0.004 (3)</td> <td>0.004 (3)</td>	N1	0.034 (4)	0.029 (3)	0.063 (4)	0.009 (3)	0.004 (3)	0.004 (3)
33 $0.039 (4)$ $0.037 (3)$ $0.039 (3)$ $0.015 (3)$ $0.009 (3)$ $0.005 (3)$ 11 $0.0351 (9)$ $0.0281 (9)$ $0.0313 (9)$ $0.0152 (8)$ $0.0038 (7)$ $0.0058 (7)$ 12 $0.0494 (11)$ $0.0546 (12)$ $0.0292 (9)$ $0.0364 (10)$ $0.0111 (8)$ $0.0142 (8)$ 33 $0.0396 (11)$ $0.0502 (12)$ $0.0335 (10)$ $0.0285 (9)$ $0.0024 (8)$ $0.0026 (8)$ 21 $0.040 (4)$ $0.032 (4)$ $0.032 (4)$ $0.021 (3)$ $0.013 (3)$ $0.011 (3)$ 22 $0.058 (5)$ $0.038 (4)$ $0.042 (4)$ $0.023 (4)$ $0.005 (4)$ $0.012 (4)$ 23 $0.077 (6)$ $0.048 (5)$ $0.055 (5)$ $0.043 (5)$ $0.018 (5)$ $0.020 (4)$ 24 $0.075 (6)$ $0.029 (4)$ $0.058 (5)$ $0.026 (4)$ $0.023 (5)$ $0.013 (4)$ 25 $0.060 (6)$ $0.026 (4)$ $0.068 (6)$ $0.009 (4)$ $0.012 (5)$ $0.002 (4)$ 26 $0.037 (4)$ $0.040 (4)$ $0.040 (4)$ $0.019 (3)$ $0.014 (3)$ $0.021 (3)$ 27 $0.054 (5)$ $0.046 (5)$ $0.032 (4)$ $0.021 (4)$ $0.009 (3)$ $0.017 (3)$ 28 $0.066 (6)$ $0.066 (6)$ $0.037 (5)$ $0.010 (5)$ $-0.002 (4)$ $0.030 (4)$ 29 $0.056 (6)$ $0.072 (7)$ $0.076 (7)$ $0.032 (5)$ $0.006 (5)$ $0.049 (6)$ 210 $0.060 (6)$ $0.057 (6)$ $0.084 (7)$ $0.044 (5)$ $0.032 (5)$ $0.007 (3)$ 210	N2	0.051 (4)	0.043 (4)	0.047 (4)	0.030 (3)	0.016 (3)	0.024 (3)
11 $0.0351(9)$ $0.0281(9)$ $0.0313(9)$ $0.0152(8)$ $0.0038(7)$ $0.0058(7)$ 12 $0.0494(11)$ $0.0546(12)$ $0.0292(9)$ $0.0364(10)$ $0.0111(8)$ $0.0142(8)$ 13 $0.0396(11)$ $0.0502(12)$ $0.0335(10)$ $0.0285(9)$ $0.0024(8)$ $0.0026(8)$ 11 $0.040(4)$ $0.032(4)$ $0.032(4)$ $0.021(3)$ $0.013(3)$ $0.011(3)$ 12 $0.058(5)$ $0.038(4)$ $0.042(4)$ $0.023(4)$ $0.005(4)$ $0.012(4)$ 13 $0.077(6)$ $0.048(5)$ $0.055(5)$ $0.043(5)$ $0.018(5)$ $0.020(4)$ 14 $0.075(6)$ $0.029(4)$ $0.058(5)$ $0.026(4)$ $0.023(5)$ $0.013(4)$ 15 $0.060(6)$ $0.026(4)$ $0.068(6)$ $0.009(4)$ $0.012(5)$ $0.002(4)$ 16 $0.037(4)$ $0.040(4)$ $0.040(4)$ $0.019(3)$ $0.014(3)$ $0.021(3)$ 17 $0.054(5)$ $0.046(5)$ $0.032(4)$ $0.021(4)$ $0.009(3)$ $0.017(3)$ 17 $0.054(5)$ $0.046(5)$ $0.032(4)$ $0.021(4)$ $0.009(3)$ $0.017(3)$ 17 $0.056(6)$ $0.072(7)$ $0.076(7)$ $0.032(5)$ $0.006(5)$ $0.049(6)$ 10 $0.060(6)$ $0.057(6)$ $0.084(7)$ $0.044(5)$ $0.032(5)$ $0.006(5)$ $0.046(5)$ 10 $0.060(6)$ $0.057(6)$ $0.084(7)$ $0.044(5)$ $0.032(5)$ $0.006(5)$ $0.046(5)$ 10 $0.041(4)$ $0.023(3)$ $0.032(4)$ </td <td>N3</td> <td>0.039 (4)</td> <td>0.037 (3)</td> <td>0.039 (3)</td> <td>0.015 (3)</td> <td>0.009 (3)</td> <td>0.005 (3)</td>	N3	0.039 (4)	0.037 (3)	0.039 (3)	0.015 (3)	0.009 (3)	0.005 (3)
22 $0.0494(11)$ $0.0546(12)$ $0.0292(9)$ $0.0364(10)$ $0.0111(8)$ $0.0142(8)$ 33 $0.0396(11)$ $0.0502(12)$ $0.0335(10)$ $0.0285(9)$ $0.0024(8)$ $0.0026(8)$ 21 $0.040(4)$ $0.032(4)$ $0.032(4)$ $0.021(3)$ $0.013(3)$ $0.011(3)$ 22 $0.058(5)$ $0.038(4)$ $0.042(4)$ $0.023(4)$ $0.005(4)$ $0.012(4)$ 23 $0.077(6)$ $0.048(5)$ $0.055(5)$ $0.043(5)$ $0.018(5)$ $0.020(4)$ 24 $0.075(6)$ $0.029(4)$ $0.058(5)$ $0.026(4)$ $0.023(5)$ $0.013(4)$ 25 $0.060(6)$ $0.026(4)$ $0.068(6)$ $0.009(4)$ $0.012(5)$ $0.002(4)$ 26 $0.037(4)$ $0.040(4)$ $0.040(4)$ $0.019(3)$ $0.014(3)$ $0.021(3)$ 27 $0.054(5)$ $0.046(5)$ $0.032(4)$ $0.021(4)$ $0.009(3)$ $0.017(3)$ 28 $0.066(6)$ $0.072(7)$ $0.076(7)$ $0.032(5)$ $0.006(5)$ $0.049(6)$ 29 $0.056(6)$ $0.057(6)$ $0.084(7)$ $0.044(5)$ $0.032(5)$ $0.006(5)$ $0.046(5)$ 211 $0.041(4)$ $0.023(3)$ $0.032(4)$ $0.012(3)$ $0.007(3)$ $0.007(3)$ 212 $0.039(4)$ $0.044(5)$ $0.048(5)$ $0.027(4)$ $0.000(3)$ $0.009(4)$	S1	0.0351 (9)	0.0281 (9)	0.0313 (9)	0.0152 (8)	0.0038 (7)	0.0058 (7)
33 $0.0396(11)$ $0.0502(12)$ $0.0335(10)$ $0.0285(9)$ $0.0024(8)$ $0.0026(8)$ 21 $0.040(4)$ $0.032(4)$ $0.032(4)$ $0.021(3)$ $0.013(3)$ $0.011(3)$ 22 $0.058(5)$ $0.038(4)$ $0.042(4)$ $0.023(4)$ $0.005(4)$ $0.012(4)$ 23 $0.077(6)$ $0.048(5)$ $0.055(5)$ $0.043(5)$ $0.018(5)$ $0.020(4)$ 24 $0.075(6)$ $0.029(4)$ $0.058(5)$ $0.026(4)$ $0.023(5)$ $0.013(4)$ 25 $0.060(6)$ $0.026(4)$ $0.068(6)$ $0.009(4)$ $0.012(5)$ $0.002(4)$ 26 $0.037(4)$ $0.040(4)$ $0.040(4)$ $0.019(3)$ $0.014(3)$ $0.021(3)$ 27 $0.054(5)$ $0.046(5)$ $0.032(4)$ $0.021(4)$ $0.009(3)$ $0.017(3)$ 28 $0.066(6)$ $0.066(6)$ $0.037(5)$ $0.010(5)$ $-0.002(4)$ $0.030(4)$ 29 $0.056(6)$ $0.072(7)$ $0.076(7)$ $0.032(5)$ $0.006(5)$ $0.049(6)$ 210 $0.060(6)$ $0.057(6)$ $0.084(7)$ $0.044(5)$ $0.032(5)$ $0.046(5)$ 211 $0.041(4)$ $0.023(3)$ $0.032(4)$ $0.012(3)$ $0.007(3)$ $0.007(3)$ 212 $0.039(4)$ $0.044(5)$ $0.048(5)$ $0.027(4)$ $0.000(3)$ $0.009(4)$	S2	0.0494 (11)	0.0546 (12)	0.0292 (9)	0.0364 (10)	0.0111 (8)	0.0142 (8)
0.1 0.040 (4) 0.032 (4) 0.032 (4) 0.021 (3) 0.013 (3) 0.011 (3) 0.22 0.058 (5) 0.038 (4) 0.042 (4) 0.023 (4) 0.005 (4) 0.012 (4) 0.33 0.077 (6) 0.048 (5) 0.055 (5) 0.043 (5) 0.018 (5) 0.020 (4) 0.44 0.075 (6) 0.029 (4) 0.058 (5) 0.026 (4) 0.023 (5) 0.013 (4) 0.55 0.060 (6) 0.026 (4) 0.058 (5) 0.026 (4) 0.023 (5) 0.013 (4) 0.55 0.060 (6) 0.026 (4) 0.068 (6) 0.009 (4) 0.012 (5) 0.002 (4) 0.66 0.037 (4) 0.040 (4) 0.019 (3) 0.014 (3) 0.021 (3) 0.7 0.054 (5) 0.046 (5) 0.032 (4) 0.021 (4) 0.009 (3) 0.017 (3) 0.7 0.054 (5) 0.046 (5) 0.037 (5) 0.010 (5) -0.002 (4) 0.030 (4) 0.9 0.056 (6) 0.072 (7) 0.076 (7) 0.032 (5) 0.006 (5) 0.049 (6) 0.060 (6) 0.057 (6) 0.084 (7) 0.044 (5) 0.023 (5) 0.046 (5) 0.11 0.041 (4) 0.023 (3) 0.032 (4) 0.012 (3) 0.007 (3) 0.007 (3) 0.027 (4) 0.039 (4) 0.044 (5) 0.048 (5) 0.027 (4) 0.000 (3) 0.009 (4)	S3	0.0396 (11)	0.0502 (12)	0.0335 (10)	0.0285 (9)	0.0024 (8)	0.0026 (8)
22 $0.058(5)$ $0.038(4)$ $0.042(4)$ $0.023(4)$ $0.005(4)$ $0.012(4)$ 23 $0.077(6)$ $0.048(5)$ $0.055(5)$ $0.043(5)$ $0.018(5)$ $0.020(4)$ 24 $0.075(6)$ $0.029(4)$ $0.058(5)$ $0.026(4)$ $0.023(5)$ $0.013(4)$ 25 $0.060(6)$ $0.026(4)$ $0.068(6)$ $0.009(4)$ $0.012(5)$ $0.002(4)$ 26 $0.037(4)$ $0.040(4)$ $0.040(4)$ $0.019(3)$ $0.014(3)$ $0.021(3)$ 27 $0.054(5)$ $0.046(5)$ $0.032(4)$ $0.021(4)$ $0.009(3)$ $0.017(3)$ 28 $0.066(6)$ $0.066(6)$ $0.037(5)$ $0.010(5)$ $-0.002(4)$ $0.030(4)$ 29 $0.056(6)$ $0.072(7)$ $0.076(7)$ $0.032(5)$ $0.006(5)$ $0.049(6)$ 210 $0.060(6)$ $0.057(6)$ $0.084(7)$ $0.044(5)$ $0.032(5)$ $0.046(5)$ 211 $0.041(4)$ $0.023(3)$ $0.032(4)$ $0.012(3)$ $0.007(3)$ $0.007(3)$ 212 $0.039(4)$ $0.044(5)$ $0.048(5)$ $0.027(4)$ $0.000(3)$ $0.009(4)$	C1	0.040 (4)	0.032 (4)	0.032 (4)	0.021 (3)	0.013 (3)	0.011 (3)
23 $0.077 (6)$ $0.048 (5)$ $0.055 (5)$ $0.043 (5)$ $0.018 (5)$ $0.020 (4)$ 24 $0.075 (6)$ $0.029 (4)$ $0.058 (5)$ $0.026 (4)$ $0.023 (5)$ $0.013 (4)$ 25 $0.060 (6)$ $0.026 (4)$ $0.068 (6)$ $0.009 (4)$ $0.012 (5)$ $0.002 (4)$ 26 $0.037 (4)$ $0.040 (4)$ $0.040 (4)$ $0.019 (3)$ $0.014 (3)$ $0.021 (3)$ 27 $0.054 (5)$ $0.046 (5)$ $0.032 (4)$ $0.021 (4)$ $0.009 (3)$ $0.017 (3)$ 28 $0.066 (6)$ $0.066 (6)$ $0.037 (5)$ $0.010 (5)$ $-0.002 (4)$ $0.030 (4)$ 29 $0.056 (6)$ $0.072 (7)$ $0.076 (7)$ $0.032 (5)$ $0.006 (5)$ $0.049 (6)$ 210 $0.060 (6)$ $0.057 (6)$ $0.084 (7)$ $0.044 (5)$ $0.032 (5)$ $0.046 (5)$ 211 $0.041 (4)$ $0.023 (3)$ $0.032 (4)$ $0.012 (3)$ $0.007 (3)$ $0.007 (3)$ 212 $0.039 (4)$ $0.044 (5)$ $0.048 (5)$ $0.027 (4)$ $0.000 (3)$ $0.009 (4)$	C2	0.058 (5)	0.038 (4)	0.042 (4)	0.023 (4)	0.005 (4)	0.012 (4)
24 $0.075 (6)$ $0.029 (4)$ $0.058 (5)$ $0.026 (4)$ $0.023 (5)$ $0.013 (4)$ 25 $0.060 (6)$ $0.026 (4)$ $0.068 (6)$ $0.009 (4)$ $0.012 (5)$ $0.002 (4)$ 26 $0.037 (4)$ $0.040 (4)$ $0.040 (4)$ $0.019 (3)$ $0.014 (3)$ $0.021 (3)$ 27 $0.054 (5)$ $0.046 (5)$ $0.032 (4)$ $0.021 (4)$ $0.009 (3)$ $0.017 (3)$ 28 $0.066 (6)$ $0.066 (6)$ $0.037 (5)$ $0.010 (5)$ $-0.002 (4)$ $0.030 (4)$ 29 $0.056 (6)$ $0.072 (7)$ $0.076 (7)$ $0.032 (5)$ $0.006 (5)$ $0.049 (6)$ 210 $0.060 (6)$ $0.057 (6)$ $0.084 (7)$ $0.044 (5)$ $0.032 (5)$ $0.046 (5)$ 211 $0.041 (4)$ $0.023 (3)$ $0.032 (4)$ $0.012 (3)$ $0.007 (3)$ $0.007 (3)$ 212 $0.039 (4)$ $0.044 (5)$ $0.048 (5)$ $0.027 (4)$ $0.000 (3)$ $0.009 (4)$	C3	0.077 (6)	0.048 (5)	0.055 (5)	0.043 (5)	0.018 (5)	0.020 (4)
25 $0.060(6)$ $0.026(4)$ $0.068(6)$ $0.009(4)$ $0.012(5)$ $0.002(4)$ 26 $0.037(4)$ $0.040(4)$ $0.040(4)$ $0.019(3)$ $0.014(3)$ $0.021(3)$ 27 $0.054(5)$ $0.046(5)$ $0.032(4)$ $0.021(4)$ $0.009(3)$ $0.017(3)$ 28 $0.066(6)$ $0.066(6)$ $0.037(5)$ $0.010(5)$ $-0.002(4)$ $0.030(4)$ 29 $0.056(6)$ $0.072(7)$ $0.076(7)$ $0.032(5)$ $0.006(5)$ $0.049(6)$ 210 $0.060(6)$ $0.057(6)$ $0.084(7)$ $0.044(5)$ $0.032(5)$ $0.046(5)$ 211 $0.041(4)$ $0.023(3)$ $0.032(4)$ $0.012(3)$ $0.007(3)$ $0.007(3)$ 212 $0.039(4)$ $0.044(5)$ $0.027(4)$ $0.000(3)$ $0.009(4)$	C4	0.075 (6)	0.029 (4)	0.058 (5)	0.026 (4)	0.023 (5)	0.013 (4)
26 0.037 (4) 0.040 (4) 0.040 (4) 0.019 (3) 0.014 (3) 0.021 (3) 27 0.054 (5) 0.046 (5) 0.032 (4) 0.021 (4) 0.009 (3) 0.017 (3) 28 0.066 (6) 0.066 (6) 0.037 (5) 0.010 (5) -0.002 (4) 0.030 (4) 29 0.056 (6) 0.072 (7) 0.076 (7) 0.032 (5) 0.006 (5) 0.049 (6) 210 0.060 (6) 0.057 (6) 0.084 (7) 0.044 (5) 0.032 (5) 0.046 (5) 211 0.041 (4) 0.023 (3) 0.032 (4) 0.012 (3) 0.007 (3) 0.007 (3) 212 0.039 (4) 0.044 (5) 0.048 (5) 0.027 (4) 0.000 (3) 0.009 (4)	C5	0.060 (6)	0.026 (4)	0.068 (6)	0.009 (4)	0.012 (5)	0.002 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6	0.037 (4)	0.040 (4)	0.040 (4)	0.019 (3)	0.014 (3)	0.021 (3)
0.066 (6) 0.066 (6) 0.037 (5) 0.010 (5) -0.002 (4) 0.030 (4) 0.9 0.056 (6) 0.072 (7) 0.076 (7) 0.032 (5) 0.006 (5) 0.049 (6) 0.10 0.060 (6) 0.057 (6) 0.084 (7) 0.044 (5) 0.032 (5) 0.046 (5) 0.11 0.041 (4) 0.023 (3) 0.032 (4) 0.012 (3) 0.007 (3) 0.007 (3) 0.12 0.039 (4) 0.044 (5) 0.048 (5) 0.027 (4) 0.000 (3) 0.009 (4)	C7	0.054 (5)	0.046 (5)	0.032 (4)	0.021 (4)	0.009 (3)	0.017 (3)
C9 0.056 (6) 0.072 (7) 0.076 (7) 0.032 (5) 0.006 (5) 0.049 (6) C10 0.060 (6) 0.057 (6) 0.084 (7) 0.044 (5) 0.032 (5) 0.046 (5) C11 0.041 (4) 0.023 (3) 0.032 (4) 0.012 (3) 0.007 (3) 0.007 (3) C12 0.039 (4) 0.044 (5) 0.048 (5) 0.027 (4) 0.000 (3) 0.009 (4)	C8	0.066 (6)	0.066 (6)	0.037 (5)	0.010 (5)	-0.002 (4)	0.030 (4)
C100.060 (6)0.057 (6)0.084 (7)0.044 (5)0.032 (5)0.046 (5)C110.041 (4)0.023 (3)0.032 (4)0.012 (3)0.007 (3)0.007 (3)C120.039 (4)0.044 (5)0.048 (5)0.027 (4)0.000 (3)0.009 (4)	C9	0.056 (6)	0.072 (7)	0.076 (7)	0.032 (5)	0.006 (5)	0.049 (6)
C110.041 (4)0.023 (3)0.032 (4)0.012 (3)0.007 (3)0.007 (3)C120.039 (4)0.044 (5)0.048 (5)0.027 (4)0.000 (3)0.009 (4)	C10	0.060 (6)	0.057 (6)	0.084 (7)	0.044 (5)	0.032 (5)	0.046 (5)
C12 0.039 (4) 0.044 (5) 0.048 (5) 0.027 (4) 0.000 (3) 0.009 (4)	C11	0.041 (4)	0.023 (3)	0.032 (4)	0.012 (3)	0.007 (3)	0.007 (3)
	C12	0.039 (4)	0.044 (5)	0.048 (5)	0.027 (4)	0.000 (3)	0.009 (4)

supporting information

C13	0.063 (6)	0.049 (5)	0.060 (6)	0.029 (5)	-0.017 (5)	0.013 (4)
C14	0.079 (7)	0.045 (5)	0.026 (4)	0.012 (5)	0.005 (4)	0.007 (4)
C15	0.067 (6)	0.044 (5)	0.045 (5)	0.015 (4)	0.029 (5)	0.012 (4)

Geometric p	arameters	(Å,	9
-------------	-----------	-----	---

Cu1—S3	2.315 (2)	S2—Cu3 ⁱ	2.290 (2)
Cu1—S1	2.356 (2)	S2—Cu3 ⁱⁱⁱ	2.639 (3)
Cu1—S1 ⁱ	2.480 (2)	S3—C11	1.708 (7)
Cu1—I1	2.5917 (11)	C1—C2	1.414 (10)
Cu1—Cu2	2.8590 (14)	C2—C3	1.384 (11)
Cu1—Cu1 ⁱ	2.928 (2)	C2—H2A	0.9300
Cu2—S2	2.315 (2)	C3—C4	1.376 (13)
Cu2—S1 ⁱ	2.367 (2)	С3—НЗА	0.9300
Cu2—I2	2.5632 (11)	C4—C5	1.337 (13)
Cu2—I1	2.6896 (12)	C4—H4	0.9300
Cu3—S3	2.273 (2)	С5—Н5	0.9300
Cu3—S2 ⁱ	2.290 (2)	C6—C7	1.393 (10)
Cu3—I3	2.5726 (11)	C7—C8	1.385 (12)
Cu3—S2 ⁱⁱ	2.639 (3)	С7—Н7	0.9300
N1—C1	1.330 (9)	C8—C9	1.412 (14)
N1—C5	1.357 (10)	C8—H8	0.9300
N1—H1	0.8600	C9—C10	1.300 (13)
N2	1.353 (10)	С9—Н9	0.9300
N2—C6	1.354 (9)	C10—H10	0.9300
N2—H2	0.8600	C11—C12	1.396 (10)
N3—C11	1.355 (9)	C12—C13	1.351 (12)
N3—C15	1.365 (10)	C12—H12	0.9300
N3—H3	0.8600	C13—C14	1.399 (13)
S1—C1	1.728 (7)	C13—H13	0.9300
S1—Cu2 ⁱ	2.367 (2)	C14—C15	1.326 (13)
S1—Cu1 ⁱ	2.480 (2)	C14—H14	0.9300
S2—C6	1.721 (7)	C15—H15	0.9300
\$3 Cu1 \$1	95 70 (7)	$C_{11}3^{i}$ S2 $C_{11}3^{iii}$	87.07 (8)
$S_{3}^{-}C_{11}^{-}S_{1}^{i}$	109.08 (8)	$Cu^2 = S^2 = Cu^3$	112 17 (9)
S_{1}^{i} Cu1 S_{1}^{i}	105.53 (6)	C11 = S3 = Cu3	112.17(0) 112.4(3)
S3-Cu1-11	105.55(0) 118 52 (7)	C11 - S3 - Cu1	112.4 (3)
S1_Cu1_I1	116.32 (7)	Cu^3 S^3 Cu^1	133.81 (9)
$S1^{i}$ Cu1—I1	110.47(0) 110.13(5)	N1 - C1 - C2	116 4 (6)
S_{1}^{2} C_{11}^{2} C_{12}^{2}	126 14 (6)	N1 - C1 - S1	118.1 (5)
$S_{1} = Cu_{1} = Cu_{2}$	125.86 (6)	$C_2 C_1 S_1$	125.6 (6)
S1 - Cu1 - Cu2 $S1^{i} - Cu1 - Cu2$	52 03 (5)	$C_2 - C_1 - S_1$	123.0(0) 118.9(8)
$\frac{51 - Cu1 - Cu2}{11 - Cu1 - Cu2}$	52.03 (3)	$C_3 = C_2 = C_1$	120.6
$S_{1} = Cu_{1} = Cu_{2}$	110 90 (7)	C_{1} C_{2} H_{2}	120.0
$S1 - Cu1 - Cu1^{i}$	54 69 (6)	$C_1 - C_2 - C_1^2 - C_2^2$	120.0
$S_1 = Cu_1 = Cu_1$	50.84 (5)	$C_4 = C_3 = C_2$	121.5 (6)
$I1_Cu1_Cu1$	130 56 (5)	$C_{1} = C_{2} = H_{2} \wedge$	119.3
	150.50 (5)	02—03—113A	117.5

Cu2—Cu1—Cu1 ⁱ	93.24 (5)	C5—C4—C3	118.5 (7)
S2—Cu2—S1 ⁱ	97.69 (7)	С5—С4—Н4	120.8
S2—Cu2—I2	114.82 (7)	C3—C4—H4	120.8
S1 ⁱ —Cu2—I2	115.43 (6)	C4—C5—N1	120.0 (8)
S2—Cu2—I1	107.63 (7)	C4—C5—H5	120.0
S1 ⁱ —Cu2—I1	110.49 (6)	N1—C5—H5	120.0
I2—Cu2—I1	110.04 (4)	N2—C6—C7	117.0 (7)
S2—Cu2—Cu1	120.62 (6)	N2—C6—S2	119.4 (5)
S1 ⁱ —Cu2—Cu1	55.70 (5)	C7—C6—S2	123.3 (6)
I2—Cu2—Cu1	124.49 (4)	C8—C7—C6	120.0 (8)
I1—Cu2—Cu1	55.59 (3)	С8—С7—Н7	120.0
S3—Cu3—S2 ⁱ	110.21 (7)	C6—C7—H7	120.0
\$3-Cu3-I3	114.83 (7)	C7—C8—C9	119.3 (8)
S2 ⁱ —Cu3—I3	118.15 (7)	C7—C8—H8	120.4
S3—Cu3—S2 ⁱⁱ	104 12 (8)	C9—C8—H8	120.4
S2 ⁱ —Cu3—S2 ⁱⁱ	92.93 (8)	C10-C9-C8	119.0 (8)
$13-Cu_3-82^{ii}$	113 75 (6)	C10-C9-H9	120.5
Cu1— $I1$ — $Cu2$	65 52 (3)	C8-C9-H9	120.5
C1 - N1 - C5	124 8 (7)	C9-C10-N2	121.9 (8)
C1—N1—H1	117.6	C9-C10-H10	119.1
C5—N1—H1	117.6	N2-C10-H10	119.1
$C10 - N^2 - C6$	122.8 (7)	N3-C11-C12	116.0(7)
C10 - N2 - H2	118.6	N3-C11-S3	120.9 (6)
C6—N2—H2	118.6	C12-C11-S3	123.1(6)
C11 - N3 - C15	123 5 (7)	$C_{12} = C_{11} = C_{12}$	123.1(0) 121.5(8)
C_{11} N3 H_3	118.3	C13 - C12 - H12	119.2
C15 = N3 = H3	118.3	$C_{11} - C_{12} - H_{12}$	119.2
$C_1 = S_1 = C_{11}$	117.6 (3)	C12 - C13 - C14	119.2
$C1 - S1 - Cu^{2i}$	117.0(3) 111.4(2)	$C_{12} = C_{13} = H_{13}$	120.3
$Cu1 = S1 = Cu2^{i}$	125 91 (8)	C12—C13—H13	120.3
$C1 = S1 = Cu1^{i}$	104.9(3)	C_{15} C_{14} C_{13} C_{13}	119 7 (8)
$Cu1 = S1 = Cu1^{i}$	74 47 (6)	C15 - C14 - H14	120.1
$Cu2^{i}$ S1 $Cu1^{i}$	72 26 (6)	C13 - C14 - H14	120.1
$C6-S2-Cu3^{i}$	112 1 (3)	C_{14} C_{14} C_{15} N3	1197(8)
$C6-S2-Cu^{2}$	112.1(3) 112.9(3)	C14 - C15 - H15	119.7 (0)
Cu^{3i} S2 Cu^{2}	12.7 (3)	N3C15H15	120.1
C6 S2 Cu ³	120.77(9)	113-013-1113	120.1
C0-32-Cu3	90.9 (3)		
83—Cu1—Cu2—82	-16432(10)	\$2 ⁱ —Cu3—\$3—Cu1	-1.65(19)
S1 - Cu1 - Cu2 - S2	-6.01(13)	I3—Cu3—S3—Cu1	-138.06(12)
$S1^{i}$ - Cu1 - Cu2 - S2	-7756(9)	S^{2i} —Cu3—S3—Cu1	96 91 (15)
11 - Cu1 - Cu2 - S2	91 21 (8)	$S_2 = C_{11} = S_3 = C_{11}$	162.0(3)
$Cu1^{i}$ — $Cu1$ — $Cu2$ — $S2$	-4538(9)	$S1^{i}$ - Cu1 - S3 - C11	-893(3)
S_{3} Cu1 Cu2 S_{2}	-86.77 (10)	11-Cu1-S3-C11	37.7 (3)
$S1-Cu1-Cu2-S1^{i}$	71 55 (11)	$Cu^2 - Cu^1 - S^3 - C^{11}$	-32.9(3)
$II - Cu1 - Cu2 - SI^{i}$	168 77 (6)	Cul^{i} $Cul = S3$ Cll	-1437(3)
$Cu1^{i}$ $Cu1$ $Cu2$ $S1^{i}$	32 17 (6)	\$1_Cu1_\$3_Cu3	-17.16(16)
$S_{1} = C_{11} = C_{12} = C_$	12 56 (11)	$S1^{i}$ $Cu1 = S3 = Cu3$	91 46 (15)
55 Cui Cu2 -12	12.00 (11)	51 Cui 55 Cu5	21.TU (12)

S1—Cu1—Cu2—I2	170.87 (8)	I1—Cu1—S3—Cu3	-141.50 (12)
S1 ⁱ —Cu1—Cu2—I2	99.32 (7)	Cu2—Cu1—S3—Cu3	147.85 (12)
I1—Cu1—Cu2—I2	-91.91 (5)	Cu1 ⁱ —Cu1—S3—Cu3	37.13 (17)
Cu1 ⁱ —Cu1—Cu2—I2	131.49 (6)	C5—N1—C1—C2	0.8 (12)
S3—Cu1—Cu2—I1	104.47 (9)	C5—N1—C1—S1	179.9 (7)
S1—Cu1—Cu2—I1	-97.22 (9)	Cu1—S1—C1—N1	162.9 (5)
S1 ⁱ —Cu1—Cu2—I1	-168.77 (6)	Cu2 ⁱ —S1—C1—N1	-40.6 (7)
Cu1 ⁱ —Cu1—Cu2—I1	-136.59 (5)	Cu1 ⁱ —S1—C1—N1	-117.0 (6)
S3—Cu1—I1—Cu2	-117.13 (8)	Cu1—S1—C1—C2	-18.1 (8)
S1—Cu1—I1—Cu2	129.49 (7)	Cu2 ⁱ —S1—C1—C2	138.4 (6)
S1 ⁱ —Cu1—I1—Cu2	9.41 (5)	Cul ⁱ —S1—C1—C2	61.9 (7)
Cu1 ⁱ —Cu1—I1—Cu2	64.56 (7)	N1—C1—C2—C3	0.0 (12)
S2—Cu2—I1—Cu1	-115.48 (6)	S1—C1—C2—C3	-179.0(7)
S1 ⁱ —Cu2—I1—Cu1	-9.89 (5)	C1—C2—C3—C4	-0.9 (14)
I2—Cu2—I1—Cu1	118.74 (4)	C2—C3—C4—C5	1.1 (15)
S3—Cu1—S1—C1	-149.4 (3)	C3—C4—C5—N1	-0.3 (15)
S1 ⁱ —Cu1—S1—C1	99.0 (3)	C1—N1—C5—C4	-0.7 (15)
I1—Cu1—S1—C1	-23.6 (3)	C10—N2—C6—C7	-4.2 (12)
Cu2—Cu1—S1—C1	48.0 (3)	C10—N2—C6—S2	169.9 (7)
Cu1 ⁱ —Cu1—S1—C1	99.0 (3)	Cu3 ⁱ —S2—C6—N2	15.5 (7)
S3—Cu1—S1—Cu2 ⁱ	57.90 (12)	Cu2—S2—C6—N2	166.3 (5)
$S1^{i}$ — $Cu1$ — $S1$ — $Cu2^{i}$	-53.73 (9)	Cu3 ⁱⁱⁱ —S2—C6—N2	-75.0 (6)
I1—Cu1—S1—Cu2 ⁱ	-176.24 (7)	Cu3 ⁱ —S2—C6—C7	-170.8 (6)
Cu2—Cu1—S1—Cu2 ⁱ	-104.64 (10)	Cu2—S2—C6—C7	-20.0 (8)
$Cu1^i$ — $Cu1$ — $S1$ — $Cu2^i$	-53.73 (9)	Cu3 ⁱⁱⁱ —S2—C6—C7	98.7 (7)
S3—Cu1—S1—Cu1 ⁱ	111.63 (8)	N2	2.8 (12)
S1 ⁱ —Cu1—S1—Cu1 ⁱ	0.0	S2—C6—C7—C8	-171.0 (7)
I1—Cu1—S1—Cu1 ⁱ	-122.51 (6)	C6—C7—C8—C9	0.7 (14)
Cu2—Cu1—S1—Cu1 ⁱ	-50.91 (9)	C7—C8—C9—C10	-3.2 (15)
S1 ⁱ —Cu2—S2—C6	179.4 (3)	C8—C9—C10—N2	2.0 (15)
I2—Cu2—S2—C6	56.7 (3)	C6—N2—C10—C9	1.8 (14)
I1—Cu2—S2—C6	-66.2 (3)	C15—N3—C11—C12	-3.8 (11)
Cu1—Cu2—S2—C6	-126.1 (3)	C15—N3—C11—S3	175.5 (6)
S1 ⁱ —Cu2—S2—Cu3 ⁱ	-34.96 (14)	Cu3—S3—C11—N3	19.6 (7)
I2—Cu2—S2—Cu3 ⁱ	-157.63 (10)	Cu1—S3—C11—N3	-159.8 (5)
I1—Cu2—S2—Cu3 ⁱ	79.47 (13)	Cu3—S3—C11—C12	-161.2 (6)
Cu1—Cu2—S2—Cu3 ⁱ	19.54 (16)	Cu1—S3—C11—C12	19.4 (8)
S1 ⁱ —Cu2—S2—Cu3 ⁱⁱⁱ	68.67 (9)	N3-C11-C12-C13	1.5 (12)
I2—Cu2—S2—Cu3 ⁱⁱⁱ	-54.00 (9)	S3—C11—C12—C13	-177.8 (7)
I1—Cu2—S2—Cu3 ⁱⁱⁱ	-176.90 (5)	C11—C12—C13—C14	1.7 (14)
Cu1—Cu2—S2—Cu3 ⁱⁱⁱ	123.16 (7)	C12—C13—C14—C15	-2.8 (14)
S2 ⁱ —Cu3—S3—C11	179.1 (3)	C13—C14—C15—N3	0.7 (14)
I3—Cu3—S3—C11	42.7 (3)	C11—N3—C15—C14	2.7 (13)
S2 ⁱⁱ —Cu3—S3—C11	-82.3 (3)		

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) *x*-1, *y*, *z*; (iii) *x*+1, *y*, *z*.