Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

N, N^{\prime}-(Pyridine-2,6-diyl)dibenzamide

Parisa Mahboubi Anarjan, ${ }^{\mathbf{a}} \ddagger$ Nader Noshiranzadeh, ${ }^{\mathbf{b} *}$ Rahman Bikas, ${ }^{\text {b }}$ Magdalena Woińska ${ }^{\text {c }}$ and Krzysztof Wozniak ${ }^{\text {c }}$

${ }^{\text {a }}$ Sama Technical and Vocational Training College, Islamic Azad University, Mamaghan Branch, Mamaghan, Iran, ${ }^{\mathbf{b}}$ Department of Chemistry, University of Zanjan, 45195-313 Zanjan, Iran, and ${ }^{\text {c }}$ Chemistry Department, The University of Warsaw, Pasteura 1, 02093 Warszawa, Poland
Correspondence e-mail: nadernoshiranzadeh@yahoo.com
Received 5 December 2012; accepted 8 December 2012
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.044 ; w R$ factor $=0.090 ;$ data-to-parameter ratio $=11.6$.

The molecule of the title compound, $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2}$, is completed by the application of crystallographic twofold symmetry, with the pyridine N atom lying on the rotation axis. The molecular structure is approximately planar, the dihedral angle between the mean planes of the pyridine and benzene rings being $7.53(11)^{\circ}$. In the crystal, $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link the molecules into a two-dimensional array perpendicular to the c axis.

Related literature

For metal complexes of carboxamide ligands, see: Adolph et al. (2012); Amiri et al. (2009).

Experimental

Crystal data
$\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2}$
$M_{r}=317.34$
Tetragonal, $P 4{ }_{1}{ }_{2}{ }_{2}{ }^{2}$
$c=58.701(3) \AA$
$V=1486.02(8) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation

Data collection
Oxford Diffraction Xcalibur Opal diffractometer
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010) $T_{\text {min }}=0.986, T_{\text {max }}=1.000$

Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.090$
$S=1.23$
1298 reflections
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
$0.21 \times 0.09 \times 0.02 \mathrm{~mm}$

1298 measured reflections

16463 independent reflections
1168 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.065$

Table 1
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 \cdots 1^{\mathrm{i}}$	0.86	2.25	$3.030(2)$	151

Symmetry code: (i) $x-1, y, z$.
Data collection: CrysAlis CCD (Oxford Diffraction, 2010); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: WinGX (Farrugia, 2012) and DIAMOND (Brandenburg \& Putz, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

The authors are grateful to the University of Zanjan, Islamic Azad University (Mamagghan Branch) and the University of Warsaw for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5180).

References

Adolph, M., Zevaco, T. A., Walter, O., Dinjus, E. \& Döring, M. (2012). Polyhedron, 48, 92-98.
Amiri, A., Amirnasr, M., Meghdadi, S., Mereiter, K., Ghodsi, V. \& Gholami, A. (2009). Inorg. Chim. Acta, 362, 3934-3940.

Brandenburg, K. \& Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Oxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

[^0]
supporting information

Acta Cryst. (2013). E69, o102 [https://doi.org/10.1107/S1600536812050167]
N, N^{\prime}-(Pyridine-2,6-diyl)dibenzamide

Parisa Mahboubi Anarjan, Nader Noshiranzadeh, Rahman Bikas, Magdalena Woińska and Krzysztof Wozniak

S1. Comment

Carboxamides are compounds which are prepared by the reaction of amines and acylhalides. They are important $\mathrm{N}, \mathrm{O}-$ donor ligands and have widespread applications in fields such as in coordination chemistry (Adolph et al. 2012 \& Amiri et al. 2009). As biologically active compounds, carboxamides find application in the treatment of diseases such as cancer, rheumatic disorders and inhibitors of calpain (calcium dependant cysteine proteases).
The molecular structure of the title compound is shown in Fig. 1. The molecule is approximately planar with the dihedral angle between the mean planes of the pyridine and benzene rings being 7.53 (11) ${ }^{\circ}$. Intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, with the carbonyl-O atoms acting as acceptors, link molecules into a two-dimensional array perpendicular to the c axis as illustrated in Fig. 2.

S2. Experimental

All reagents were commercially available and used as received. To a magnetically stirred solution of 2,6-diaminopyridine $(0.109 \mathrm{~g}, 1 \mathrm{mmol})$ and triethylamine $(0.277 \mathrm{ml}, 2 \mathrm{mmol})$ in dichloromethane $(5 \mathrm{ml})$ was added drop-wise a mixture of benzoyl chloride ($0.232 \mathrm{ml}, 2 \mathrm{mmol}$) in dichloromethane $(2 \mathrm{ml})$ at $-10^{\circ} \mathrm{C}$ over 15 min . The mixture was allowed to warm to room temperature and stirred for 48 h at room temperature. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography (silica gel; petroleum ether-ethyl acetate) to give the title compound as a yellow powder. Crystals of the title compound were obtained from its methanol solution by slow solvent evaporation. Yield: 85%. Melting point: 407-408 K. Selected IR (KBr, cm^{-1}): 3245 (N—H), 3061 (C—H), 1653
$\left(\mathrm{C}=\mathrm{O}_{\text {amide }}\right), 1584(\mathrm{C}=\mathrm{N}), 1461(\mathrm{C}=\mathrm{C})$.

S3. Refinement

The hydrogen atom of the $\mathrm{N}-\mathrm{H}$ group was positioned geometrically and refined as a riding atoms with $\mathrm{N}-\mathrm{H}=0.86 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})$. The $\mathrm{C}-\mathrm{H}$ hydrogen atoms were positioned geometrically and refined as riding atoms with $\mathrm{C}-\mathrm{H}=0.93 \AA$, and with $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$.

Figure 1
Molecular structure of the title compound showing displacement ellipsoids at the 50% probability level. The molecule has twofold symmetry and the unlabelled atoms are related by the symmetry operation $y, x,-z$.

Figure 2
Hydrogen bonding in the title compound leading to supramolecular layers in the $a b$ plane. The green dashed lines indicate $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Crystal data

$\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2}$
$M_{r}=317.34$
Tetragonal, $P 4_{1} 2_{1} 2$
Hall symbol: P 4abw 2nw
$a=5.0314$ (1) Å
$c=58.701$ (3) \AA
$V=1486.02(8) \AA^{3}$
$Z=4$
$F(000)=664$

Data collection

Oxford Diffraction Xcalibur Opal diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 8.4441 pixels mm^{-1}
ω scan
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
$T_{\text {min }}=0.986, T_{\text {max }}=1.000$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.090$
$S=1.23$
1298 reflections
112 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
$D_{\mathrm{x}}=1.418 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3266 reflections
$\theta=1.7-28.5^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Block, yellow
$0.21 \times 0.09 \times 0.02 \mathrm{~mm}$

16463 measured reflections
1298 independent reflections
1168 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.065$
$\theta_{\text {max }}=24.9^{\circ}, \theta_{\text {min }}=2.8^{\circ}$
$h=0 \rightarrow 5$
$k=0 \rightarrow 4$
$l=-64 \rightarrow 68$

> Hydrogen site location: inferred from \quad neighbouring sites
> $\mathrm{H}-$ atom parameters constrained
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0 . P)^{2}+0.9748 P\right]$
> \quad where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }<0.001$
> $\Delta \rho_{\max }=0.18$ e \AA^{-3}
> $\Delta \rho_{\min }=-0.16 \mathrm{e} \AA^{-3}$
> Extinction correction: $S H E L X L 97($ Sheldrick, $\quad 2008), \mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
> Extinction coefficient: $0.0091(16)$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors $(\mathrm{gt}) \mathrm{etc}$. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
O1	$1.3618(3)$	$0.6195(3)$	$0.04884(3)$	$0.0204(4)$
N1	$0.8073(4)$	$0.8073(4)$	0.0000	$0.0135(6)$
N2	$0.9407(4)$	$0.6428(4)$	$0.03476(3)$	$0.0143(5)$

H2	0.7819	0.5819	0.0362	0.017^{*}
C7	$1.0307(5)$	$0.3655(5)$	$0.06778(4)$	$0.0144(5)$
C5	$0.9853(5)$	$0.8265(5)$	$0.01690(3)$	$0.0138(5)$
C8	$0.8160(5)$	$0.1943(5)$	$0.06481(4)$	$0.0171(5)$
H8	0.7180	0.1997	0.0514	0.020^{*}
C3	$1.1969(5)$	$1.1969(5)$	0.0000	$0.0159(7)$
H3	1.3276	1.3276	0.0000	0.019^{*}
C6	$1.1258(5)$	$0.5538(5)$	$0.04983(4)$	$0.0143(5)$
C12	$1.1738(5)$	$0.3566(5)$	$0.08806(4)$	$0.0168(5)$
H12	1.3187	0.4690	0.0901	0.020^{*}
C4	$1.1857(5)$	$1.0149(5)$	$0.01758(4)$	$0.0154(5)$
H4	1.3082	1.0188	0.0294	0.018^{*}
C11	$1.1026(5)$	$0.1821(5)$	$0.10523(4)$	$0.0210(6)$
H11	1.1967	0.1802	0.1189	0.025^{*}
C9	$0.7480(5)$	$0.0157(5)$	$0.08184(4)$	$0.0186(6)$
H9	0.6066	-0.1007	0.0797	0.022^{*}
C10	$0.8902(5)$	$0.0100(5)$	$0.10204(4)$	$0.0200(6)$
H10	0.8434	-0.1091	0.1135	0.024^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0118(9)$	$0.0265(10)$	$0.0231(9)$	$-0.0002(7)$	$-0.0012(7)$	$0.0046(8)$
N1	$0.0144(9)$	$0.0144(9)$	$0.0118(13)$	$0.0035(12)$	$0.0000(8)$	$0.0000(8)$
N2	$0.0115(11)$	$0.0178(11)$	$0.0135(9)$	$-0.0022(9)$	$-0.0010(8)$	$0.0016(8)$
C7	$0.0149(12)$	$0.0137(12)$	$0.0147(12)$	$0.0023(10)$	$0.0005(10)$	$-0.0025(10)$
C5	$0.0164(12)$	$0.0140(13)$	$0.0110(11)$	$0.0045(10)$	$0.0008(10)$	$-0.0007(9)$
C8	$0.0165(13)$	$0.0180(13)$	$0.0167(12)$	$0.0031(11)$	$-0.0013(10)$	$-0.0004(10)$
C3	$0.0157(11)$	$0.0157(11)$	$0.0162(17)$	$-0.0016(14)$	$0.0011(10)$	$-0.0011(10)$
C6	$0.0175(13)$	$0.0160(13)$	$0.0094(11)$	$0.0022(10)$	$0.0003(10)$	$-0.0033(9)$
C12	$0.0197(13)$	$0.0164(13)$	$0.0143(11)$	$-0.0016(11)$	$-0.0006(10)$	$-0.0013(10)$
C4	$0.0144(13)$	$0.0181(13)$	$0.0136(11)$	$0.0018(10)$	$-0.0018(10)$	$-0.0024(10)$
C11	$0.0262(14)$	$0.0210(14)$	$0.0158(12)$	$0.0011(11)$	$-0.0039(10)$	$0.0007(11)$
C9	$0.0175(13)$	$0.0173(13)$	$0.0211(12)$	$0.0003(11)$	$0.0018(11)$	$-0.0015(10)$
C10	$0.0254(14)$	$0.0162(13)$	$0.0184(12)$	$0.0024(11)$	$0.0062(11)$	$0.0038(11)$

Geometric parameters ($A,{ }^{\circ}$)

$\mathrm{O} 1-\mathrm{C} 6$	$1.234(3)$	$\mathrm{C} 3-\mathrm{C} 4^{\mathrm{i}}$	$1.381(3)$
$\mathrm{N} 1-\mathrm{C} 5$	$1.340(3)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.381(3)$
$\mathrm{N} 1-\mathrm{C} 5^{\mathrm{i}}$	$1.340(3)$	$\mathrm{C} 3-\mathrm{H} 3$	0.9300
$\mathrm{~N} 2-\mathrm{C} 6$	$1.360(3)$	$\mathrm{C} 12-\mathrm{C} 11$	$1.384(3)$
$\mathrm{N} 2-\mathrm{C} 5$	$1.415(3)$	$\mathrm{C} 12-\mathrm{H} 12$	0.9300
$\mathrm{~N} 2-\mathrm{H} 2$	0.8600	$\mathrm{C} 4-\mathrm{H} 4$	0.9300
$\mathrm{C} 7-\mathrm{C} 12$	$1.392(3)$	$\mathrm{C} 11-\mathrm{C} 10$	$1.388(3)$
$\mathrm{C} 7-\mathrm{C} 8$	$1.393(3)$	$\mathrm{C} 11-\mathrm{H} 11$	0.9300
$\mathrm{C} 7-\mathrm{C} 6$	$1.496(3)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.385(3)$
$\mathrm{C} 5-\mathrm{C} 4$	$1.385(3)$	$\mathrm{C} 9-\mathrm{H} 9$	0.9300

$\mathrm{C} 8-\mathrm{C} 9$	$1.387(3)$
$\mathrm{C} 8-\mathrm{H} 8$	0.9300
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 5$	$116.9(3)$
$\mathrm{C} 6-\mathrm{N} 2-\mathrm{C} 5$	$126.0(2)$
$\mathrm{C} 6-\mathrm{N} 2-\mathrm{H} 2$	117.0
$\mathrm{C} 5-\mathrm{N} 2-\mathrm{H} 2$	117.0
$\mathrm{C} 12-\mathrm{C} 7-\mathrm{C} 8$	$119.2(2)$
$\mathrm{C} 12-\mathrm{C} 7-\mathrm{C} 6$	$117.2(2)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 6$	$123.5(2)$
$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	$123.9(2)$
$\mathrm{N} 1-\mathrm{C} 5-\mathrm{N} 2$	$113.3(2)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 2$	$122.8(2)$
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 7$	$120.1(2)$
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{H} 8$	119.9
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{H} 8$	119.9
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 4$	$120.3(3)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	119.9
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	119.9
$\mathrm{O} 1-\mathrm{C} 6-\mathrm{N} 2$	$122.7(2)$
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 5-\mathrm{N} 2$	$-0.84(17)$
$\mathrm{C} 6-\mathrm{N} 2-\mathrm{C} 5-\mathrm{N} 1$	$176.1(2)$
$\mathrm{C} 6-\mathrm{N} 2-\mathrm{C} 5-\mathrm{C} 4$	$156.80(19)$
$\mathrm{C} 12-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$-26.3(3)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$-0.6(3)$
$\mathrm{C} 5-\mathrm{N} 2-\mathrm{C} 6-\mathrm{O} 1$	$176.7(2)$
$\mathrm{C} 5-\mathrm{N} 2-\mathrm{C} 6-\mathrm{C} 7$	$-2.8(4)$
$\mathrm{C} 12-\mathrm{C} 7-\mathrm{C} 6-\mathrm{O} 1$	$178.16(19)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 6-\mathrm{O} 1$	$26.8(3)$
$\mathrm{C} 12-\mathrm{C} 7-\mathrm{C} 6-\mathrm{N} 2$	$-150.6(2)$
	$-154.2(2)$

$\mathrm{C} 10-\mathrm{H} 10 \quad 0.9300$

O1-C6-C7
N2-C6-C7
C11-C12-C7
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{H} 12$
C7-C12-H12
C3-C4-C5
C3-C4-H4
C5-C4-H4
C12-C11-C10
C12- $\mathrm{C} 11-\mathrm{H} 11$
C10-C11-H11
C10-C9-C8
C10-C9—H9
C8-C9—— 9
C9-C10-C11
C9-C10- H 10
$\mathrm{C} 11-\mathrm{C} 10-\mathrm{H} 10$
C8-C7-C6-N2
C8-C7-C12-C11
C6-C7-C12-C11
C4-C3-C4-C5
N1-C5-C4-C3
N2-C5-C4-C3
C7-C12-C11-C10
C7-C8-C9-C10
C8-C9-C10-C11
C12-C11-C10-C9
120.7 (2)
116.6 (2)
120.6 (2)
119.7
119.7
117.5 (2)
121.2
121.2
119.8 (2)
120.1
120.1
120.2 (2)
119.9
119.9
120.0 (2)
120.0
120.0
28.4 (3)
-0.7 (4)
-178.2 (2)
-0.75 (15)
1.6 (3)
-174.99 (17)
1.5 (4)
1.2 (3)
-0.4 (4)
-0.9 (4)

Symmetry code: (i) $y, x,-z$.
Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{O} 1^{\mathrm{ii}}$	0.86	2.25	$3.030(2)$	151

Symmetry code: (ii) $x-1, y, z$.

[^0]: \ddagger Additional correspondence author, e-mail: mahboubi_p@yahoo.com.

