organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Cinnarizinium fumarate

C. N. Kavitha,^a Sema Ōztūrk Yildirim,^b Jerry P. Jasinski,^c* H. S. Yathirajan^a and Ray J. Butcher^d

^aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, ^bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, ^cDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and ^dDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA Correspondence e-mail: jjasinski@keene.edu

Received 9 December 2012; accepted 18 December 2012

Key indicators: single-crystal X-ray study; T = 123 K; mean σ (C–C) = 0.002 Å; R factor = 0.043; wR factor = 0.121; data-to-parameter ratio = 15.5.

In the title salt {systematic name: 4-diphenylmethyl-1-[(*E*)-3phenylprop-2-en-1-yl]piperazin-1-ium (2*Z*)-3-carboxyprop-2enoate}, $C_{26}H_{29}N_2^+ \cdot C_4H_3O_4^-$, the piperazine ring in the cation adopts a distorted chair conformation and contains a positively charged N atom with quaternary character. The dihedral angle between the mean planes of the phenyl rings of the diphenylmethyl group is 74.2 (7)° and those between these rings and the phenyl ring of the 3-phenylprop-2-en-1-yl group are 12.7 (9) and 80.6 (8)°. In the crystal, N-H···O and O-H···O hydrogen bonds form chains along [001]. Weak C-H···O interactions connect parallel chains along [010], forming layers perpendicular to the *a*-axis direction.

Related literature

For cinnarizine as a calcium channel blocker, see: Terland & Flatmark (1999), as a nootropic drug, see: Towse (1980) and for a clinical evaluation in various allergic disorders, see: Barrett & Zolov (1960). For related structures, see: Bertolasi *et al.* (1980); Dayananda *et al.* (2012); Jasinski *et al.* (2011); Mouillé *et al.* (1975); Siddegowda *et al.* (2011); Song *et al.* (2012). For puckering parameters, see: Cremer & Pople (1975). For standard bond lengths, see: Allen *et al.* (1987).

Experimental

Crystal data

 $C_{26}H_{29}N_2^{+}C_4H_3O_4^{-}$ $M_r = 484.58$ Monoclinic, $P2_1/c$ a = 21.9467 (4) Å b = 10.43729 (18) Å c = 11.20623 (19) Å $\beta = 90.0458$ (15)°

Data collection

Agilent Xcalibur (Ruby, Gemini) diffractometer Absorption correction: multi-scan (*CrysAlis RED* and *CrysAlis PRO*; Agilent, 2011) $T_{\rm min} = 0.732, T_{\rm max} = 1.000$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.121$ S = 1.025146 reflections 333 parameters Cu $K\alpha$ radiation $\mu = 0.67 \text{ mm}^{-1}$ T = 123 K $0.60 \times 0.30 \times 0.25 \text{ mm}$

V = 2566.95 (8) Å³

Z = 4

9777 measured reflections 5146 independent reflections 4289 reflections with $I > 2\sigma(I)$ $R_{int} = 0.028$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.27 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.22 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H1N\cdots O4 O1-H1O1\cdots O4^{i} C18-H18B\cdots O3^{ii} C15-H15A\cdots O3^{ii} C15-H15B\cdots O2^{iii}$	0.943 (19) 0.94 (3) 0.97 0.97 0.97	1.740 (19) 1.70 (3) 2.56 2.47 2.46	2.6750 (15) 2.6270 (15) 3.3839 (18) 3.3463 (18) 3.1941 (19)	170.9 (17) 168 (2) 143 151 132

Symmetry codes: (i) $x, -y + \frac{3}{2}, z - \frac{1}{2}$; (ii) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (iii) $x, -y + \frac{3}{2}, z + \frac{1}{2}$.

Data collection: *CrysAlis PRO* (Agilent, 2011); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

CNK thanks the University of Mysore for research facilities. RJB acknowledges the NSF–MRI program (grant No. CHE-0619278) for funds to purchase the X-ray diffractometer. Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2527).

References

- Agilent (2011). CrysAlis PRO and CrysAlis RED Agilent Technologies, Yarnton, England.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Barrett, R. J. & Zolov, B. (1960). J. Maine Med. Assoc. 51, 454-457.
- Bertolasi, V., Borea, P. A., Gilli, G. & Sacerdoti, M. (1980). Acta Cryst. B36, 1975–1977.

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

- Dayananda, A. S., Yathirajan, H. S., Gerber, T., Hosten, E. & Betz, R. (2012). Acta Cryst. E68, 01165-01166.
- Jasinski, J. P., Butcher, R. J., Siddegowda, M. S., Yathirajan, H. S. & Chidan Kumar, C. S. (2011). Acta Cryst. E67, o500-o501.
- Mouillé, Y., Cotrait, M., Hospital, M. & Marsau, P. (1975). Acta Cryst. B31, 1495-1496.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siddegowda, M. S., Jasinski, J. P., Golen, J. A., Yathirajan, H. S. & Swamy, M. T. (2011). Acta Cryst. E67, 02296.
- Song, Y., Chidan Kumar, C. S., Nethravathi, G. B., Naveen, S. & Li, H. (2012). Acta Cryst. E68, 01747.
- Terland, O. & Flatmark, T. (1999). Neuropharmacology, 38, 879-882.
- Towse, G. (1980). J. Laryngol. Otol. 94, 1009-1015.

supporting information

Acta Cryst. (2013). E69, o142-o143 [https://doi.org/10.1107/S1600536812051239]

Cinnarizinium fumarate

C. N. Kavitha, Sema Öztürk Yildirim, Jerry P. Jasinski, H. S. Yathirajan and Ray J. Butcher

S1. Comment

Cinnarizine (1-benzhydryl-4-cinnamyl-piperazine) is a drug derivative of piperazine and a calcium channel blocker (Terland & Flatmark, 1999). Cinnarizine is an antihistamine which is mainly used for the control of nausea and vomiting due to motion sickness. It could be also viewed as a nootropic drug because of its vasorelaxating abilities (due to calcium channel blockage), which happen mostly in the brain and it is also used as a labyrinthine sedative (Towse, 1980). A clinical evaluation of cinnarizine in various allergic disorders is published (Barrett & Zolov, 1960). Cinnarizine can be used in scuba divers without an increased risk of central nervous system oxygen toxicity. The crystal structures of some related compounds viz., cinnarizine (Mouillé *et al.*, 1975), cyclizine hydrochloride (Bertolasi *et al.*, 1980), cinnarizinium dipicrate (Jasinski *et al.*, 2011), cinnarizinium picrate (Song *et al.*, 2012), opipramolium fumarate (Siddegowda *et al.*, 2011) and cinnarizinium 3,5-dinitrosalicylate (Dayananda *et al.*, 2012) have been reported. In continuation of our work on the salts of pharmaceutical compounds and in view of the importance of cinnarizine, this paper reports the crystal structure of the title salt, $C_{26}H_{29}N_2^+$. $C_4H_3O_4^-$, (I).

The asymmetric unit of (I) consists of a cinnarizinium-hydrogen fumarate cation-anion pair (Fig. 1). The six-membered piperazine ring (N1/C14/C15/N2/C16/C17) in the cation adopts a distorted chair conformation with puckering parameters Q = 0.6021 (14)Å, $\theta = 174.02 (12)^\circ$, $\varphi = 184.5 (13)^\circ$, (Cremer & Pople (1975)) and contains a positively charged N atom (N2) with quaternary character. The dihderal angle between the mean planes of the two diphenyl rings (C1–C6 and C8–C13) is 74.2 (7)° and that between these rings and the extended phenyl ring (C21–C26) is 12.7 (9)° and 80.6 (8)°, respectively. Bond lengths are in normal ranges (Allen *et al.*, 1987). Crystal packing is stabilized by N—H…O and O—H…O hydrogen bonds forming infinite one-dimensional chains along [001] (Fig. 2). Weak C—H…O intermolecular interactions (Table 1) are also observed connecting parallel chains along [010] (Fig. 3) to form layers perpendicular to the a-axis direction of the structure.

S2. Experimental

Cinnarizine (3.68 g, 0.01 mol) and fumaric acid (1.16 g, 0.01 mol) were dissolved in hot dimethyl sulphoxide solution and stirred over a heating magnetic stirrer for a few minutes. The resulting solution was allowed to cool slowly at room temperature. X-ray quality crystals of the title compound appeared after a few days. (m.p.: 468–471 K).

S3. Refinement

H1N and H1O1 were located by Fourier maps and refined isotropically. All of the remaining H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.93Å (CH) or 0.97Å (CH₂). Isotropic displacement parameters for these atoms were set to 1.19-1.21 (CH, CH₂) times U_{eq} of the parent atom.

Figure 1

Molecular structure of the title compound showing the atom labeling scheme and 30% probability displacement ellipsoids. Dashed lines indicate N2—H2…O4 cation-anion hydrogen bonds.

Figure 2

Packing diagram of the title compound viewed along the *a* axis. Dashed lines indicate N—H…O and O—H…O hydrogen bonds forming infinite one-dimensional chains along [001].

Figure 3

Packing diagram of the title compound viewed along the c axis. Dashed lines indicate weak C—H…O intermolecular interactions (Table 1) which are also observed connecting parallel chains along [010] to form layers perpendicular to the a-axis direction of the structure.

4-Diphenylmethyl-1-[(E)-3-phenylprop-2-en-1-yl]piperazin-1-ium (2Z)-3-carboxyprop-2-enoate

Crystal data

C₂₆H₂₉N₂⁺·C₄H₃O₄⁻ $M_r = 484.58$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 21.9467 (4) Å b = 10.43729 (18) Å c = 11.20623 (19) Å $\beta = 90.0458$ (15)° V = 2566.95 (8) Å³ Z = 4

Data collection

Agilent Xcalibur (Ruby, Gemini) diffractometer Radiation source: Enhance (Cu) X-ray Source Graphite monochromator Detector resolution: 10.5081 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*CrysAlis RED* and *CrysAlis PRO*; Agilent, 2011) F(000) = 1032 $D_x = 1.254 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 3517 reflections $\theta = 3.9-75.4^{\circ}$ $\mu = 0.67 \text{ mm}^{-1}$ T = 123 KPrism, colorless $0.60 \times 0.30 \times 0.25 \text{ mm}$

 $T_{\min} = 0.732, T_{\max} = 1.000$ 9777 measured reflections 5146 independent reflections 4289 reflections with $I > 2\sigma(I)$ $R_{int} = 0.028$ $\theta_{\max} = 75.6^{\circ}, \theta_{\min} = 4.0^{\circ}$ $h = -23 \rightarrow 27$ $k = -12 \rightarrow 8$ $l = -13 \rightarrow 13$ Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.043$	Hydrogen site location: inferred from
$wR(F^2) = 0.121$	neighbouring sites
S = 1.02	H atoms treated by a mixture of independent
5146 reflections	and constrained refinement
333 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0628P)^2 + 0.4518P]$
0 restraints	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta ho_{ m max} = 0.27 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.22 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.70117 (5)	0.78316 (11)	0.33222 (10)	0.0323 (3)
O2	0.76739 (6)	0.88857 (12)	0.44702 (12)	0.0446 (3)
03	0.64077 (5)	0.41055 (10)	0.57965 (9)	0.0298 (2)
04	0.70688 (5)	0.50977 (10)	0.69945 (9)	0.0272 (2)
N1	0.79869 (5)	0.16984 (11)	0.86255 (10)	0.0208 (2)
N2	0.68573 (5)	0.31174 (11)	0.84519 (10)	0.0200 (2)
C1	0.87241 (6)	0.02312 (14)	0.76576 (13)	0.0237 (3)
C2	0.85173 (7)	-0.09616 (15)	0.80480 (14)	0.0287 (3)
H2A	0.8321	-0.1028	0.8780	0.034*
C3	0.86015 (7)	-0.20467 (16)	0.73566 (16)	0.0340 (3)
H3A	0.8461	-0.2837	0.7625	0.041*
C4	0.88951 (7)	-0.19554 (17)	0.62621 (16)	0.0362 (4)
H4A	0.8954	-0.2685	0.5800	0.043*
C5	0.90995 (7)	-0.07792 (18)	0.58618 (15)	0.0367 (4)
H5A	0.9293	-0.0716	0.5126	0.044*
C6	0.90159 (7)	0.03164 (16)	0.65610 (13)	0.0288 (3)
H6A	0.9156	0.1105	0.6291	0.035*
C7	0.86398 (6)	0.14289 (13)	0.84173 (12)	0.0223 (3)
H7A	0.8818	0.2158	0.7990	0.027*
C8	0.89718 (6)	0.12793 (13)	0.96069 (13)	0.0241 (3)
С9	0.95738 (7)	0.16951 (15)	0.96988 (15)	0.0315 (3)
H9A	0.9759	0.2094	0.9052	0.038*
C10	0.98986 (8)	0.15168 (18)	1.07497 (17)	0.0396 (4)
H10A	1.0300	0.1796	1.0803	0.048*

C11	0.96277 (8)	0.09271 (17)	1.17150 (16)	0.0402 (4)
H11A	0.9847	0.0802	1.2416	0.048*
C12	0.90255 (8)	0.05206 (15)	1.16380 (14)	0.0348 (4)
H12A	0.8842	0.0127	1.2290	0.042*
C13	0.86965 (7)	0.07003 (14)	1.05883 (14)	0.0280 (3)
H13A	0.8293	0.0434	1.0542	0.034*
C14	0.79157 (6)	0.29648 (13)	0.91797 (12)	0.0215 (3)
H14A	0.8042	0.3624	0.8622	0.026*
H14B	0.8174	0.3022	0.9881	0.026*
C15	0.72582 (6)	0.31822 (13)	0.95322 (11)	0.0205 (3)
H15A	0.7134	0.2535	1.0103	0.025*
H15B	0.7217	0.4015	0.9908	0.025*
C16	0.69605 (6)	0.18874 (13)	0.78029 (12)	0.0220 (3)
H16A	0.6727	0.1888	0.7068	0.026*
H16B	0.6820	0.1179	0.8290	0.026*
C17	0.76314 (6)	0.17046 (14)	0.75159 (12)	0.0226 (3)
H17A	0.7689	0.0901	0.7096	0.027*
H17B	0.7771	0.2394	0.7003	0.027*
C18	0.61896 (6)	0.32482 (14)	0.87638 (12)	0.0241 (3)
H18A	0.5951	0.3275	0.8035	0.029*
H18B	0.6062	0.2504	0.9217	0.029*
C19	0.60671 (6)	0.44322 (14)	0.94778 (13)	0.0243 (3)
H19A	0.6144	0.5229	0.9137	0.029*
C20	0.58525 (6)	0.43782 (14)	1.05838 (13)	0.0234 (3)
H20A	0.5786	0.3563	1.0892	0.028*
C21	0.57077 (6)	0.54589 (14)	1.13783 (12)	0.0235 (3)
C22	0.57635 (6)	0.67372 (15)	1.10234 (13)	0.0265 (3)
H22A	0.5904	0.6926	1.0261	0.032*
C23	0.56116 (7)	0.77284 (15)	1.17925 (14)	0.0307 (3)
H23A	0.5651	0.8574	1.1543	0.037*
C24	0.54012 (7)	0.74589 (16)	1.29343 (14)	0.0305 (3)
H24A	0.5295	0.8123	1.3447	0.037*
C25	0.53502 (7)	0.61982 (17)	1.33073 (13)	0.0318 (3)
H25A	0.5213	0.6015	1.4073	0.038*
C26	0.55045 (7)	0.52071 (15)	1.25361 (13)	0.0282 (3)
H26A	0.5472	0.4363	1.2795	0.034*
C100	0.73414 (7)	0.79844 (14)	0.43019 (13)	0.0269 (3)
C101	0.72630 (7)	0.69456 (14)	0.51966 (13)	0.0253 (3)
H10B	0.7510	0.6958	0.5871	0.030*
C102	0.68628 (7)	0.60047 (13)	0.50916 (12)	0.0233 (3)
H10C	0.6627	0.5971	0.4402	0.028*
C103	0.67661 (6)	0.49876 (13)	0.60193 (12)	0.0222 (3)
H1N	0.6971 (8)	0.3776 (18)	0.7921 (17)	0.027 (4)*
H1O1	0.7076 (11)	0.851 (2)	0.279 (2)	0.054 (7)*

supporting information

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	<i>U</i> ²³
01	0.0442 (6)	0.0275 (5)	0.0254 (5)	-0.0047 (5)	-0.0059 (4)	0.0074 (4)
O2	0.0537 (8)	0.0318 (6)	0.0484 (7)	-0.0153 (6)	-0.0188 (6)	0.0135 (5)
O3	0.0385 (6)	0.0226 (5)	0.0282 (5)	-0.0041 (4)	-0.0018 (4)	-0.0003 (4)
O4	0.0407 (6)	0.0207 (5)	0.0201 (5)	-0.0006 (4)	-0.0027 (4)	0.0004 (4)
N1	0.0217 (5)	0.0202 (5)	0.0204 (5)	0.0032 (4)	-0.0016 (4)	-0.0015 (4)
N2	0.0219 (5)	0.0201 (5)	0.0180 (5)	0.0036 (4)	-0.0001 (4)	0.0003 (4)
C1	0.0185 (6)	0.0249 (7)	0.0278 (7)	0.0044 (5)	-0.0032 (5)	-0.0019 (5)
C2	0.0270 (7)	0.0267 (7)	0.0325 (8)	0.0022 (6)	0.0005 (5)	-0.0027 (6)
C3	0.0296 (8)	0.0264 (8)	0.0461 (9)	0.0017 (6)	-0.0042 (6)	-0.0054 (7)
C4	0.0295 (8)	0.0349 (8)	0.0443 (9)	0.0068 (7)	-0.0036 (6)	-0.0173 (7)
C5	0.0304 (8)	0.0484 (10)	0.0313 (8)	0.0058 (7)	0.0020 (6)	-0.0109 (7)
C6	0.0260 (7)	0.0322 (8)	0.0282 (7)	0.0035 (6)	-0.0005 (5)	-0.0012 (6)
C7	0.0219 (6)	0.0212 (6)	0.0239 (6)	0.0008 (5)	-0.0003 (5)	0.0009 (5)
C8	0.0247 (7)	0.0198 (6)	0.0280 (7)	0.0055 (5)	-0.0029 (5)	-0.0042 (5)
C9	0.0253 (7)	0.0306 (8)	0.0387 (8)	0.0035 (6)	-0.0022 (6)	-0.0071 (6)
C10	0.0272 (8)	0.0444 (10)	0.0473 (10)	0.0080 (7)	-0.0112 (7)	-0.0136 (8)
C11	0.0448 (9)	0.0386 (9)	0.0372 (9)	0.0195 (8)	-0.0199 (7)	-0.0115 (7)
C12	0.0511 (10)	0.0252 (7)	0.0282 (7)	0.0105 (7)	-0.0045 (7)	-0.0010 (6)
C13	0.0320 (7)	0.0218 (7)	0.0303 (7)	0.0024 (6)	-0.0037 (6)	-0.0006 (6)
C14	0.0234 (6)	0.0208 (6)	0.0202 (6)	0.0014 (5)	-0.0012 (5)	-0.0009 (5)
C15	0.0235 (6)	0.0216 (6)	0.0163 (6)	0.0026 (5)	-0.0015 (4)	-0.0003 (5)
C16	0.0241 (7)	0.0223 (6)	0.0197 (6)	0.0016 (5)	-0.0025 (5)	-0.0015 (5)
C17	0.0246 (7)	0.0238 (7)	0.0193 (6)	0.0043 (5)	-0.0015 (5)	-0.0023 (5)
C18	0.0205 (6)	0.0282 (7)	0.0237 (6)	0.0026 (5)	-0.0009 (5)	0.0009 (5)
C19	0.0215 (6)	0.0256 (7)	0.0260 (7)	0.0043 (5)	0.0001 (5)	0.0028 (6)
C20	0.0192 (6)	0.0246 (7)	0.0265 (7)	0.0012 (5)	-0.0012 (5)	0.0011 (5)
C21	0.0177 (6)	0.0283 (7)	0.0246 (7)	0.0001 (5)	-0.0004 (5)	-0.0003 (5)
C22	0.0239 (7)	0.0303 (8)	0.0253 (7)	-0.0010 (6)	0.0029 (5)	0.0003 (6)
C23	0.0286 (7)	0.0274 (8)	0.0360 (8)	-0.0003 (6)	0.0004 (6)	-0.0020 (6)
C24	0.0248 (7)	0.0342 (8)	0.0326 (8)	0.0021 (6)	0.0000 (5)	-0.0100 (6)
C25	0.0320 (8)	0.0402 (9)	0.0233 (7)	-0.0004 (7)	0.0034 (5)	-0.0021 (6)
C26	0.0282 (7)	0.0292 (7)	0.0271 (7)	-0.0016 (6)	0.0016 (5)	0.0012 (6)
C100	0.0291 (7)	0.0233 (7)	0.0284 (7)	0.0019 (6)	-0.0019 (5)	0.0035 (6)
C101	0.0285 (7)	0.0244 (7)	0.0230 (6)	0.0033 (6)	-0.0025 (5)	0.0028 (5)
C102	0.0297 (7)	0.0209 (6)	0.0194 (6)	0.0045 (5)	-0.0009 (5)	-0.0011 (5)
C103	0.0286 (7)	0.0183 (6)	0.0196 (6)	0.0051 (5)	0.0024 (5)	-0.0012 (5)

Geometric parameters (Å, °)

O1—C100	1.3240 (19)	C12—H12A	0.9300	
O1—H1O1	0.94 (3)	C13—H13A	0.9300	
O2—C100	1.205 (2)	C14—C15	1.5135 (18)	
O3—C103	1.2363 (18)	C14—H14A	0.9700	
O4—C103	1.2837 (18)	C14—H14B	0.9700	
N1—C17	1.4675 (17)	C15—H15A	0.9700	

N1—C14	1.4688 (17)	C15—H15B	0.9700
N1—C7	1.4790 (17)	C16—C17	1.5194 (18)
N2—C16	1.4929 (17)	C16—H16A	0.9700
N2—C15	1.4976 (16)	C16—H16B	0.9700
N2—C18	1.5129 (17)	C17—H17A	0.9700
N2—H1N	0.943(19)	C17—H17B	0.9700
C1-C6	1 389 (2)	C18-C19	1 497 (2)
C1-C2	1 395 (2)	C18—H18A	0.9700
C1 - C7	1.593(2) 1.5238(19)	C18—H18B	0.9700
$C^2 - C^3$	1.3250(17) 1 385(2)	C19-C20	1.327(2)
$C_2 - H_2 \Delta$	0.9300	C19 $H19A$	0.9300
$C_2 = C_4$	1 389 (3)	C_{20}	1.472(2)
$C_3 H_3 \Lambda$	0.0300	C_{20} H_{20A}	0.0300
C_{4} C_{5}	1 382 (3)	C_{20} C	1.307(2)
$C_4 = H_4 \Lambda$	0.0300	$C_{21} = C_{20}$	1.397(2) 1 308(2)
C4— $n4AC5$ $C6$	0.9300	$C_{21} = C_{22}$	1.396(2) 1.387(2)
C_{5}	1.398 (2)	C22—C23	1.387(2)
CS—HSA	0.9300	C22—H22A	0.9300
	0.9300	C23—C24	1.389 (2)
C/C8	1.5267 (19)	C23—H23A	0.9300
С/—Н/А	0.9800	C24—C25	1.385 (2)
C8—C13	1.393 (2)	C24—H24A	0.9300
C8—C9	1.394 (2)	C25—C26	1.390 (2)
C9—C10	1.389 (2)	C25—H25A	0.9300
С9—Н9А	0.9300	C26—H26A	0.9300
C10-C11	1.380 (3)	C100—C101	1.487 (2)
C10—H10A	0.9300	C101—C102	1.323 (2)
C11—C12	1.391 (3)	C101—H10B	0.9300
C11—H11A	0.9300	C102—C103	1.5010 (19)
C12—C13	1.392 (2)	C102—H10C	0.9300
C100-01-H1O1	110.6 (15)	N2—C15—H15A	109.7
C17—N1—C14	107.31 (10)	C14—C15—H15A	109.7
C17—N1—C7	112.44 (10)	N2—C15—H15B	109.7
C14—N1—C7	109.95 (11)	C14—C15—H15B	109.7
C16—N2—C15	110.08 (10)	H15A—C15—H15B	108.2
C16—N2—C18	109.73 (11)	N2-C16-C17	111.02 (11)
C15—N2—C18	112.20 (10)	N2	109.4
C16—N2—H1N	106.2 (11)	C17—C16—H16A	109.4
C15—N2—H1N	108.8 (12)	N2—C16—H16B	109.4
C18—N2—H1N	109.7 (11)	C17—C16—H16B	109.4
C6—C1—C2	119.00 (14)	H16A—C16—H16B	108.0
C6—C1—C7	119.86 (13)	N1—C17—C16	109.63 (11)
C2—C1—C7	121.14 (13)	N1—C17—H17A	109.7
C3—C2—C1	120.71 (14)	C16—C17—H17A	109.7
C3—C2—H2A	119.6	N1—C17—H17B	109.7
C1—C2—H2A	119.6	C16—C17—H17B	109.7
C2—C3—C4	120.00 (16)	H17A—C17—H17B	108.2
С2—С3—НЗА	120.0	C19—C18—N2	111.86 (11)
			···· ()

C4—C3—H3A	120.0	C19—C18—H18A	109.2
C5—C4—C3	119.90 (15)	N2	109.2
C5—C4—H4A	120.1	C19—C18—H18B	109.2
C3—C4—H4A	120.1	N2—C18—H18B	109.2
C4—C5—C6	120.11 (15)	H18A—C18—H18B	107.9
C4—C5—H5A	119.9	C_{20} C_{19} C_{18}	121.87 (13)
C6-C5-H5A	119.9	C_{20} C_{19} H_{19A}	119.1
C1 - C6 - C5	120.28 (15)	C18 - C19 - H19A	119.1
$C_1 = C_0 = C_2$	110.0	C_{10} C_{20} C_{21}	117.1 127.53(14)
$C_{1} = C_{0} = H_{0}$	119.9	$C_{10} = C_{20} = C_{21}$	127.33 (14)
N1 C7 C1	117.7	$C_{1}^{2} = C_{2}^{2} = H_{2}^{2} O_{A}^{2}$	116.2
NI = C7 = C1	111.25(11) 110.08(11)	$C_{21} = C_{20} = H_{20}A$	110.2
$N1 - C / - C \delta$	110.08 (11)	$C_{20} = C_{21} = C_{22}$	118.15 (14)
	110.24 (11)	$C_{26} = C_{21} = C_{20}$	119.13 (13)
NI—C/—H/A	108.4	C22—C21—C20	122.72 (13)
С1—С7—Н7А	108.4	C23—C22—C21	120.93 (13)
С8—С7—Н7А	108.4	C23—C22—H22A	119.5
C13—C8—C9	119.22 (14)	C21—C22—H22A	119.5
C13—C8—C7	121.79 (13)	C22—C23—C24	120.09 (15)
C9—C8—C7	118.95 (13)	С22—С23—Н23А	120.0
C10—C9—C8	120.44 (16)	C24—C23—H23A	120.0
С10—С9—Н9А	119.8	C25—C24—C23	119.81 (14)
С8—С9—Н9А	119.8	C25—C24—H24A	120.1
C11—C10—C9	120.23 (16)	C23—C24—H24A	120.1
C11—C10—H10A	119.9	C24—C25—C26	119.97 (14)
C9—C10—H10A	119.9	C24—C25—H25A	120.0
C10-C11-C12	119.84 (15)	C26—C25—H25A	120.0
C10-C11-H11A	120.1	C_{25} C_{26} C_{21}	121.03 (14)
C12— $C11$ — $H11A$	120.1	$C_{25} = C_{26} = H_{26A}$	119.5
$C_{12} = C_{11} = C_{12}$	120.1	$C_{23} = C_{20} = H_{20} A$	119.5
$C_{11} = C_{12} = C_{13}$	110.0	$C_{21} = C_{20} = H_{20} A$	119.5
C12 - C12 - H12A	119.9	02 - 0100 - 01	123.00(14)
C13 - C12 - H12A	119.9	02 - C100 - C101	122.27 (14)
C12 - C13 - C8	120.03 (15)		114.07 (13)
С12—С13—Н13А	120.0	C102—C101—C100	123.96 (14)
С8—С13—Н13А	120.0	C102—C101—H10B	118.0
N1—C14—C15	110.31 (11)	C100—C101—H10B	118.0
N1—C14—H14A	109.6	C101—C102—C103	123.90 (13)
C15—C14—H14A	109.6	C101—C102—H10C	118.0
N1—C14—H14B	109.6	C103—C102—H10C	118.0
C15—C14—H14B	109.6	O3—C103—O4	124.57 (13)
H14A—C14—H14B	108.1	O3—C103—C102	118.50 (13)
N2—C15—C14	110.00 (10)	O4—C103—C102	116.93 (12)
	0.1.(0)		100 10 (10)
C6 - C1 - C2 - C3	0.1 (2)	C/—NI—C14—C15	-173.18 (10)
C/C1C2C3	-179.34 (13)	C16—N2—C15—C14	54.01 (14)
C1—C2—C3—C4	0.1 (2)	C18—N2—C15—C14	176.51 (11)
C2—C3—C4—C5	-0.4(2)	N1—C14—C15—N2	-60.16 (14)
C3—C4—C5—C6	0.6 (2)	C15—N2—C16—C17	-54.01 (14)
C2-C1-C6-C5	0.1 (2)	C18—N2—C16—C17	-177.96 (10)

C7—C1—C6—C5	179.51 (13)	C14—N1—C17—C16	-63.17 (14)
C4—C5—C6—C1	-0.4 (2)	C7—N1—C17—C16	175.81 (11)
C17—N1—C7—C1	-50.90 (15)	N2-C16-C17-N1	59.32 (14)
C14—N1—C7—C1	-170.41 (11)	C16—N2—C18—C19	176.75 (11)
C17—N1—C7—C8	-173.39 (11)	C15—N2—C18—C19	54.05 (15)
C14—N1—C7—C8	67.10 (14)	N2-C18-C19-C20	-117.16 (14)
C6—C1—C7—N1	119.21 (14)	C18—C19—C20—C21	-179.45 (13)
C2-C1-C7-N1	-61.36 (17)	C19—C20—C21—C26	-177.76 (14)
C6—C1—C7—C8	-118.38 (14)	C19—C20—C21—C22	2.4 (2)
C2—C1—C7—C8	61.04 (17)	C26—C21—C22—C23	-1.1 (2)
N1-C7-C8-C13	36.25 (18)	C20—C21—C22—C23	178.80 (14)
C1—C7—C8—C13	-86.82 (16)	C21—C22—C23—C24	0.1 (2)
N1—C7—C8—C9	-145.97 (13)	C22—C23—C24—C25	0.7 (2)
C1—C7—C8—C9	90.96 (16)	C23—C24—C25—C26	-0.5 (2)
C13—C8—C9—C10	1.0 (2)	C24—C25—C26—C21	-0.5 (2)
C7—C8—C9—C10	-176.85 (14)	C22—C21—C26—C25	1.3 (2)
C8—C9—C10—C11	-0.1 (3)	C20—C21—C26—C25	-178.60 (13)
C9—C10—C11—C12	-0.6 (3)	O2-C100-C101-C102	173.65 (16)
C10-C11-C12-C13	0.4 (2)	O1—C100—C101—C102	-5.8 (2)
C11—C12—C13—C8	0.5 (2)	C100-C101-C102-C103	-177.35 (13)
C9—C8—C13—C12	-1.2 (2)	C101—C102—C103—O3	-175.41 (14)
C7—C8—C13—C12	176.58 (13)	C101—C102—C103—O4	4.2 (2)
C17—N1—C14—C15	64.23 (13)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
N2—H1 <i>N</i> ···O4	0.943 (19)	1.740 (19)	2.6750 (15)	170.9 (17)
01—H1 <i>0</i> 1····O4 ⁱ	0.94 (3)	1.70 (3)	2.6270 (15)	168 (2)
C18—H18 <i>B</i> ····O3 ⁱⁱ	0.97	2.56	3.3839 (18)	143
C15—H15A····O3 ⁱⁱ	0.97	2.47	3.3463 (18)	151
C15—H15 <i>B</i> ····O2 ⁱⁱⁱ	0.97	2.46	3.1941 (19)	132

Symmetry codes: (i) *x*, -*y*+3/2, *z*-1/2; (ii) *x*, -*y*+1/2, *z*+1/2; (iii) *x*, -*y*+3/2, *z*+1/2.