organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(E)-2-Phenyl-N-tosylnon-2-en-4-ynamide

Xiang-Zhen Meng and Xin-Jun Wan*

Department of Chemistry and Life Science, Chaohu College, Anhui Province, People's Republic of China Correspondence e-mail: wzys2012@126.com

Received 22 November 2012: accepted 26 November 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; disorder in main residue; R factor = 0.048; wR factor = 0.096; data-to-parameter ratio = 15.5.

The molecule of the title compound, $C_{22}H_{23}NO_3S$, adopts an E conformation about the C=C bond. The dihedral angle between the benzene rings is $23.79 (5)^\circ$. In the crystal, pairs of N-H···O hydrogen bonds link the molecules, forming inversion dimers. The terminal butyl group is disordered over two sets of sites in a 0.559 (6):0.441 (6) ratio.

Related literature

For the synthesis of the titlw compound, see: Cheng et al. (2012). For applications of conjugated envnes, see: Ochiai et al. (1999); Saito et al. (2001).

Experimental

Crystal data

C22H23NO3S $M_r = 381.47$ Triclinic $P\overline{1}$ a = 9.8186 (10) Å b = 9.8201 (9) Åc = 11.3352 (13) Å $\alpha = 81.470 \ (8)^{\circ}$ $\beta = 76.308 \ (9)^{\circ}$

 $\gamma = 75.042 \ (9)^{\circ}$ V = 1021.46 (18) Å³ Z = 2Mo $K\alpha$ radiation

Data collection

Agilent Xcalibur (Atlas, Gemini ultra) diffractometer Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) $T_{\min} = 0.928, T_{\max} = 0.945$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.096$ S = 1.004425 reflections 285 parameters

 $\mu = 0.18 \text{ mm}^{-1}$ T = 293 K $0.42 \times 0.38 \times 0.32 \text{ mm}$

9118 measured reflections 4425 independent reflections 3005 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.028$

170 restraints H-atom parameters constrained $\Delta \rho_{\rm max} = 0.19 \text{ e} \text{ Å}^ \Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1\cdots O2^i$	0.86	2.32	2.947 (2)	130
Symmetry code: (i)	-x + 1, -v + 1	-7.		

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The work was supported financially by the Chaohu College Project (XLY-201105).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5655).

References

Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England. Cheng, D., Ling, F., Li, Z.-X., Yao, W.-J. & Ma, C. (2012). Org. Lett. 14, 3146-3149

Ochiai, B., Tomita, I. & Endo, T. (1999). Macromolecules, 32, 238-240.

Saito, S., Kawasaki, T., Tsuboya, N. & Yamamoto, Y. (2001). J. Org. Chem. 66, 796-802.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2013). E69, o78 [https://doi.org/10.1107/S1600536812048489]

(E)-2-Phenyl-N-tosylnon-2-en-4-ynamide

Xiang-Zhen Meng and Xin-Jun Wan

S1. Comment

Conjugated enynes can be used in the synthesis of polymers (Ochiai *et al.*, 1999) and in the selective construction of aromatic frameworks (Saito *et al.*, 2001). Here, we report the crystal structure of the title enyne compound.

The molecular structure of the title compound is shown in Figure 1, the *ORTEP* diagram shows that the structure adopts the E isomer, the double bond and triple bond are within normal ranges. The benzene C2–C7 and C10–C15 rings are tilted relative to each other by 23.79 (5)°. The chain C19–C22 is disorder. A view of the crystal packing for the title compound is illustrated in Fig. 2, the crystal structure is stabilized by N–H…O hydrogen bonds.

S2. Experimental

The compound was prepared according to the reference (Cheng *et al.*, 2012). 4-Methylbenzenesulfonyl azide (0.45 mmol), CuI (5.7 mg, 0.03 mmol), ethynylbenzene (0.45 mmol), and hept-2-ynal (0.3 mmol) were suspended in THF in a 10 ml Schlenk tube at room temperature at N₂ atmosphere. Cs₂CO₃ (8.64 mg, 0.36 mmol) was then added, and the resulting solution was stirred at this temperature for 24 h. The reaction was quenched by saturated aqueous NH₄Cl (5 ml) and extracted with CH₂Cl₂ (15 ml × 3). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. The crude residue was purified by column chromatography on silica gel (n-hexane/EtOAc) to afford the title compound. The title compound was recrystallized from CH₂Cl₂ at room temperature to give the desired crystals suitable for single-crystal X-ray diffraction.

S3. Refinement

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with aromatic C -H = 0.93-0.97 Å and N-H = 0.86 Å, $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms and $1.2U_{eq}(C,N)$ for the others. The butyl group is disordered over two positions, site occupancies were refined.

Figure 1

The molecular structure of the compound with displacement ellipsoids drawn at 30% probability level.

Figure 2

The crystal packing diagram.

(E)-2-Phenyl-N-tosylnon-2-en-4-ynamide

Crystal data

C₂₂H₂₃NO₃S $M_r = 381.47$ Triclinic, *P*1 Hall symbol: -P 1 a = 9.8186 (10) Å b = 9.8201 (9) Å c = 11.3352 (13) Å $a = 81.470 (8)^{\circ}$ $\beta = 76.308 (9)^{\circ}$ $\gamma = 75.042 (9)^{\circ}$ $V = 1021.46 (18) \text{ Å}^{3}$ Z = 2 F(000) = 404 $D_x = 1.240 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2435 reflections $\theta = 2.9-29.6^{\circ}$ $\mu = 0.18 \text{ mm}^{-1}$ T = 293 K Block, colorless $0.42 \times 0.38 \times 0.32 \text{ mm}$ Data collection

Agilent Xcalibur (Atlas, Gemini ultra) diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 10.3592 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2011) $T_{\min} = 0.928, T_{\max} = 0.945$	9118 measured reflections 4425 independent reflections 3005 reflections with $I > 2\sigma(I)$ $R_{int} = 0.028$ $\theta_{max} = 27.1^{\circ}, \ \theta_{min} = 2.9^{\circ}$ $h = -12 \rightarrow 11$ $k = -12 \rightarrow 12$ $l = -14 \rightarrow 13$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.096$ S = 1.00 4425 reflections 285 parameters 170 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map	Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0145P)^2 + 0.450P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.19$ e Å ⁻³ $\Delta\rho_{min} = -0.28$ e Å ⁻³ Extinction correction: <i>SHELXTL</i> (Sheldrick, 2008), Fc*=kFc[1+0.001xFc ² \lambda ³ /sin(2\theta)] ^{-1/4} Extinction coefficient: 0.0511 (16)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
S 1	0.49748 (6)	0.27503 (5)	0.07181 (5)	0.04966 (17)	
01	0.56428 (17)	0.13893 (14)	0.11958 (14)	0.0656 (4)	
O2	0.58196 (15)	0.35117 (14)	-0.02248 (13)	0.0575 (4)	
O3	0.3159 (2)	0.23691 (16)	0.31525 (14)	0.0779 (5)	
N1	0.43740 (19)	0.38162 (16)	0.18182 (15)	0.0518 (5)	
H1	0.4617	0.4614	0.1702	0.062*	
C1	-0.0183 (3)	0.2430 (4)	-0.1135 (4)	0.1257 (13)	
H1A	-0.1011	0.2483	-0.0478	0.189*	
H1B	0.0011	0.1555	-0.1495	0.189*	
H1C	-0.0368	0.3210	-0.1741	0.189*	
C2	0.2639 (3)	0.3857 (2)	-0.0279 (2)	0.0631 (6)	
H2	0.2878	0.4724	-0.0331	0.076*	
C3	0.1480 (3)	0.3764 (3)	-0.0711 (2)	0.0757 (7)	
H3	0.0932	0.4579	-0.1053	0.091*	

C4	0.1106 (3)	0.2494 (3)	-0.0651(2)	0.0753 (8)	
C5	0.1929 (3)	0.1314 (3)	-0.0146 (3)	0.0774 (8)	
H5	0.1695	0.0446	-0.0105	0.093*	
C6	0.3097 (3)	0.1372 (2)	0.0305 (2)	0.0608 (6)	
H6	0.3638	0.0557	0.0652	0.073*	
C7	0.3449 (2)	0.26491 (19)	0.02339 (17)	0.0464 (5)	
C8	0.3496 (2)	0.3491 (2)	0.29221 (19)	0.0529 (5)	
C9	0.3001 (2)	0.4641 (2)	0.37598 (18)	0.0483 (5)	
C10	0.3535 (2)	0.5957 (2)	0.34604 (17)	0.0461 (5)	
C11	0.2602 (3)	0.7245(2)	0.3255 (2)	0.0645 (6)	
H11	0.1639	0.7281	0.3285	0.077*	
C12	0.3082(4)	0.8474(3)	0.3008(2)	0.0830(9)	
H12	0 2442	0.9333	0.2871	0.100*	
C13	0.2112 0.4484 (4)	0.8444(3)	0.2964(2)	0.0825 (9)	
H13	0.4803	0.9278	0.2790	0.099*	
C14	0.1003 0.5422 (3)	0.9276 0.7185(3)	0.2790 0.3175(2)	0.0743(7)	
H14	0.6379	0.7163	0.3158	0.089*	
C15	0.0379	0.7103 0.5942 (2)	0.3415(2)	0.0576 (6)	
H15	0.5597	0.5086	0.3547	0.0570(0)	
C16	0.3377 0.2024 (3)	0.3000 0.4427(2)	0.3347 0.4767 (2)	0.0615 (6)	
H16	0.1715	0.3588	0.4888	0.074*	
C17	0.1715 0.1426 (3)	0.5500	0.5667 (2)	0.0658 (7)	
C18	0.1420(3) 0.0934(3)	0.5407(3)	0.5007(2) 0.6390(2)	0.0038(7) 0.0734(7)	
C10	0.0754(3)	0.0244(3) 0.7233(10)	0.0390(2) 0.7344(10)	0.0754(7)	0.559 (6)
U1) H10A	0.0400 (14)	0.6830	0.8048	0.115*	0.559 (6)
H10R	-0.0639	0.7386	0.3048	0.115*	0.559 (6)
C20	0.0039	0.7580	0.7000	0.113	0.559 (6)
U20 H20A	0.0368	0.0030 (7)	0.0820 (7)	0.099 (2)	0.559 (6)
1120A	0.0308	0.9339	0.7422	0.119	0.559 (6)
C21	0.0427 0.2508 (6)	0.9008	0.0100	0.119° 0.0708 (10)	0.559 (0)
	0.2008 (0)	0.8539(7)	0.0491 (7)	0.0798 (19)	0.559 (6)
1121A 1121D	0.2915	0.8123	0.7195	0.090*	0.559(0)
П21Б С22	0.2943	0.7949	0.3837 0.6127 (0)	0.090°	0.559 (0)
U22	0.2800 (10)	0.9840 (8)	0.0137 (9)	0.121(3) 0.181*	0.559 (0)
П22А Ц22В	0.3887	0.9717	0.5980	0.181*	0.559 (6)
П22D Ц22С	0.2410	1.0403	0.0772	0.101*	0.559 (0)
П22С С10А	0.2321 0.0304(13)	1.0237 0.7466 (14)	0.3400 0.7125(13)	0.181°	0.339(0)
UI9A UI0C	-0.0304(13)	0.7400 (14)	0.7123 (13)	0.064 (5)	0.441(0)
П19C	-0.0320	0.7180	0.7809	0.101*	0.441(0)
C20A	-0.0209	0.8220	0.0070	0.101°	0.441(0)
U20A	0.1314 (10)	0.8022 (9)	0.7433 (0)	0.090 (2)	0.441(6)
H20C	0.2342	0.7200	0.7574	0.115*	0.441(6)
H20D	0.1162	0.8556	0.8164	0.115^{*}	0.441(6)
U2IA	0.1841 (16)	0.8992 (12)	0.6240 (9)	0.124 (3)	0.441 (6)
	0.2709	0.842/	0.5921	0.149*	0.441(6)
H2ID	0.1080	0.8986	0.5851	0.149 [*]	0.441 (6)
U22A	0.2024 (16)	1.0297 (11)	0.5905 (14)	0.100 (5)	0.441 (6)
H22D	0.2938	1.0283	0.5419	0.239*	0.441 (6)
H22E	0.2000	1.0693	0.6697	0.239*	0.441 (6)

supporting information

H22F	0.1266	1.0864	0.5	580	0.239*	0.441 (6)
Atomic d	isplacement para	meters $(Å^2)$				
	<i>U</i> ¹¹	U ²²	<i>U</i> ³³	<i>U</i> ¹²	<i>U</i> ¹³	<i>U</i> ²³
S1	0.0597 (3)	0.0411 (3)	0.0472 (3)	-0.0092(2)	-0.0053(3)	-0.0148(2)
01	0.0807(11)	0.0439 (8)	0.0695(11)	0.0011(7)	-0.0232(9)	-0.0118(7)
02	0.0599 (9)	0.0561 (8)	0.0546 (9)	-0.0175 (7)	0.0046 (7)	-0.0182(7)
03	0.1151 (15)	0.0594 (9)	0.0603 (10)	-0.0392 (10)	0.0058 (10)	-0.0144 (8)
N1	0.0683 (12)	0.0441 (9)	0.0449 (10)	-0.0186 (8)	-0.0025 (9)	-0.0154 (8)
C1	0.081 (2)	0.166 (3)	0.153 (3)	-0.021 (2)	-0.040 (2)	-0.074 (3)
C2	0.0676 (16)	0.0556 (13)	0.0668 (16)	-0.0143 (12)	-0.0147 (13)	-0.0064 (11)
C3	0.0676 (17)	0.0838 (18)	0.0725 (18)	-0.0055 (14)	-0.0183 (14)	-0.0122 (14)
C4	0.0601 (16)	0.099 (2)	0.0725 (17)	-0.0169 (15)	-0.0041 (14)	-0.0429 (16)
C5	0.0717 (18)	0.0737 (17)	0.094 (2)	-0.0262 (15)	-0.0009 (16)	-0.0413 (15)
C6	0.0693 (16)	0.0480 (12)	0.0651 (15)	-0.0148 (11)	-0.0040 (12)	-0.0193 (11)
C7	0.0553 (13)	0.0445 (11)	0.0385 (11)	-0.0129 (9)	0.0000 (9)	-0.0141 (9)
C8	0.0640 (14)	0.0505 (12)	0.0462 (12)	-0.0160 (11)	-0.0087 (11)	-0.0104 (10)
C9	0.0536 (13)	0.0529 (11)	0.0409 (12)	-0.0134 (10)	-0.0089 (10)	-0.0116 (9)
C10	0.0568 (13)	0.0477 (11)	0.0338 (10)	-0.0093 (10)	-0.0079 (9)	-0.0112 (8)
C11	0.0732 (16)	0.0630 (14)	0.0511 (14)	-0.0033 (12)	-0.0158 (12)	-0.0035 (11)
C12	0.117 (3)	0.0498 (14)	0.0658 (17)	-0.0027 (15)	-0.0091 (17)	0.0021 (12)
C13	0.131 (3)	0.0585 (16)	0.0590 (16)	-0.0407 (18)	0.0002 (17)	-0.0082 (12)
C14	0.0855 (19)	0.0792 (18)	0.0674 (17)	-0.0391 (15)	-0.0066 (14)	-0.0155 (14)
C15	0.0634 (15)	0.0532 (12)	0.0585 (14)	-0.0144 (11)	-0.0116 (12)	-0.0122 (10)
C16	0.0682 (15)	0.0689 (14)	0.0531 (14)	-0.0278 (12)	-0.0043 (12)	-0.0164 (11)
C17	0.0645 (15)	0.0796 (16)	0.0535 (14)	-0.0271 (13)	0.0059 (12)	-0.0179 (13)
C18	0.0740 (17)	0.0854 (17)	0.0586 (15)	-0.0279 (14)	0.0098 (13)	-0.0216 (14)
C19	0.118 (6)	0.085 (5)	0.071 (5)	-0.028 (4)	0.022 (4)	-0.029 (4)
C20	0.101 (4)	0.097 (4)	0.096 (5)	-0.024 (4)	0.005 (4)	-0.041 (4)
C21	0.089 (4)	0.089 (4)	0.066 (3)	-0.018 (3)	-0.024 (3)	-0.016 (3)
C22	0.143 (7)	0.104 (6)	0.130 (6)	-0.056 (5)	-0.011 (6)	-0.037 (5)
C19A	0.095 (6)	0.092 (6)	0.058 (5)	-0.026 (5)	0.018 (4)	-0.030 (5)
C20A	0.117 (6)	0.110 (5)	0.063 (4)	-0.030 (4)	-0.006 (4)	-0.031 (4)
C21A	0.139 (7)	0.145 (7)	0.099 (6)	-0.068 (6)	0.015 (6)	-0.042 (5)
C22A	0.197 (11)	0.108 (7)	0.121 (8)	0.018 (8)	-0.002 (9)	0.009 (6)

Geometric parameters (Å, °)

<u>S1—01</u>	1.4179 (15)	C14—C15	1.384 (3)	
S1—O2	1.4329 (14)	C14—H14	0.9300	
S1—N1	1.6488 (15)	C15—H15	0.9300	
S1—C7	1.743 (2)	C16—C17	1.424 (3)	
O3—C8	1.205 (2)	C16—H16	0.9300	
N1—C8	1.387 (3)	C17—C18	1.178 (3)	
N1—H1	0.8600	C18—C19	1.472 (6)	
C1—C4	1.512 (4)	C18—C19A	1.479 (7)	
C1—H1A	0.9600	C19—C20	1.550 (8)	

C1—H1B	0.9600	C19—H19A	0.9700
C1—H1C	0.9600	C19—H19B	0.9700
C2—C3	1.368 (3)	C20—C21	1.595 (6)
C2—C7	1.380 (3)	C20—H20A	0.9700
С2—Н2	0.9300	C20—H20B	0.9700
C3—C4	1.377 (3)	C21—C22	1.374 (6)
С3—Н3	0.9300	C21—H21A	0.9700
C4—C5	1.365 (4)	C21—H21B	0.9700
C5—C6	1.378 (3)	C22—H22A	0.9600
С5—Н5	0.9300	C22—H22B	0.9600
C6—C7	1.371 (3)	C22—H22C	0.9600
С6—Н6	0.9300	C19A—C20A	1.567 (9)
C8—C9	1,493 (3)	С19А—Н19С	0.9700
C9—C16	1.335 (3)	C19A—H19D	0.9700
C9-C10	1 482 (3)	C_{20A} C_{21A}	1 570 (8)
C10—C15	1.373(3)	C_{20A} H20C	0.9700
C10-C11	1.375(3)	$C_{20}A = H_{20}D$	0.9700
C11-C12	1.302(3) 1 373(3)	C_{20} C_{21} C_{22} C_{21}	1 321 (8)
C11 H11	0.0300	$C_{21A} = C_{22A}$	0.9700
C_{12} C_{13}	1 358 (4)	C_{21A} H_{21D}	0.9700
C12 - C13	0.0300	$C_{21}A = H_{21}D$	0.9700
C_{12} C_{14} C_{14}	1.365(4)	$C_{22}A$ $H_{22}E$	0.9000
$C_{13} = C_{14}$	1.303 (4)	$C_{22}A = H_{22}E$	0.9000
С15—н15	0.9300	C22A—H22F	0.9000
01-81-02	118.88 (10)	C15—C14—H14	120.0
01—S1—N1	109.36 (9)	C10-C15-C14	120.8 (2)
02—S1—N1	103.78 (8)	C10—C15—H15	119.6
01 - 51 - C7	109.46 (9)	C14—C15—H15	119.6
02 - 81 - C7	109.04 (9)	C9-C16-C17	123 9 (2)
N1—S1—C7	105 40 (9)	C9-C16-H16	118.1
C8-N1-S1	123 31 (13)	C17—C16—H16	118.1
C8—N1—H1	118 3	C18 - C17 - C16	178.4(3)
S1—N1—H1	118.3	C17 - C18 - C19	175.1(3)
C4-C1-H1A	109.5	C17 - C18 - C19A	170.7(8)
C4-C1-H1B	109.5	C19-C18-C19A	170.7(0) 12.7(12)
$H_1 A - C_1 - H_1 B$	109.5	C18 - C19 - C20	108.9 (6)
C4-C1-H1C	109.5	C18 - C19 - C20	100.9 (0)
	109.5	C_{20} C_{10} H_{10A}	109.9
HIB-C1-HIC	109.5	C_{18} C_{19} H_{19B}	109.9
$C_3 C_2 C_7$	110.2 (2)	C_{10} C_{10} H_{10B}	109.9
$C_3 = C_2 = C_7$	119.2 (2)	H10A C10 H10P	109.9
C_{3} C_{2} H_{2}	120.4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100.3 114.3(0)
$C_{1}^{2} = C_{2}^{2} = C_{1}^{2}$	120.4	$C_{19} = C_{20} = C_{21}$	109 7
$C_2 = C_3 = C_4$	121.0 (5)	$C_{13} = C_{20} = H_{20} A$	108.7
$C_2 = C_3 = 113$	117.4	C_{10} C_{20} H_{20} H_{20}	100.7
C_{4} C_{5} C_{4} C_{2}	117.2 118.0 (2)	$C_{17} = C_{20} = H_{20} = H_{20}$	100.7
$C_{5} = C_{4} = C_{5}$	110.0(2)	$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 2$	100.7
C_{3}	121.0(3)	$\Pi_{2} UA = U_{2} U = \Pi_{2} UD$	107.0
UJ-U4-U1	120.2 (3)	$U_{22} - U_{21} - U_{20}$	113.0(0)

C4—C5—C6	121.8 (2)	C22—C21—H21A	108.8
С4—С5—Н5	119.1	C20—C21—H21A	108.8
С6—С5—Н5	119.1	C22—C21—H21B	108.8
C7—C6—C5	119.1 (2)	C20—C21—H21B	108.8
С7—С6—Н6	120.5	H21A—C21—H21B	107.7
С5—С6—Н6	120.5	C18—C19A—C20A	110.9 (8)
C6—C7—C2	120.2 (2)	C18—C19A—H19C	109.5
C6—C7—S1	120.43 (17)	C20A—C19A—H19C	109.5
C2—C7—S1	119.29 (16)	C18—C19A—H19D	109.5
O3—C8—N1	121.30 (18)	C20A—C19A—H19D	109.5
O3—C8—C9	124.1 (2)	H19C—C19A—H19D	108.0
N1—C8—C9	114.59 (17)	C19A—C20A—C21A	97.2 (11)
C16—C9—C10	122.48 (18)	C19A—C20A—H20C	112.3
C16—C9—C8	116.03 (19)	C21A—C20A—H20C	112.3
С10—С9—С8	121.45 (17)	C19A—C20A—H20D	112.3
C15—C10—C11	118.2 (2)	C21A—C20A—H20D	112.3
C15—C10—C9	121.44 (19)	H20C-C20A-H20D	109.9
C11—C10—C9	120.4 (2)	C22A—C21A—C20A	135.1 (11)
C12—C11—C10	120.7 (3)	C22A—C21A—H21C	103.4
C12—C11—H11	119.6	C20A—C21A—H21C	103.4
C10—C11—H11	119.6	C22A—C21A—H21D	103.4
C13—C12—C11	120.5 (3)	C20A—C21A—H21D	103.4
C13—C12—H12	119.8	H21C—C21A—H21D	105.2
C11—C12—H12	119.8	C21A—C22A—H22D	109.5
C12—C13—C14	119.8 (2)	C21A—C22A—H22E	109.5
С12—С13—Н13	120.1	H22D—C22A—H22E	109.5
С14—С13—Н13	120.1	C21A—C22A—H22F	109.5
C13—C14—C15	120.0 (3)	H22D—C22A—H22F	109.5
C13—C14—H14	120.0	H22E—C22A—H22F	109.5

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1···O2 ⁱ	0.86	2.32	2.947 (2)	130

Symmetry code: (i) -x+1, -y+1, -z.