Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Bis(4,4'-sulfanediyldipyridinium) tetrachloridonickelate(II) dichloride

Julia Werner,* Inke Jess and Christian Näther

Institut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-EythStrasse 2, 24118 Kiel, Germany
Correspondence e-mail: jwerner@ac.uni-kiel.de

Received 14 November 2012; accepted 12 December 2012

Key indicators: single-crystal X-ray study; $T=200 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.037 ; w R$ factor $=0.084 ;$ data-to-parameter ratio $=20.9$.

In the title compound, $\left(\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{~S}\right)_{2}\left[\mathrm{NiCl}_{4}\right] \mathrm{Cl}_{2}$, the Ni^{2+} cation is tetrahedrally coordinated by four chloride anions. Two 4, $4^{\prime}-$ sulfanediyldipyridinium cations and two non-coordinating chloride anions are connected via $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogenbonding interactions into 20 -membered rings, in the middle of which are situated the $\left[\mathrm{NiCl}_{4}\right]^{2-}$ complex anions. These rings are stacked in the b-axis direction. The Ni^{2+} cation is located on a twofold rotation axis, whereas the chloride anions and the $4,4^{\prime}$-sulfanediyldipyridinium cations occupy general positions.

Related literature

For background information on this project, see: Boeckmann \& Näther (2010, 2011); Wöhlert et al. (2011). For the crystal structure of 4,4'-thiodipyridine, see: Vaganova et al. (2004).

Experimental

Crystal data

$$
\begin{array}{ll}
\left(\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{~S}\right)_{2}\left[\mathrm{NiCl}_{4}\right] \mathrm{Cl}_{2} & \text { Monoclinic, } \mathrm{C} 2 / c \\
M_{r}=651.93 & a=19.0497(9) \AA
\end{array}
$$

$$
\begin{aligned}
& b=8.0534(5) \AA \\
& c=17.7883(11) \AA \\
& \beta=92.368(6)^{\circ} \AA^{3} \\
& V=2726.7(3) \AA^{3} \\
& Z=4
\end{aligned}
$$

Data collection

Stoe IPDS-1 diffractometer Absorption correction: numerical (X-SHAPE and X-RED32; Stoe \& Cie, 2008)
$T_{\text {min }}=0.789, T_{\text {max }}=0.899$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$	151 parameters
$w R\left(F^{2}\right)=0.084$	H-atom parameters constrained
$S=0.99$	$\Delta \rho_{\max }=0.47 \mathrm{e} \AA \AA^{-3}$
3162 reflections	$\Delta \rho_{\min }=-0.43 \mathrm{e}^{-3}$

Mo $K \alpha$ radiation
$\mu=1.47 \mathrm{~mm}^{-1}$
$T=200 \mathrm{~K}$
$0.32 \times 0.13 \times 0.07 \mathrm{~mm}$

10707 measured reflections 3162 independent reflections 2308 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.062$

151 parameters
$\Delta \rho_{\max }=0.47 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.43$ e \AA^{-3}

Table 1
Selected bond lengths (\AA).

Ni1-Cl1	$2.2569(7)$	$\mathrm{Ni} 1-\mathrm{Cl} 2$	$2.2706(6)$

Table 2
Hydrogen-bond geometry ($\AA \AA^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 1 N 2 \cdots \mathrm{Cl}{ }^{\mathrm{i}}$	0.88	2.12	$2.987(3)$	168
$\mathrm{~N} 1-\mathrm{H} 1 N 1 \cdots \mathrm{Cl} 3$	0.88	2.32	$3.078(3)$	144

Symmetry code: (i) $-x+1, y,-z+\frac{3}{2}$.
Data collection: $X-A R E A$ (Stoe \& Cie, 2008); cell refinement: X $A R E A$; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2011); software used to prepare material for publication: publCIF (Westrip, 2010).

We gratefully acknowledge financial support by the DFG (project No. NA 720/3-1) and the State of Schleswig-Holstein. We thank Professor Dr Wolfgang Bensch for access to his experimental facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2703).

References

Boeckmann, J. \& Näther, C. (2010). Dalton Trans. 39, 11019-11026.
Boeckmann, J. \& Näther, C. (2011). Chem. Commun. 47, 7104-7106.
Brandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Stoe \& Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe \& Cie, Darmstadt, Germany.
Vaganova, E., Wachtel, E., Rozenberg, H., Khodorkovsky, V., Leitus, V., Shimon, L., Reich, S. \& Yitzchaik, S. (2004). Chem. Mater. 16, 3976-3979. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Wöhlert, S., Boeckmann, J., Wriedt, M. \& Näther, C. (2011). Angew. Chem. Int. Ed. 50, 6920-6923.

supporting information

Acta Cryst. (2013). E69, m59 [https://doi.org/10.1107/S1600536812050623]

Bis(4,4'-sulfanediyldipyridinium) tetrachloridonickelate(II) dichloride

Julia Werner, Inke Jess and Christian Näther

S1. Comment

The title compound was prepared within a project on the synthesis and properties of transition metal thiocyanato coordination polymers (Boeckmann \& Näther, 2010, 2011; Wöhlert et al., 2011). During our attempts to prepare a onedimensional coordination polymer based on 4-chloropyridine as a co-ligand, crystals of the title compound, $\left(\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{~S}^{+}\right)_{2}\left[\mathrm{NiCl}_{4}\right] \mathrm{Cl}_{2}$ (I), have been obtained accidentally and were characterized by single crystal X-ray diffraction.
In the crystal structure of (I) the Ni^{2+} cation is coordinated by four chloride anions within a slightly distorted tetrahedral coordination environment. The complex $\left[\mathrm{NiCl}_{4}\right]^{2-}$ anions are surrounded by two $4,4^{\prime}$-sulfanediyldipyridinium cations and two chloride counter-anions (Fig. 1 and Table 1). Intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonding is found between the 4,4'sulfanediyldipyridinium cations and the non-coordinating chloride anions, which leads to the formation of 20-membered rings (Fig. 2 and Table 2). These rings are stacked in the direction of the b axis.
The dihedral angle between the pyridine rings in the cations amounts to 52.57 (7) ${ }^{\circ}$. The corresponding bond lengths and angles are comparable to those in the neutral 4,4'-thiodipyridine molecule. Slight differences are found with respect to the dihedral angle between the pyridine rings which amounts to 65.4° in the neutral molecule (Vaganova et al., 2004).

S2. Experimental

Barium thiocyanate trihydrate and 4-chloropyridine hydrochloride were purchased from Alfa Aesar, $\mathrm{Ni}\left(\mathrm{SO}_{4}\right)_{2} 6 \mathrm{H}_{2} \mathrm{O}$ was obtained from Merck. $\mathrm{Ni}(\mathrm{NCS})_{2}$ was prepared by stirring $\mathrm{Ba}(\mathrm{NCS})_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(17.5 \mathrm{~g}, 56.9 \mathrm{mmol})$ and $\mathrm{NiSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}(15.0 \mathrm{~g}$, $57 \mathrm{mmol})$ in water $(500 \mathrm{~mL})$. The white residue of BaSO_{4} was filtered off and the solution evaporated using a rotary evaporator. The homogeneity of the product was investigated by X-ray powder diffraction. The title compound was prepared by the reaction of $26.2 \mathrm{mg} \mathrm{Ni}(\mathrm{NCS})_{2}(0.15 \mathrm{mmol})$ and 97.5 mg 4 -chloropyridine hydrochloride $(0.60 \mathrm{mmol})$ in 1.5 mL ethanol at 354 K in a closed 10 mL glas culture tube. After one day blue needles of the title compound were obtained. The formation of 4,4'-thiodipyridine starting from 4-chloropyridine in an SCN^{-}-containing environment and the presence of free Cl^{-}and complex $\left[\mathrm{NiCl}_{4}\right]^{2-}$ anions seem to be a result of cleavage reactions of both the 4-chloropyridine and SCN^{-}anions. However, the exact mechanism is unclear.

S3. Refinement

The aromatic H atoms (C - and N -bound) were located in a difference map but were positioned with idealized geometries and were refined isotropically with $U_{\mathrm{iso}}(\mathrm{H})=1.2 \cdot U_{\mathrm{eq}}(\mathrm{C}, \mathrm{N})$ using a riding model approximation with $\mathrm{C}-\mathrm{H}=0.95 \AA$ and N $-\mathrm{H}=0.88 \AA$.

Figure 1
Crystal structure of the title compound with labelling and displacement ellipsoids drawn at the 50% probability level.
[Symmetry code: $\mathrm{i}=-\mathrm{x}+1, \mathrm{y},-\mathrm{z}+3 / 2$.]

Figure 2
Crystal structure of the title compound in a view along the b-axis. $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonding is shown as dashed lines.

Bis(4,4'-sulfanediyldipyridinium) tetrachloridonickelate(II) dichloride

Crystal data

$\left(\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{~S}\right)_{2}\left[\mathrm{NiCl}_{4}\right] \mathrm{Cl}_{2}$
$M_{r}=651.93$
Monoclinic, C2/c
Hall symbol: -C 2yc
$a=19.0497$ (9) \AA
$b=8.0534$ (5) \AA
$c=17.7883(11) \AA$
$\beta=92.368(6)^{\circ}$
$V=2726.7(3) \AA^{3}$
$Z=4$

Data collection

Stoe IPDS-1

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Phi scans
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe \& Cie, 2008)
$T_{\text {min }}=0.789, T_{\text {max }}=0.899$
$F(000)=1320$
$D_{\mathrm{x}}=1.588 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 10707 reflections
$\theta=2.3-27.9^{\circ}$
$\mu=1.47 \mathrm{~mm}^{-1}$
$T=200 \mathrm{~K}$
Needle, blue
$0.32 \times 0.13 \times 0.07 \mathrm{~mm}$

10707 measured reflections
3162 independent reflections
2308 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.062$
$\theta_{\text {max }}=27.9^{\circ}, \theta_{\text {min }}=2.3^{\circ}$
$h=-23 \rightarrow 22$
$k=-10 \rightarrow 10$
$l=-23 \rightarrow 23$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.084$
$S=0.99$
3162 reflections
151 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0463 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.47 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.43$ e \AA^{-3}
Extinction correction: SHELXL, $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.0013 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\mathrm{eq}}$
Ni1	0.5000	$0.66427(5)$	0.7500	$0.02527(13)$
C11	$0.59273(4)$	$0.81985(9)$	$0.71816(4)$	$0.0465(2)$
Cl2	$0.55194(4)$	$0.49082(8)$	$0.83619(3)$	$0.03563(17)$

Cl3	$0.75812(4)$	$0.08791(10)$	$0.90585(4)$	$0.04236(19)$
N1	$0.73877(13)$	$0.1738(3)$	$0.73764(14)$	$0.0425(6)$
H1N1	0.7637	0.1582	0.7798	0.051^{*}
C1	$0.76591(16)$	$0.1281(4)$	$0.67229(18)$	$0.0424(7)$
H1	0.8121	0.0839	0.6718	0.051^{*}
C2	$0.72674(14)$	$0.1451(3)$	$0.60598(16)$	$0.0366(6)$
H2	0.7444	0.1073	0.5598	0.044^{*}
C3	$0.66077(14)$	$0.2189(3)$	$0.60792(14)$	$0.0305(5)$
C4	$0.63496(14)$	$0.2699(3)$	$0.67604(14)$	$0.0319(5)$
H4	0.5905	0.3227	0.6779	0.038^{*}
C5	$0.67510(14)$	$0.2424(3)$	$0.74071(15)$	$0.0351(6)$
H5	0.6575	0.2724	0.7880	0.042^{*}
S1	$0.61640(4)$	$0.26112(10)$	$0.52047(4)$	$0.03808(18)$
N2	$0.38935(13)$	$0.1530(3)$	$0.55137(14)$	$0.0394(5)$
H1N2	0.3443	0.1351	0.5570	0.047^{*}
C6	$0.40903(15)$	$0.2520(4)$	$0.49540(15)$	$0.0383(6)$
H6	0.3746	0.2986	0.4615	0.046^{*}
C7	$0.47845(14)$	$0.2859(3)$	$0.48701(14)$	$0.0313(5)$
H7	0.4926	0.3573	0.4479	0.038^{*}
C8	$0.52829(13)$	$0.2148(3)$	$0.53643(13)$	$0.0262(5)$
C9	$0.50641(14)$	$0.1074(3)$	$0.59261(14)$	$0.0284(5)$
H9	0.5398	0.0541	0.6257	0.034^{*}
C10	$0.43635(15)$	$0.0807(3)$	$0.59898(15)$	$0.0357(6)$
H10	0.4206	0.0100	0.6376	0.043^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	$0.0281(3)$	$0.0202(2)$	$0.0271(2)$	0.000	$-0.00296(16)$	0.000
C11	$0.0355(4)$	$0.0461(4)$	$0.0574(4)$	$-0.0070(3)$	$-0.0039(3)$	$0.0256(3)$
C12	$0.0370(4)$	$0.0359(3)$	$0.0341(3)$	$0.0052(3)$	$0.0038(2)$	$0.0137(3)$
C13	$0.0275(4)$	$0.0549(4)$	$0.0440(4)$	$0.0065(3)$	$-0.0057(3)$	$-0.0111(3)$
N1	$0.0347(15)$	$0.0451(13)$	$0.0462(14)$	$0.0034(11)$	$-0.0153(10)$	$-0.0021(11)$
C1	$0.0290(17)$	$0.0392(16)$	$0.0586(19)$	$0.0058(11)$	$-0.0034(12)$	$0.0004(13)$
C2	$0.0266(15)$	$0.0371(15)$	$0.0462(15)$	$0.0021(11)$	$0.0050(10)$	$-0.0019(12)$
C3	$0.0248(14)$	$0.0302(12)$	$0.0365(13)$	$-0.0030(9)$	$-0.0002(9)$	$0.0021(10)$
C4	$0.0256(14)$	$0.0339(13)$	$0.0359(13)$	$0.0016(10)$	$-0.0006(9)$	$-0.0040(10)$
C5	$0.0351(16)$	$0.0326(13)$	$0.0372(14)$	$0.0001(11)$	$-0.0035(10)$	$-0.0023(11)$
S1	$0.0278(4)$	$0.0548(4)$	$0.0316(3)$	$-0.0045(3)$	$0.0014(2)$	$0.0041(3)$
N2	$0.0240(13)$	$0.0422(13)$	$0.0520(14)$	$-0.0035(10)$	$-0.0005(9)$	$-0.0154(11)$
C6	$0.0339(16)$	$0.0375(14)$	$0.0421(15)$	$0.0076(12)$	$-0.0139(11)$	$-0.0110(12)$
C7	$0.0360(16)$	$0.0305(13)$	$0.0269(12)$	$0.0033(10)$	$-0.0051(9)$	$-0.0018(9)$
C8	$0.0265(13)$	$0.0239(11)$	$0.0280(11)$	$0.0017(9)$	$-0.0005(9)$	$-0.0082(9)$
C9	$0.0282(14)$	$0.0236(11)$	$0.0330(12)$	$0.0000(9)$	$-0.0039(9)$	$-0.0021(9)$
C10	$0.0384(17)$	$0.0292(13)$	$0.0397(14)$	$-0.0060(11)$	$0.0038(11)$	$-0.0047(11)$

Geometric parameters (A, ${ }^{\circ}$)

Ni1-Cl1	2.2569 (7)	C4-H4	0.9500
$\mathrm{Ni} 1-\mathrm{Cl}^{\text {i }}$	2.2569 (7)	C5-H5	0.9500
$\mathrm{Ni} 1-\mathrm{Cl} 2^{\text {i }}$	2.2706 (7)	S1-C8	1.754 (3)
Ni1-Cl2	2.2706 (6)	N2-C10	1.340 (4)
N1-C5	1.336 (4)	N2-C6	1.341 (4)
N1-C1	1.343 (4)	N2-H1N2	0.8800
N1-H1N1	0.8800	C6-C7	1.365 (4)
C1-C2	1.376 (4)	C6-H6	0.9500
C1-H1	0.9500	C7-C8	1.391 (3)
C2-C3	1.392 (4)	C7-H7	0.9500
C2-H2	0.9500	C8-C9	1.398 (3)
C3-C4	1.389 (4)	C9-C10	1.361 (4)
C3-S1	1.772 (3)	C9-H9	0.9500
C4-C5	1.373 (4)	C10-H10	0.9500
Cl1-Nil- $\mathrm{Cl1}^{\text {i }}$	112.56 (5)	N1-C5-H5	119.7
Cl1-Ni1- $\mathrm{Cl2}^{\text {i }}$	119.73 (3)	C4-C5-H5	119.7
$\mathrm{Cl1}{ }^{\text {i }}-\mathrm{Ni} 1-\mathrm{Cl}^{\text {i }}$	100.79 (2)	C8-S1-C3	104.00 (12)
Cl1-Ni1-Cl2	100.79 (2)	C10-N2-C6	121.9 (3)
C11--Ni1-C12	119.73 (3)	C10-N2-H1N2	119.1
$\mathrm{Cl2}-\mathrm{Ni} 1-\mathrm{Cl} 2$	104.07 (4)	C6-N2-H1N2	119.1
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 1$	122.1 (2)	N2-C6-C7	120.1 (2)
C5-N1-H1N1	119.0	N2-C6-H6	119.9
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N} 1$	119.0	C7-C6-H6	119.9
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	120.0 (3)	C6-C7-C8	119.2 (3)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1$	120.0	C6-C7-H7	120.4
C2- $21-\mathrm{H} 1$	120.0	C8-C7-H7	120.4
C1-C2-C3	118.7 (3)	C7-C8-C9	119.4 (2)
C1-C2-H2	120.7	C7-C8-S1	116.3 (2)
C3-C2-H2	120.7	C9-C8-S1	124.26 (19)
C4-C3-C2	120.0 (2)	C10-C9-C8	118.6 (2)
C4-C3-S1	122.4 (2)	C10-C9-H9	120.7
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{S} 1$	117.3 (2)	C8-C9-H9	120.7
C5-C4-C3	118.6 (3)	N2-C10-C9	120.7 (3)
C5-C4-H4	120.7	N2-C10-H10	119.7
C3-C4-H4	120.7	C9-C10-H10	119.7
N1-C5-C4	120.5 (3)		

Symmetry code: (i) $-x+1, y,-z+3 / 2$.
Hydrogen-bond geometry (A, o)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 1 N 2 \cdots \mathrm{Cl} 3^{i}$	0.88	2.12	$2.987(3)$	168
$\mathrm{~N} 1-\mathrm{H} 1 N 1 \cdots \mathrm{Cl} 3$	0.88	2.32	$3.078(3)$	144

Symmetry code: (i) $-x+1, y,-z+3 / 2$.

