metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Hexakis(μ_3 -2-hydroxynaphthalene-1carboxaldehvde thiosemicarbazonato- $\kappa^3 N^2$:S:S)hexasilver(I) N,N-dimethylformamide tetrasolvate

Qiaozhen Sun,^a* Liyuan Chai,^b Hui Liu^b and Junke Wang^a

^aDepartment of Materials Chemistry, School of Materials Science and Engineering, Key Laboratory of Nonferrous Metal of the Ministry of Education, Central South University, Changsha 410083, People's Republic of China, and ^bChinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (CNERC-CTHMP), Environmental Engineering Institute, School of Metallurgical Science and Engineering, Central South University, Changsha 410083, People's Republic of China

Correspondence e-mail: rosesungz@yahoo.com.cn

Received 9 November 2012; accepted 8 December 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.007 Å; disorder in solvent or counterion; R factor = 0.046; wR factor = 0.145; data-toparameter ratio = 15.1.

In the title compound, $[Ag_6(C_{12}H_{10}N_3OS)_6] \cdot 4C_3H_7NO$, the hexanuclear complex molecule lies about an inversion center. The six Ag atoms form a distorted octahedron, with Ag $\cdot \cdot \cdot$ Ag distances in the range 2.933 (1)-3.401 (1) Å. Each Ag atom is surrounded by one N atom and two thiolate S atoms from two deprotonated 2-hydroxy-1-naphthaldehyde thiosemicarbazone ligands. Each ligand coordinates three Ag atoms via a bridging thiolate S atom and a monodentate N atom, thus two Ag₃S₃ hexagonal rings are linked together. Two dimethylformamide solvent molecules are located in four sets of sites with half-occupancy and form O···H-N hydrogen bonds to the complex molecule. Intramolecular O-H···N hydrogen bonds are also present. The discrete hexanuclear clusters are further linked through $\pi - \pi$ interactions into layers parallel to (001), the shortest distance between the centroids of aromatic rings being 3.698 (2) Å.

Related literature

For the structure and luminescent properties of d^{10} metal complexes, see: Brito et al. (2011); Forward et al. (1995). For structures of related compexes with thiosemicarbazone Schiff base ligands, see: Ashfield et al. (2004); Castiñeiras & Pedrido (2009); Li et al. (2010); Onodera et al. (2007); Pedrido et al. (2009); Sun (2011); Sun et al. (2012); Sun & Chai (2012); Xu et al. (2011). For bond-length data, see: Han et al. (2004).

V = 11486 (3) Å³

Mo $K\alpha$ radiation

 $0.22 \times 0.20 \times 0.18 \text{ mm}$

 $\mu = 1.17 \text{ mm}^{-1}$

T = 293 K

Z = 4

Experimental

Crystal data

[Ag₆(C₁₂H₁₀N₃OS)₆]·4C₃H₇NO $M_{\pi} = 2405.34$ Monoclinic, C2/c a = 24.604 (3) Å b = 18.877 (3) Å c = 24.816 (3) Å $\beta = 94.763 \ (3)^{\circ}$

Data collection

28454 measured reflections
10056 independent reflections
7829 reflections with $I > 2s(I)$
$R_{\rm int} = 0.042$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.046$	63 restraints
$wR(F^2) = 0.145$	H-atom parameters constrained
S = 1.08	$\Delta \rho_{\rm max} = 0.92 \text{ e} \text{ Å}^{-3}$
10056 reflections	$\Delta \rho_{\rm min} = -0.42 \text{ e } \text{\AA}^{-3}$
667 parameters	

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N3−H3 <i>B</i> ···O4	0.86	1.98	2.835 (8)	175
$N6-H6B\cdots O6^{i}$	0.86	2.00	2.845 (7)	166
N9-H9A···O5 ⁱⁱ	0.86	2.31	3.049 (8)	145
$N9-H9B\cdots O7$	0.86	2.02	2.870 (6)	172
$O1 - H1B \cdot \cdot \cdot N1$	0.82	1.86	2.588 (5)	147
$O2 - H2B \cdot \cdot \cdot N4$	0.82	1.85	2.583 (4)	148
$O3-H3C\cdots N7$	0.82	1.86	2.587 (5)	147
05-1150	0.82	1.80	2.387 (3)	147

Symmetry codes: (i) $-x + \frac{1}{2}, -y + \frac{3}{2}, -z + 1$; (ii) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors acknowledge financial support from the National Science and Technology Support Program (2012BAC12B03), the Postdoctoral Science Foundation of Central South University and the Fundamental Research Funds for the Central Universities (No. 2012QNZT001).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: YK2079).

References

- Ashfield, L. J., Cowley, A. R., Dilworth, J. R. & Donnelly, P. S. (2004). *Inorg. Chem.* 43, 4121–4123.
- Brito, I., Vallejos, J., Cárdenas, A., López-Rodríguez, M., Bolte, M. & Llanos, J. (2011). Inorg. Chem. Commun. 14, 897–901.
- Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Castiñeiras, A. & Pedrido, R. (2009). Inorg. Chem. 48, 4847-4855.

- Forward, J. M., Bohmann, D., Fackler, J. P. & Staples, R. J. (1995). *Inorg. Chem.* **34**, 6330–6336.
- Han, W., Yi, L., Liu, Z. Q., Gu, W., Yan, S. P., Cheng, P., Liao, D. Z. & Jiang, Z. H. (2004). *Eur. J. Inorg. Chem.* pp. 2130–2136.
- Li, M. X., Zhang, D., Zhang, L. Z. & Niu, J. Y. (2010). *Inorg. Chem. Commun.* 13, 1268–1271.
- Onodera, K., Kasuga, N. C., Takashima, T., Hara, A., Amano, A., Murakami, H. & Nomiya, K. (2007). *Dalton Trans.* pp. 3646–3652.
- Pedrido, R., Romero, M. J., Bermejo, M. R., Martínez-Calvo, M., González-Noya, A. M. & Zaragoza, G. (2009). *Dalton Trans.* pp. 8329–8340.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sun, Q. Z. (2011). Chin. J. Struct. Chem. 30, 1355-1360.
- Sun, Q. Z. & Chai, L. Y. (2012). Chin. J. Struct. Chem. 31, 408-414.
- Sun, Q. Z., Liao, S. Y., Chai, L. Y., Xu, X. W., Yao, J. J. & Fang, Q. J. L. (2012). *Chin. J. Struct. Chem.* **31**, 1229–1234.
- Xu, C. Y., Sun, Q. Z., Chen, P. & Chai, L. Y. (2011). Chin. J. Struct. Chem. 30, 951–956.

supporting information

Acta Cryst. (2013). E69, m50–m51 [https://doi.org/10.1107/S1600536812050155]

Hexakis(μ_3 -2-hydroxynaphthalene-1-carboxaldehyde thiosemicarbazonato- $\kappa^3 N^2$:S:S)hexasilver(I) *N*,*N*-dimethylformamide tetrasolvate

Qiaozhen Sun, Liyuan Chai, Hui Liu and Junke Wang

S1. Comment

Transition metal-chalcogen compounds, especially for *d*¹⁰ metal complexes, have attracted a great deal of attention for their interesting structures and excellent luminescent properties (Brito *et al.*, 2011; Forward *et al.*, 1995). Of which many coordination complexes with thiosemicarbazone Schiff base ligands have been reported (Ashfield *et al.*, 2004; Castiñeiras & Pedrido, 2009; Li *et al.*, 2010; Onodera *et al.*, 2007; Pedrido *et al.*, 2009). As a part of our studies on this class of compounds (Sun, 2011; Sun *et al.*, 2012; Sun & Chai, 2012; Xu *et al.*, 2011), we describe here the structure of the title compound.

The structure of the title compound is shown in Fig. 1. It contains an Ag₆ hexanuclear cluster with the Ag···Ag distances varying from 2.93 Å to 3.40 Å (Fig. 2), which is shorter than the sum of van der Waals radii of two silver atoms (3.44 Å) (Han *et al.*, 2004). In the cluster, each Ag(I) ion is surrounded by one nitrogen atom and two thiolate sulfur atoms from two deprotonated ligands L^5 . Each ligand coordinates to three Ag(I) ions using a bridged thiolate sulfur atom and a monodentate nitrogen atom, from which two Ag₃S₃ hexagonal rings are linked together to give the overall Ferris wheel structure.

There are intramolecular hydrogen bonds of O—H…N type. Besides this, solvent DMF molecules are linked to the hexanuclear cluster *via* O…H—N hydrogen bonds.

Packing of the title compound (Fig. 3) is facilitated through π - π stacking interactions between aromatic rings I, II [defined by the atoms C(1), C(2), C(3), C(4), C(9) and C(10) and the atoms C(13), C(14), C(15), C(16), C(21) and C(22), respectively] and the symmetry related ones (ring centroid distances: 3.78 Å and 3.70 Å, respectively).

S2. Experimental

Triethylamine (25 μ L, 0.175 mmol) was added to a solution of L^5 (0.175 mmol, 0.043 g) in 3 ml DMF. After stirring for 30 min, a DMF solution (2 ml) of AgNO₃ (0.175 mmol, 0.030 g) was added. Block yellow crystals were formed by standing the solution in air for two months. Anal. Calcd for C₈₄H₈₈Ag₆N₂₂O₁₀S₆: C, 41.9; H, 3.7; N, 12.8. Found: C, 41.9; H, 3.6; N, 12.8.

S3. Refinement

In the compound, all the DMF molecules were found to be disordered, and the s.o.f. for the four disordered molecules were fixed at 0.5. All of the non-hydrogen atoms were refined with anisotropic thermal displacement parameters. The H atoms were placed in calculated positions using the riding model approximation with C—H distances of 0.93–0.96 Å, O —H distances of 0.82 Å and N—H distances of 0.86 Å. $U_{iso}(H)$ were set to 1.2Ueq (C, N) or 1.5Ueq(C, O).

Figure 1

The structure of title compound showing the atom-numbering scheme with H atoms omitted for clarity. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) -x + 0.5, -y + 1.5, -z + 2]

Figure 3

Packing diagram of the title compound, viewed along the *a* axis direction.

Hexakis(μ_3 -2-hydroxynaphthalene-1-carboxaldehyde thiosemicarbazonato- $\kappa^3 N^2$:S:S)hexasilver(I) N, N'-dimethylformamide tetrasolvate

Crystal data

[Ag ₆ (C ₁₂ H ₁₀ N ₃ OS) ₆]·4C ₃ H ₇ NO $M_r = 2405.34$ Monoclinic, C2/c Hall symbol: -C 2yc a = 24.604 (3) Å b = 18.877 (3) Å c = 24.816 (3) Å $\beta = 94.763$ (3)° V = 11486 (3) Å ³ Z = 4	F(000) = 4816 $D_x = 1.391 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6309 reflections $\theta = 2.2-27.2^{\circ}$ $\mu = 1.17 \text{ mm}^{-1}$ T = 293 K Block, yellow $0.22 \times 0.20 \times 0.18 \text{ mm}$
Data collection	
Bruker SMART CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans	Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{min} = 0.238$, $T_{max} = 0.373$ 28454 measured reflections 10056 independent reflections 7829 reflections with $I > 2s(I)$

$R_{\rm int} = 0.042$	$k = -22 \rightarrow 21$
$\theta_{\rm max} = 25.0^{\circ}, \theta_{\rm min} = 1.7^{\circ}$	$l = -29 \rightarrow 16$
$h = -28 \rightarrow 29$	

Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.046$	Hydrogen site location: inferred from
$wR(F^2) = 0.145$	neighbouring sites
<i>S</i> = 1.08	H-atom parameters constrained
10056 reflections	$w = 1/[\sigma^2(F_o^2) + (0.095P)^2]$
667 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
63 restraints	$(\Delta/\sigma)_{\rm max} = 0.002$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.92 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.42 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Agl	0.171626 (12)	0.813538 (16)	0.482106 (12)	0.05265 (8)	
Ag2	0.240712 (12)	0.788788 (17)	0.582419 (12)	0.05635 (9)	
Ag3	0.191030 (13)	0.661685 (16)	0.509778 (12)	0.05414 (8)	
S 1	0.16540 (4)	0.75257 (5)	0.39220 (4)	0.0510(2)	
S2	0.16228 (4)	0.70906 (5)	0.59592 (4)	0.0520 (2)	
S3	0.27035 (4)	0.57841 (5)	0.51287 (4)	0.0499 (2)	
N1	0.09822 (14)	0.57526 (18)	0.43441 (14)	0.0591 (9)	
N2	0.13114 (13)	0.63483 (17)	0.43751 (13)	0.0531 (8)	
N3	0.08875 (19)	0.6661 (3)	0.35352 (18)	0.0993 (14)	
H3A	0.0673	0.6301	0.3527	0.119*	
H3B	0.0868	0.6956	0.3271	0.119*	
N4	0.05033 (12)	0.83205 (16)	0.52337 (13)	0.0475 (8)	
N5	0.10008 (12)	0.79779 (16)	0.53377 (12)	0.0476 (8)	
N6	0.06729 (14)	0.76102 (19)	0.61488 (13)	0.0614 (9)	
H6A	0.0380	0.7858	0.6092	0.074*	
H6B	0.0725	0.7360	0.6438	0.074*	
N7	0.27039 (15)	0.5619 (2)	0.35485 (14)	0.0656 (10)	
N8	0.27440 (14)	0.59230 (18)	0.40692 (12)	0.0575 (9)	
N9	0.25925 (15)	0.47922 (19)	0.43895 (15)	0.0671 (10)	
H9A	0.2586	0.4610	0.4071	0.080*	
H9B	0.2547	0.4527	0.4664	0.080*	
O1	0.02497 (15)	0.48899 (18)	0.39190 (13)	0.0853 (10)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H1B	0.0463	0.5224	0.3930	0.128*
O2	-0.05009 (11)	0.86290 (17)	0.53609 (12)	0.0686 (8)
H2B	-0.0209	0.8420	0.5413	0.103*
O3	0.2174 (2)	0.4973 (3)	0.27494 (18)	0.1230 (16)
H3C	0.2245	0.5096	0.3064	0.184*
C1	0.0316 (2)	0.4524 (2)	0.4389 (2)	0.0696 (12)
C2	-0.0022(2)	0.3926 (3)	0.4433 (2)	0.0858 (16)
H2A	-0.0264	0.3788	0.4144	0.103*
C3	0.0012 (2)	0.3550 (3)	0.4907 (2)	0.0824 (15)
H3D	-0.0213	0.3157	0.4936	0.099*
C4	0.0369 (2)	0.3736 (2)	0.5340 (2)	0.0710 (13)
C5	0.0388 (3)	0.3357 (3)	0.5855 (3)	0.0961 (18)
H5A	0.0155	0.2975	0.5892	0.115*
C6	0.0736 (3)	0.3551 (3)	0.6272 (3)	0.109 (2)
H6C	0.0739	0.3303	0.6596	0.131*
C7	0.1083 (3)	0.4100(3)	0.6233 (2)	0.104 (2)
H7B	0.1324	0.4220	0.6527	0.125*
C8	0.1024	0.4484(3)	0.5761(2)	0.0873 (16)
H8B	0.1330	0.4856	0.5742	0.105*
C9	0.07184(19)	0.4329(2)	0.5712 0.53019(19)	0.0678(12)
C10	0.07101(19)	0.4728(2)	0.48118(18)	0.0670(12) 0.0633(11)
C11	0.00010(10) 0.10170(17)	0.1720(2) 0.5363(2)	0.47600(18)	0.0600(11)
H11A	0.1266	0.5487	0.5047	0.072*
C12	0.12505 (16)	0.5761(2)	0.39585 (16)	0.072 0.0529 (10)
C12	-0.04809(15)	0.0701(2) 0.9071(2)	0.39380(10) 0.49380(17)	0.0527(10)
C14	-0.09473(17)	0.9478(2)	0.47924(19)	0.0547(10) 0.0659(12)
H144	-0.1254	0.9478 (2)	0.4984	0.0009 (12)
C15	-0.09576(17)	0.9941 (3)	0.4380(2)	0.075 0.0671 (12)
H15A	-0.1271	1.0207	0.4300 (2)	0.080*
C16	-0.05039(17)	1.0207 1.0030(2)	0.40773(17)	0.0602(11)
C17	-0.0514(2)	1.0030(2) 1.0516(3)	0.40773(17) 0.36387(19)	0.0002(11) 0.0711(13)
	-0.0823	1.0700	0.3556	0.0711(13)
C18	-0.0023	1.0790	0.3344(2)	0.085
	-0.0103	1.0006	0.3344 (2)	0.0018 (15)
C10	0.0103 0.0376(2)	1.0900	0.3058 0.3463 (2)	0.098°
	0.0570 (2)	1.0100 (5)	0.3240	0.0780 (14)
C20	0.0007 0.04160(10)	1.0233	0.3249 0.38005 (18)	0.094°
	0.04109 (19)	0.9720 (2)	0.38903 (18)	0.0034(12)
C21	-0.00225(15)	0.9408	0.3308	0.078°
C21	-0.001223(13)	0.9020(2)	0.42120(10) 0.46551(15)	0.0321(10)
C22	-0.00177(13)	0.9137(2)	0.40331(13)	0.0497(9)
	0.04720 (13)	0.87334 (19)	0.48270 (13)	0.0484 (9)
HZ3A	0.0776	0.8780	0.4030	0.058*
C24	0.10444 (14)	0.76144 (19)	0.57889 (14)	0.0435 (8)
C25	0.2510(3)	0.5314(4)	0.2427(2)	0.104(2)
C26	0.2459 (3)	0.5160 (4)	0.1857 (3)	0.114/(18)
H20A	0.2203	0.4830	0.1/12	U.138*
027	0.2789 (3)	0.5496 (4)	0.1544 (3)	0.1144 (18)
H27A	0.2745	0.5391	0.1177	0.137*

C28	0.3180 (3)	0.5973 (3)	0.1699 (2)	0.0934 (15)	
C29	0.3531 (3)	0.6318 (4)	0.1345 (2)	0.1046 (18)	
H29A	0.3493	0.6213	0.0977	0.126*	
C30	0.3886 (3)	0.6755 (4)	0.1515 (3)	0.127 (2)	
H30A	0.4086	0.6988	0.1268	0.152*	
C31	0.3996 (3)	0.6910 (4)	0.2081 (3)	0.114 (2)	
H31A	0.4273	0.7223	0.2199	0.137*	
C32	0.3687 (3)	0.6590 (3)	0.2442 (2)	0.1015 (19)	
H32A	0.3757	0.6680	0.2809	0.122*	
C33	0.3264 (2)	0.6125 (3)	0.2266 (2)	0.0911 (16)	
C34	0.2898 (2)	0.5779 (3)	0.26316 (19)	0.0814 (15)	
C35	0.29397 (18)	0.5973 (3)	0.32006 (16)	0.0645 (12)	
H35A	0.3145	0.6368	0.3313	0.077*	
C36	0.26717 (15)	0.5477 (2)	0.44566 (15)	0.0488 (9)	
C37	0.1231 (5)	0.9297 (5)	0.2325 (5)	0.087 (3)	0.50
H37A	0.1419	0.9325	0.2679	0.130*	0.50
H37B	0.0973	0.9678	0.2277	0.130*	0.50
H37C	0.1489	0.9331	0.2056	0.130*	0.50
C38	0.0619 (5)	0.8437 (6)	0.1746 (5)	0.089(3)	0.50
H38A	0.0455	0.7980	0.1785	0.133*	0.50
H38B	0.0854	0.8423	0.1456	0.133*	0.50
H38C	0.0338	0.8784	0.1667	0.133*	0.50
C39	0.0960 (4)	0.8193 (6)	0.2672 (4)	0.078 (3)	0.50
H39A	0.1113	0.8342	0.3008	0.093*	0.50
N10	0.0949 (3)	0.8634 (3)	0.2267 (3)	0.0561 (17)	0.50
O4	0.0773 (3)	0.7578 (4)	0.2628 (3)	0.095 (2)	0.50
C40	0.2559 (5)	0.7879 (6)	0.2711 (4)	0.087 (3)	0.50
H40A	0.2754	0.8308	0.2806	0.130*	0.50
H40B	0.2801	0.7482	0.2767	0.130*	0.50
H40C	0.2260	0.7828	0.2932	0.130*	0.50
C41	0.2129 (6)	0.7401 (7)	0.2012 (6)	0.161 (6)	0.50
H41A	0.2007	0.7454	0.1636	0.242*	0.50
H41B	0.1820	0.7328	0.2217	0.242*	0.50
H41C	0.2369	0.7001	0.2057	0.242*	0.50
C42	0.2428 (7)	0.8450 (8)	0.1807 (6)	0.125 (5)	0.50
H42A	0.2656	0.8799	0.1965	0.150*	0.50
N11	0.2359 (3)	0.7908 (4)	0.2164 (3)	0.0563 (18)	0.50
05	0.2296 (5)	0.8580 (5)	0.1406 (3)	0.136 (4)	0.50
06	0.4334 (3)	0.8328 (4)	0.2955 (3)	0.090 (2)	0.50
C43	0.4240 (4)	1.0056 (5)	0.2406 (4)	0.081 (3)	0.50
H43A	0.4350	1.0254	0.2754	0.121*	0.50
H43B	0.3889	1.0239	0.2279	0.121*	0.50
H43C	0.4502	1.0180	0.2155	0.121*	0.50
C44	0.4052(4)	0.8921 (6)	0.1971 (4)	0.084 (3)	0.50
H44A	0.4048	0.8424	0.2051	0.126*	0.50
H44B	0.4307	0.9012	0.1707	0.126*	0.50
H44C	0.3694	0.9069	0.1832	0.126*	0.50
C45	0.4319 (4)	0.8969(7)	0.2912 (5)	0.089(3)	0.50
	···· ·· (·)	···· (/)	~~~~~~~		0.00

supporting information

H45A	0.4389	0.9239	0.3224	0.107*	0.50
N12	0.4210 (3)	0.9304 (4)	0.2449 (2)	0.063 (2)	0.50
O7	0.2454 (2)	0.3792 (3)	0.5239 (2)	0.0587 (13)	0.50
C46	0.1547 (4)	0.2320 (4)	0.5242 (4)	0.075 (3)	0.50
H46A	0.1703	0.2201	0.5598	0.112*	0.50
H46B	0.1600	0.1934	0.5000	0.112*	0.50
H46C	0.1164	0.2410	0.5252	0.112*	0.50
C47	0.1648 (4)	0.3228 (5)	0.4527 (4)	0.073 (3)	0.50
H47A	0.1858	0.3643	0.4461	0.109*	0.50
H47B	0.1268	0.3351	0.4510	0.109*	0.50
H47C	0.1704	0.2876	0.4259	0.109*	0.50
C48	0.2207 (4)	0.3293 (4)	0.5356 (3)	0.060 (2)	0.50
H48A	0.2294	0.3111	0.5701	0.072*	0.50
N13	0.1815 (3)	0.2954 (3)	0.5052 (3)	0.0468 (15)	0.50

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ag1	0.05776 (17)	0.05486 (17)	0.04597 (16)	-0.00022 (13)	0.00805 (13)	0.00734 (12)
Ag2	0.05578 (17)	0.06027 (18)	0.05285 (18)	0.00050 (13)	0.00367 (14)	0.00891 (13)
Ag3	0.06226 (18)	0.05244 (17)	0.04791 (17)	0.00372 (13)	0.00561 (14)	0.00294 (12)
S 1	0.0549 (5)	0.0543 (5)	0.0438 (5)	-0.0023 (4)	0.0035 (4)	0.0061 (4)
S2	0.0564 (5)	0.0552 (5)	0.0450 (5)	0.0023 (4)	0.0079 (4)	0.0091 (4)
S3	0.0570 (5)	0.0488 (5)	0.0446 (5)	0.0013 (4)	0.0081 (4)	0.0031 (4)
N1	0.0648 (19)	0.0566 (19)	0.0556 (19)	-0.0095 (16)	0.0042 (16)	0.0038 (16)
N2	0.0554 (17)	0.0538 (18)	0.0497 (18)	-0.0064 (15)	0.0017 (14)	0.0065 (15)
N3	0.109 (3)	0.098 (3)	0.085 (3)	-0.033 (2)	-0.027 (2)	0.016 (2)
N4	0.0439 (15)	0.0487 (17)	0.0504 (17)	0.0009 (13)	0.0069 (13)	0.0001 (14)
N5	0.0439 (15)	0.0514 (17)	0.0480 (17)	0.0004 (13)	0.0064 (13)	0.0060 (13)
N6	0.0601 (19)	0.073 (2)	0.0532 (19)	0.0072 (17)	0.0165 (16)	0.0100 (16)
N7	0.079 (2)	0.068 (2)	0.0490 (19)	0.0157 (18)	0.0009 (17)	-0.0046 (17)
N8	0.071 (2)	0.063 (2)	0.0390 (17)	0.0076 (17)	0.0063 (15)	0.0032 (15)
N9	0.091 (3)	0.057 (2)	0.054 (2)	-0.0044 (18)	0.0069 (18)	-0.0029 (16)
01	0.116 (3)	0.073 (2)	0.0638 (19)	-0.0227 (19)	-0.0104 (18)	-0.0023 (16)
O2	0.0522 (15)	0.084 (2)	0.0713 (19)	0.0015 (15)	0.0128 (14)	0.0191 (16)
O3	0.131 (3)	0.137 (4)	0.095 (3)	-0.006 (3)	-0.029 (3)	-0.024 (3)
C1	0.082 (3)	0.057 (2)	0.070 (3)	-0.012 (2)	0.007 (2)	-0.005 (2)
C2	0.105 (4)	0.064 (3)	0.086 (4)	-0.028 (3)	-0.005 (3)	-0.007 (3)
C3	0.093 (3)	0.056 (3)	0.099 (4)	-0.024 (2)	0.011 (3)	-0.001 (3)
C4	0.081 (3)	0.053 (2)	0.080 (3)	-0.011 (2)	0.012 (2)	0.006 (2)
C5	0.110 (4)	0.067 (3)	0.112 (5)	-0.018 (3)	0.013 (4)	0.020 (3)
C6	0.135 (5)	0.097 (4)	0.095 (4)	-0.015 (4)	0.008 (4)	0.041 (3)
C7	0.127 (5)	0.093 (4)	0.088 (4)	-0.028 (4)	-0.022 (3)	0.032 (3)
C8	0.093 (3)	0.075 (3)	0.091 (4)	-0.023 (3)	-0.010 (3)	0.019 (3)
C9	0.073 (3)	0.056 (2)	0.075 (3)	-0.005 (2)	0.004 (2)	0.007 (2)
C10	0.073 (3)	0.054 (2)	0.063 (3)	-0.012 (2)	0.008 (2)	0.0020 (19)
C11	0.063 (2)	0.057 (2)	0.059 (2)	-0.0090 (19)	0.000 (2)	-0.001 (2)
C12	0.057 (2)	0.053 (2)	0.047 (2)	-0.0052 (17)	-0.0048 (17)	0.0039 (17)

supporting information

C13	0.048 (2)	0.057 (2)	0.058 (2)	-0.0037 (18)	0.0050 (18)	-0.0016 (18)
C14	0.047 (2)	0.071 (3)	0.080 (3)	0.001 (2)	0.010 (2)	-0.001 (2)
C15	0.050 (2)	0.069 (3)	0.081 (3)	0.011 (2)	-0.001 (2)	-0.007 (2)
C16	0.064 (2)	0.052 (2)	0.061 (2)	0.0017 (19)	-0.011 (2)	-0.0077 (19)
C17	0.075 (3)	0.064 (3)	0.072 (3)	0.004 (2)	-0.011 (2)	0.008 (2)
C18	0.106 (4)	0.068 (3)	0.069 (3)	0.001 (3)	-0.005 (3)	0.019 (2)
C19	0.091 (3)	0.079 (3)	0.064 (3)	-0.003 (3)	0.013 (3)	0.013 (2)
C20	0.070 (3)	0.067 (3)	0.060 (3)	0.003 (2)	0.012 (2)	0.006 (2)
C21	0.054 (2)	0.048 (2)	0.053 (2)	-0.0029 (17)	0.0006 (17)	-0.0022 (17)
C22	0.050(2)	0.048 (2)	0.050(2)	-0.0012 (16)	-0.0007 (16)	-0.0053 (16)
C23	0.0459 (18)	0.047 (2)	0.053 (2)	0.0008 (16)	0.0070 (16)	-0.0009 (17)
C24	0.0447 (17)	0.0476 (19)	0.0386 (18)	-0.0071 (15)	0.0062 (15)	-0.0008 (15)
C25	0.123 (5)	0.123 (5)	0.060 (3)	0.036 (4)	-0.021 (3)	-0.018 (3)
C26	0.119 (3)	0.127 (5)	0.093 (4)	0.025 (3)	-0.021 (2)	-0.002 (3)
C27	0.131 (3)	0.117 (3)	0.093 (3)	0.036 (3)	-0.002(2)	-0.010 (3)
C28	0.109 (3)	0.105 (3)	0.0665 (12)	0.033 (3)	0.009 (2)	0.005 (2)
C29	0.126 (3)	0.119 (3)	0.072 (3)	0.026 (3)	0.022 (3)	0.007 (3)
C30	0.137 (4)	0.138 (4)	0.109 (4)	0.021 (3)	0.032 (3)	0.022 (3)
C31	0.123 (4)	0.118 (4)	0.103 (3)	0.020 (3)	0.025 (3)	0.017 (3)
C32	0.126 (4)	0.108 (4)	0.076 (3)	0.045 (4)	0.043 (3)	0.030 (3)
C33	0.116 (4)	0.105 (4)	0.0553 (15)	0.061 (3)	0.026 (2)	0.022 (2)
C34	0.105 (3)	0.088 (3)	0.050 (3)	0.045 (3)	0.000 (2)	0.002 (2)
C35	0.080 (3)	0.072 (3)	0.042 (2)	0.021 (2)	0.006 (2)	0.0029 (19)
C36	0.0509 (19)	0.048 (2)	0.047 (2)	0.0081 (16)	0.0000 (16)	-0.0023 (16)
C37	0.098 (7)	0.069 (6)	0.091 (7)	-0.002 (5)	-0.009 (6)	0.005 (5)
C38	0.104 (4)	0.079 (4)	0.081 (4)	0.007 (3)	-0.013 (4)	0.012 (3)
C39	0.091 (7)	0.082 (6)	0.056 (5)	0.006 (5)	-0.024(5)	0.014 (5)
N10	0.071 (4)	0.037 (3)	0.057 (4)	0.015 (3)	-0.020 (3)	0.011 (3)
O4	0.105 (4)	0.095 (4)	0.078 (3)	-0.016 (3)	-0.027 (3)	0.037 (3)
C40	0.116 (8)	0.080 (7)	0.063 (6)	0.031 (6)	-0.002 (6)	-0.007 (5)
C41	0.162 (12)	0.139 (11)	0.189 (15)	0.098 (9)	0.052 (11)	0.082 (10)
C42	0.157 (12)	0.105 (10)	0.112 (11)	-0.033 (9)	0.004 (10)	-0.007 (8)
N11	0.079 (4)	0.050 (4)	0.041 (3)	0.008 (3)	0.015 (3)	0.004 (3)
O5	0.222 (10)	0.130 (6)	0.054 (4)	-0.029 (7)	-0.002(5)	0.058 (4)
O6	0.115 (5)	0.103 (5)	0.055 (3)	0.005 (4)	0.030 (3)	0.049 (3)
C43	0.086 (6)	0.071 (6)	0.084 (7)	-0.016 (5)	-0.003(5)	0.017 (5)
C44	0.092 (7)	0.084 (7)	0.076 (6)	-0.011 (5)	0.004 (5)	0.033 (5)
C45	0.082 (4)	0.104 (5)	0.082 (4)	0.000 (4)	0.014 (3)	0.004 (4)
N12	0.049 (3)	0.103 (5)	0.038 (3)	0.001 (4)	0.000 (3)	0.029 (3)
O7	0.086 (3)	0.049 (2)	0.038 (2)	-0.033 (2)	-0.010 (2)	0.0095 (19)
C46	0.081 (6)	0.048 (5)	0.096 (7)	-0.031 (4)	0.010 (5)	0.001 (5)
C47	0.078 (6)	0.060 (5)	0.076 (6)	-0.007 (4)	-0.024 (5)	-0.009 (4)
C48	0.101 (6)	0.051 (4)	0.025 (3)	-0.008 (4)	-0.005 (4)	0.007 (3)
N13	0.058 (3)	0.031 (3)	0.050 (4)	-0.010 (3)	0.002 (3)	-0.009 (2)

Geometric parameters (Å, °)

Ag1—N5	2.282 (3)	C18—C19	1.377 (7)
Ag1—S3 ⁱ	2.4869 (10)	C18—H18A	0.9300
Ag1—S1	2.5039 (10)	C19—C20	1.378 (6)
Ag1—Ag2	2.9329 (5)	C19—H19A	0.9300
Ag1—Ag3	2.9769 (6)	C20—C21	1.409 (6)
Ag2—N8 ⁱ	2.294 (3)	C20—H20A	0.9300
Ag2—S1 ⁱ	2.4699 (10)	C21—C22	1.428 (5)
Ag2—S2	2.4917 (11)	C22—C23	1.459 (5)
Ag2—Ag3 ⁱ	3.0931 (5)	C23—H23A	0.9300
Ag2—Ag3	3.1835 (5)	C25—C34	1.364 (8)
Ag3—N2	2.282 (3)	C25—C26	1.438 (8)
Ag3—S2	2.4741 (11)	C26—C27	1.330 (10)
Ag3—S3	2.5020 (10)	C26—H26A	0.9300
Ag3—Ag2 ⁱ	3.0931 (5)	C27—C28	1.350 (9)
S1-C12	1.759 (4)	C27—H27A	0.9300
S1—Ag2 ⁱ	2.4699 (10)	C28—C33	1.436 (7)
S2—C24	1.755 (4)	C28—C29	1.438 (9)
S3—C36	1.762 (4)	C29—C30	1.248 (10)
S3—Ag1 ⁱ	2.4869 (10)	C29—H29A	0.9300
N1-C11	1.264 (5)	C30—C31	1.438 (10)
N1—N2	1.384 (5)	C30—H30A	0.9300
N2-C12	1.293 (5)	C31—C32	1.363 (9)
N3—C12	1.335 (6)	C31—H31A	0.9300
N3—H3A	0.8600	C32—C33	1.403 (9)
N3—H3B	0.8600	C32—H32A	0.9300
N4—C23	1.273 (5)	C33—C34	1.480 (8)
N4—N5	1.390 (4)	C34—C35	1.454 (6)
N5-C24	1.310 (5)	С35—Н35А	0.9300
N6-C24	1.330 (5)	C37—N10	1.432 (12)
N6—H6A	0.8600	С37—Н37А	0.9600
N6—H6B	0.8600	С37—Н37В	0.9600
N7—C35	1.270 (6)	С37—Н37С	0.9600
N7—N8	1.410 (5)	C38—N10	1.516 (12)
N8—C36	1.302 (5)	C38—H38A	0.9600
N8—Ag2 ⁱ	2.294 (3)	C38—H38B	0.9600
N9—C36	1.315 (5)	C38—H38C	0.9600
N9—H9A	0.8600	C39—O4	1.250 (12)
N9—H9B	0.8600	C39—N10	1.302 (11)
01—C1	1.354 (6)	С39—Н39А	0.9300
O1—H1B	0.8200	C40—N11	1.406 (11)
O2—C13	1.345 (5)	C40—H40A	0.9600
O2—H2B	0.8200	C40—H40B	0.9600
O3—C25	1.361 (8)	C40—H40C	0.9600
O3—H3C	0.8200	C41—N11	1.159 (16)
C1—C10	1.384 (6)	C41—H41A	0.9600
C1—C2	1.411 (7)	C41—H41B	0.9600

С2—С3	1.369 (7)	C41—H41C	0.9600
C2—H2A	0.9300	C42—O5	1.052 (16)
C3—C4	1.377 (7)	C42—N11	1.372 (16)
C3—H3D	0.9300	C42—H42A	0.9300
C4—C9	1.419 (6)	O6—C45	1.215 (14)
C4—C5	1.461 (8)	C43—N12	1.425 (13)
C5—C6	1.340 (9)	C43—H43A	0.9600
C5—H5A	0.9300	C43—H43B	0.9600
C6—C7	1.352 (8)	C43—H43C	0.9600
C6—H6C	0.9300	C44—N12	1 415 (13)
C7—C8	1 377 (8)	C44—H44A	0.9600
C7—H7B	0.9300	C44—H44B	0.9600
C_{8} C_{9}	1 422 (7)		0.9600
C8 H8B	1.422(7)	$C_{44} = 1144C$	1.320(13)
$C_0 = C_{10}$	1 428 (6)	$C_{45} = 1012$	0.0200
C_{10}	1.428(0) 1.463(6)	C45— $C48$	1.171(10)
	1.405 (0)	0/-0.00	1.1/1(10)
CII—HIIA	0.9300		1.463 (10)
C13-C22	1.393 (5)	C46—H46A	0.9600
C13—C14	1.404 (6)	C46—H46B	0.9600
C14—C15	1.343 (7)	C46—H46C	0.9600
C14—H14A	0.9300	C47—N13	1.428 (11)
C15—C16	1.407 (6)	C47—H47A	0.9600
C15—H15A	0.9300	C47—H47B	0.9600
C16—C17	1.423 (6)	C47—H47C	0.9600
C16—C21	1.431 (6)	C48—N13	1.338 (10)
C17—C18	1.334 (7)	C48—H48A	0.9300
C17—H17A	0.9300		
N5—Ag1—S 3^i	123.04 (8)	C18—C19—C20	121.5 (5)
N5—Ag1—S1	116.61 (8)	C18—C19—H19A	119.3
S3 ⁱ —Ag1—S1	114.45 (3)	С20—С19—Н19А	119.3
N5—Ag1—Ag2	85.53 (8)	C19—C20—C21	120.8 (4)
S3 ⁱ —Ag1—Ag2	78.36 (2)	С19—С20—Н20А	119.6
S1—Ag1—Ag2	132.17 (3)	C21—C20—H20A	119.6
N5—Ag1—Ag3	82.03 (8)	C20—C21—C22	124.4 (4)
S3 ⁱ —Ag1—Ag3	134.25 (3)	C20—C21—C16	117.0 (4)
S1—Ag1—Ag3	76.10 (2)	C22—C21—C16	118.6 (4)
Ag2—Ag1—Ag3	65.183 (11)	C13—C22—C21	119.4 (3)
$N8^{i}$ Ag2 S1 ⁱ	115.91 (9)	C13—C22—C23	119.8 (3)
$N8^{i}$ Ag2 S2	116.15 (9)	$C_{21} - C_{22} - C_{23}$	120.8 (3)
$S1^{i}$ Ag2 $S2$	119 55 (4)	N4—C23—C22	1231(3)
$N8^{i}$ Ag2 Ag1	81.60 (8)	N4—C23—H23A	118 5
$S1^{i}$ Ag2 Ag1	136 94 (3)	C22—C23—H23A	118.5
$S^2 - A\sigma^2 - A\sigma^1$	79.02 (2)	N5-C24-N6	124 4 (3)
$N8^{i} \Delta \sigma^{2} \Delta \sigma^{3^{i}}$	83.84 (8)	N5_C24_S2	127.7(3) 120 5 (3)
$S1i \Delta \alpha^2 \Delta \alpha^{2i}$	74 37 (2)	$N_{-}C_{2} = S_{-}$	120.3(3) 1151(3)
$S_1 - Ag_2 - Ag_3$ $S_2 - Ag_2 - Ag_3^{i}$	130 12 (3)	-3 C25 C34	1218(5)
$\Delta a_1 \Delta a_2 \Delta a_2^{i}$	68 654 (13)	03 - 025 - 025	121.0(3) 1182(6)
ngi—ng2—ngJ	00.034(13)	0 J - 0 Z J - 0 Z U	110.3 (0)

N8 ⁱ —Ag2—Ag3	138.11 (8)	C34—C25—C26	119.9 (6)
S1 ⁱ —Ag2—Ag3	102.31 (3)	C27—C26—C25	118.0 (7)
S2—Ag2—Ag3	49.88 (2)	C27—C26—H26A	121.0
Ag1—Ag2—Ag3	58.076 (12)	C25—C26—H26A	121.0
Ag3 ⁱ —Ag2—Ag3	90.886 (14)	C26—C27—C28	127.3 (7)
N2—Ag3—S2	123.17 (9)	С26—С27—Н27А	116.3
N2—Ag3—S3	109.62 (9)	С28—С27—Н27А	116.3
S2—Ag3—S3	118.61 (3)	C27—C28—C33	117.0 (6)
N2—Ag3—Ag1	87.24 (8)	C27—C28—C29	125.3 (6)
S2 - Ag3 - Ag1	78.42 (3)	$C_{33} = C_{28} = C_{29}$	117.7 (6)
S3—Ag3—Ag1	136.20 (3)	C_{30} C_{29} C_{28}	122.0(7)
$N_2 - A_{\sigma} $	80.83 (8)	C30-C29-H29A	119.0
$S^2 - A\sigma^3 - A\sigma^2^i$	137 87 (3)	C_{28} C_{29} H_{29A}	119.0
$S_2 = A_{g_3} = A_{g_2}^{i_1}$	75 09 (2)	$C_{29} = C_{30} = C_{31}$	122 4 (8)
$\Delta \sigma 1 - \Delta \sigma 3 - \Delta \sigma 2^{i}$	67.966 (11)	$C_{29} = C_{30} = H_{30A}$	118.8
$N_2 = A \sigma_3 = A \sigma_2$	143 62 (8)	C_{2} C_{30} H_{30A}	118.8
$S^2 = \Delta \sigma^3 = \Delta \sigma^2$	50.37(2)	C_{32} C_{31} C_{30}	118.7(7)
$S_2 = Ag_3 = Ag_2$	101.20(3)	$C_{32} = C_{31} = C_{30}$	120.7
$33 - Ag_3 - Ag_2$	56.741(12)	C_{32} C_{31} H_{31A}	120.7
Ag1 - Ag3 - Ag2	30.741(12) 80.114(14)	C_{31} C_{32} C_{33}	120.7
$\frac{12}{12} = \frac{1}{12} = \frac{1}{12}$	104.32(14)	$C_{31} = C_{32} = C_{33}$	120.9 (0)
C_{12} C_{12} C_{12} C_{13} C_{12} C_{13} C	104.32(14) 108.03(14)	$C_{31} = C_{32} = H_{32A}$	119.5
$A_{g2i} = S1 - A_{g1}$	86.06.(3)	$C_{33} = C_{32} = C_{32} = C_{32} = C_{33} = C$	119.5
$Ag_2 = S_1 = Ag_1$	106.25(12)	$C_{32} = C_{33} = C_{28}$	110.1(3) 124.0(5)
$C_2 4 = S_2 = A_{g_3}$	100.23(12) 104.41(12)	$C_{32} = C_{33} = C_{34}$	124.0(3) 117.0(6)
$C_2 4 - S_2 - Ag_2$	104.41(12)	$C_{20} = C_{33} = C_{34}$	117.9(0) 121.0(5)
$Ag_5 - S_2 - Ag_2$	107.22(12)	$C_{25} = C_{34} = C_{35}$	121.0(3) 110.8(5)
C_{30} C	107.32(13) 101.91(12)	$C_{23} = C_{34} = C_{33}$	119.0(3) 110.1(5)
C_{50} A c_{11} S2 A c_{22}	101.01(12)	$C_{33} - C_{34} - C_{33}$	119.1(3) 1210(5)
Ag1 - 55 - Ag5	33.93(3)	N/-C35-C34	121.9 (3)
C12 N2 N1	113.3(3)	$N = C_{33} = H_{35} A$	119.1
C12 = N2 = N1	114.0(3)	C34—C35—H35A	119.1
C12— $N2$ — Ags	121.3(3)	$N_{0} = C_{0} = C_{0}$	124.8(4)
N1 - N2 - Ag3	124.1 (2)	$N_{0} = C_{30} = S_{3}$	119.2(3)
C12 = N3 = H3A	120.0	N9-C36-S3	110.0 (3)
C12—N3—H3B	120.0	N10-C37-H37A	109.5
H3A - N3 - H3B	120.0	N10-C3/-H3/B	109.5
C_{23} N4 N5	115.3 (3)	H3/A—C3/—H3/B	109.5
C24—N5—N4	114.3 (3)	N10-C37-H37C	109.5
C24—N5—Ag1	122.4 (2)	$H_3/A = C_3/=H_3/C$	109.5
N4—N5—Agl	122.9 (2)	H3/B - C3/ - H3/C	109.5
C24—N6—H6A	120.0	N10-C38-H38A	109.5
C24—N6—H6B	120.0	N10—C38—H38B	109.5
H6A—N6—H6B	120.0	H38A—C38—H38B	109.5
C35—N7—N8	114.1 (4)	N10—C38—H38C	109.5
C36—N8—N7	114.2 (3)	H38A—C38—H38C	109.5
C36—N8—Ag2 ¹	121.0 (3)	H38B—C38—H38C	109.5
N7—N8—Ag2 ¹	120.3 (2)	O4—C39—N10	122.9 (9)
C36—N9—H9A	120.0	O4—C39—H39A	118.5

C36—N9—H9B	120.0	N10—C39—H39A	118.5
H9A—N9—H9B	120.0	C39—N10—C37	120.2 (8)
C1—O1—H1B	109.5	C39—N10—C38	118.4 (8)
C13—O2—H2B	109.5	C37—N10—C38	121.3 (7)
С25—О3—НЗС	109.5	N11—C40—H40A	109.5
O1—C1—C10	122.3 (4)	N11—C40—H40B	109.5
O1—C1—C2	116.5 (4)	H40A—C40—H40B	109.5
C10—C1—C2	121.1 (5)	N11—C40—H40C	109.5
C3—C2—C1	119.2 (5)	H40A—C40—H40C	109.5
C3—C2—H2A	120.4	H40B—C40—H40C	109.5
C1—C2—H2A	120.4	N11—C41—H41A	109.5
C2—C3—C4	121.7 (5)	N11—C41—H41B	109.5
C2—C3—H3D	119.1	H41A—C41—H41B	109.5
C4—C3—H3D	119.1	N11—C41—H41C	109.5
C3—C4—C9	120.1 (4)	H41A—C41—H41C	109.5
C3—C4—C5	121.9 (5)	H41B—C41—H41C	109.5
C9—C4—C5	118.0 (5)	05—C42—N11	137.7 (15)
C6—C5—C4	121.0 (5)	05—C42—H42A	111.2
C6—C5—H5A	119.5	N11—C42—H42A	111.2
C4—C5—H5A	119.5	C41 - N11 - C42	119.4 (11)
C5—C6—C7	121.3 (6)	C41 - N11 - C40	113.8 (10)
С5—С6—Н6С	119.3	C42 - N11 - C40	126.8 (9)
C7—C6—H6C	119.3	N12—C43—H43A	109.5
C6—C7—C8	120.7 (6)	N12—C43—H43B	109.5
C6—C7—H7B	119.6	H43A—C43—H43B	109.5
C8—C7—H7B	119.6	N12—C43—H43C	109.5
C7—C8—C9	121.8 (5)	H43A—C43—H43C	109.5
C7—C8—H8B	119.1	H43B—C43—H43C	109.5
С9—С8—Н8В	119.1	N12—C44—H44A	109.5
C4—C9—C8	117.1 (4)	N12—C44—H44B	109.5
C4—C9—C10	118.7 (4)	H44A—C44—H44B	109.5
C8—C9—C10	124.2 (4)	N12—C44—H44C	109.5
C1—C10—C9	119.1 (4)	H44A—C44—H44C	109.5
C1-C10-C11	119.9 (4)	H44B—C44—H44C	109.5
C9—C10—C11	120.9 (4)	O6—C45—N12	123.7 (11)
N1—C11—C10	123.2 (4)	O6—C45—H45A	118.1
N1—C11—H11A	118.4	N12—C45—H45A	118.1
C10—C11—H11A	118.4	C45—N12—C44	120.4 (9)
N2—C12—N3	124.7 (4)	C45—N12—C43	122.3 (9)
N2—C12—S1	120.5 (3)	C44—N12—C43	117.2 (7)
N3—C12—S1	114.8 (3)	N13—C46—H46A	109.5
O2—C13—C22	122.2 (3)	N13—C46—H46B	109.5
O2—C13—C14	117.3 (4)	H46A—C46—H46B	109.5
C22—C13—C14	120.5 (4)	N13—C46—H46C	109.5
C15—C14—C13	121.0 (4)	H46A—C46—H46C	109.5
C15—C14—H14A	119.5	H46B—C46—H46C	109.5
C13—C14—H14A	119.5	N13—C47—H47A	109.5
C14—C15—C16	121.3 (4)	N13—C47—H47B	109.5

C14—C15—H15A	119.4	H47A—C47—H47B	109.5
C16—C15—H15A	119.4	N13—C47—H47C	109.5
C15—C16—C17	121.5 (4)	Н47А—С47—Н47С	109.5
C15—C16—C21	119.2 (4)	Н47В—С47—Н47С	109.5
C17—C16—C21	119.3 (4)	O7—C48—N13	127.4 (7)
C18—C17—C16	121.3 (4)	O7—C48—H48A	116.3
С18—С17—Н17А	119.3	N13—C48—H48A	116.3
C16—C17—H17A	119.3	C48—N13—C47	118.8 (6)
C17—C18—C19	120.1 (5)	C48—N13—C46	122.1 (7)
C17—C18—H18A	119.9	C47—N13—C46	119.1 (7)
C19—C18—H18A	119.9		

Symmetry code: (i) -x+1/2, -y+3/2, -z+1.

Hydrogen-bond geometry (Å, °)

	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N3—H3 <i>B</i> …O4	0.86	1.98	2.835 (8)	175
N6—H6 <i>B</i> ···O6 ⁱ	0.86	2.00	2.845 (7)	166
N9—H9 <i>A</i> ···O5 ⁱⁱ	0.86	2.31	3.049 (8)	145
N9—H9 <i>B</i> ···O7	0.86	2.02	2.870 (6)	172
O1—H1 <i>B</i> …N1	0.82	1.86	2.588 (5)	147
O2—H2 <i>B</i> ⋯N4	0.82	1.85	2.583 (4)	148
O3—H3 <i>C</i> ···N7	0.82	1.86	2.587 (5)	147

Symmetry codes: (i) -x+1/2, -y+3/2, -z+1; (ii) -x+1/2, y-1/2, -z+1/2.