metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(Benzyl isocyanide- κC^1)chlorido(2chloro-3-dimethylamino-1-phenylprop-1en-1-yl- $\kappa^2 C^1$,N)palladium(II)

Ana C. Mafud,^a* Milene A. R. Oliviera^b and Maria T. P. Gambardella^b

^aInstituto de Fisica de Sao Carlos, Av. do Trabalhador Saocarlense, 400, Sao Carlos, SP, Brazil, and ^bInstituto de Quimica de Sao Carlos, Av. do Trabalhador Saocarlense, 400, Sao Carlos, SP, Brazil

Correspondence e-mail: mafud@usp.br

Received 12 November 2012; accepted 4 December 2012

Key indicators: single-crystal X-ray study; T = 290 K; mean σ (C–C) = 0.010 Å; R factor = 0.039; wR factor = 0.085; data-to-parameter ratio = 15.3.

In the title compound, $[Pd(C_{11}H_{13}CIN)Cl(C_8H_7N)]$, which crystallized in the chiral space group $P2_12_12_1$, the Pd^{II} atom is coordinated by two C atoms, a Csp^2 atom of the 2-chloro-3-dimethylamino-1-phenylprop-1-en-1-yl ligand and a Csp atom from the benzyl isocyanide ligand, as well as an N atom of the ligand and a Cl atom, in a square-planar geometry. In the complex, there is a short C-H···Cl hydrogen bond and a C-H··· π interaction. In the crystal, molecules are linked *via* C-H···Cl hydrogen bonds, forming chains along the *a*-axis direction.

Related literature

For the crystal structures of similar compounds, see: Moro *et al.* (2004); Caires *et al.* (2006); Mafud *et al.* (2013).

Experimental

Crystal data $[Pd(C_{11}H_{13}CIN)Cl(C_8H_7N)]$ $M_r = 453.67$

```
Orthorhombic, P2_12_12_1
a = 6.2529 (7) Å
```

b = 11.0931 (10) Åc = 27.640 (2) Å $V = 1917.2 (3) \text{ Å}^3$ Z = 4

Data collection

Enraf-Nonius TurboCAD-4 diffractometer Absorption correction: ψ scan (North *et al.*, 1968) $T_{\min} = 0.871, T_{\max} = 0.928$ 3421 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.085$ S = 1.033358 reflections 219 parameters H-atom parameters constrained $\mu = 1.25 \text{ mm}^{-1}$ T = 290 K 0.63 × 0.08 × 0.05 mm

Mo $K\alpha$ radiation

3358 independent reflections 2420 reflections with $I > 2\sigma(I)$ $R_{int} = 0.019$ 3 standard reflections every 120 min intensity decay: 1%

 $\begin{array}{l} \Delta\rho_{\rm max}=0.67~{\rm e~\AA}^{-3}\\ \Delta\rho_{\rm min}=-1.07~{\rm e~\AA}^{-3}\\ {\rm Absolute~structure:~Flack~(1983),}\\ 161~{\rm Friedel~pairs}\\ {\rm Flack~parameter:~-0.10~(5)} \end{array}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C10-C15 ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C19−H19B····Cl1	0.96	2.65	3.275 (8)	123
$C17 - H17A \cdots Cl1^{i}$	0.97	2.80	3.729 (6)	160
$C4-H4\cdots Cg1$	0.93	2.76	3.622 (8)	155

Symmetry code: (i) x - 1, y, z.

Data collection: *CAD-4 EXPRESS* (Enraf–Nonius, 1994); cell refinement: *CAD-4 EXPRESS*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *WinGX* (Farrugia, 2012).

We are extremely grateful to the late Professor Antonio Carlos Favero Caires for supplying us with the sample used, and to the CNPq National Council for Technological and Scientific Development for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2529).

References

Caires, A. C. F., Mauro, A. E., Moro, A. C., de Oliveira Legendre, A. & Ananias, S. R. (2006). *Quim. Nova*, 29, 750–754.

Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.

- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Mafud, A. C., Oliviera, M. A. R. & Gambardella, M. T. P. (2013). Acta Cryst. E69, m15.
- Moro, A. C., Mauro, A. E. & Ananias, S. R. (2004). Eclet. Quim. 29, 57-61.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2013). E69, m36 [https://doi.org/10.1107/S1600536812049768]

(Benzyl isocyanide- κC^1)chlorido(2-chloro-3-dimethylamino-1-phenylprop-1en-1-yl- $\kappa^2 C^1$, N)palladium(II)

Ana C. Mafud, Milene A. R. Oliviera and Maria T. P. Gambardella

S1. Comment

The title compound was obtained from the reaction between the dimer $[Pd(DMBA)(\mu X)]_2$ [where X = Cl, N₃, NCO, and DMBA = 7,12-dimethylbenz(a)anthracene] and thiourea, being the product of a cleavage reaction. As a palladium complex it could be of interest with respect to anticancer activity.

In the title compound, Fig. 1, the palladium atom coordinates to two C atoms, a C_{sp2} and a C_{sp} atom [Pd1—C9 2.006 (5) Å, Pd1—C1 1.928 (6) Å, respectively], the amine N atom [Pd1—N2 2.098 (4) Å] and an atom of chlorine [Pd1—C11 2.3929 (2) Å], with a square planar geometry. The distances and angles in the title compound are close to those reported for similar compounds (Moro *et al.*, 2004; Caires *et al.*, 2006; Mafud *et al.*, 2013). In the molecule there is a short C-H···Cl contact and a C-H··· π interaction (Table 1).

In the crystal, molecules are linked via C-H···Cl hydrogen bonds (Fig. 2 and Table 1) forming chains along the a axis.

S2. Experimental

The title compound is the product of a cleavage reaction. It was obtained from the reaction between the dimer [Pd $(DMBA)(\mu X)$]₂ [where X = Cl, N₃, NCO, and DMBA = 7,12-dimethylbenz(a)anthracene] and thiourea, in a 1:2 stoichiometric ratio in chloroform. The solution was stirred during 1 h and then the mixture was left for the solvent to slowly evaporate at room temperature. Large yellow needle-shaped crystals, suitable for X-ray diffraction analysis, were obtained.

S3. Refinement

The C-bound H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.93, 0.96 and 0.97 Å, for CH, CH₃ and CH₂ H atoms, respectively, with $U_{iso}(H) = k \times U_{eq}$ (parent C-atom), were k = 1.5 for CH₃ H atoms, and = 1.2 for other H atoms.

Figure 1

Perspective view of the molecular structure of the title compound, with the atom numbering. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

The view along the b axis of the crystal packing of the title compound. The C-H…Cl interactions are shown as dashed cyan lines and the H atoms not involved in these interactions have been omitted for clarity.

 $(Benzyl \ isocyanide-\kappa C^1) chlorido (2-chloro-3-dimethylamino-1-phenylprop-1-en-1-yl-\kappa^2 C^1, N) palladium (II)$

Crystal data

$[Pd(C_{11}H_{13}CIN)Cl(C_8H_7N)]$	F(000) = 912
$M_r = 453.67$	$D_x = 1.572 \text{ Mg m}^{-3}$
Orthorhombic, $P2_12_12_1$	Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$
Hall symbol: P 2ac 2ab	Cell parameters from 25 reflections
a = 6.2529 (7) Å	$\theta = 11.2-18.2^{\circ}$
b = 11.0931 (10) Å	$\mu = 1.25 \text{ mm}^{-1}$
c = 27.640 (2) Å	T = 290 K
$V = 1917.2 (3) \text{ Å}^3$	Prism, vellow
Z=4	$0.63 \times 0.08 \times 0.05 \text{ mm}$
Data collection	
Enraf–Nonius TurboCAD-4	$T_{\min} = 0.871, T_{\max} = 0.928$
diffractometer	3421 measured reflections
Radiation source: Enraf Nonius FR590	3358 independent reflections
Graphite monochromator	2420 reflections with $I > 2\sigma(I)$
non–profiled ω scans	$R_{int} = 0.019$
Absorption correction: ψ scan	$\theta_{\max} = 29.9^{\circ}, \theta_{\min} = 2.9^{\circ}$
(North <i>et al.</i> , 1968)	$h = -8 \rightarrow 1$

$k = -15 \rightarrow 0$	3 standard reflections every 120 min
$l = 0 \rightarrow 38$	intensity decay: 1%
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.039$	H-atom parameters constrained
$wR(F^2) = 0.085$	$w = 1/[\sigma^2(F_o^2) + (0.0337P)^2]$
S = 1.03	where $P = (F_o^2 + 2F_c^2)/3$
3358 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
219 parameters	$\Delta ho_{ m max} = 0.67 \ { m e} \ { m \AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -1.07 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 161 Friedel pairs
Secondary atom site location: difference Fourier	Absolute structure parameter: -0.10 (5)
map	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Pd1	0.69687 (7)	0.16519 (4)	0.302107 (14)	0.03072 (10)	
Cl2	0.1519 (3)	0.35671 (17)	0.37641 (6)	0.0620 (5)	
Cl1	0.9388 (3)	0.12673 (13)	0.23683 (5)	0.0460 (4)	
N1	0.8931 (9)	-0.0511 (5)	0.35548 (17)	0.0432 (12)	
N2	0.5455 (8)	0.3051 (4)	0.26417 (15)	0.0336 (11)	
C1	0.8195 (11)	0.0332 (5)	0.33801 (18)	0.0374 (13)	
C2	0.9749 (11)	-0.1613 (6)	0.3763 (2)	0.0584 (18)	
H2A	1.0798	-0.1418	0.4009	0.07*	
H2B	1.0462	-0.2078	0.3513	0.07*	
C3	0.7989 (12)	-0.2368 (5)	0.39854 (19)	0.0420 (13)	
C4	0.6530 (14)	-0.1880 (7)	0.4296 (2)	0.062 (2)	
H4	0.6605	-0.1065	0.4373	0.075*	
C5	0.4955 (16)	-0.2581 (9)	0.4496 (3)	0.084 (3)	
H5	0.3979	-0.2247	0.4712	0.1*	
C6	0.4832 (18)	-0.3770 (9)	0.4377 (3)	0.087 (3)	
H6	0.3748	-0.4244	0.4507	0.104*	
C7	0.6277 (17)	-0.4276 (7)	0.4068 (3)	0.082 (3)	
H7	0.6188	-0.509	0.3991	0.098*	
C8	0.7869 (14)	-0.3574 (6)	0.3870 (2)	0.0608 (19)	
H8	0.886	-0.3913	0.366	0.073*	
C9	0.4927 (9)	0.2110 (5)	0.35497 (18)	0.0325 (13)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C10	0.4966 (9)	0.1640 (6)	0.40531 (18)	0.0364 (12)
C11	0.6694 (11)	0.1801 (6)	0.43592 (19)	0.0458 (15)
H11	0.7911	0.2193	0.4247	0.055*
C12	0.6627 (11)	0.1380 (6)	0.4833 (2)	0.0514 (17)
H12	0.7784	0.1514	0.5037	0.062*
C13	0.4896 (14)	0.0777 (6)	0.4999 (2)	0.0551 (19)
H13	0.4885	0.0486	0.5314	0.066*
C14	0.3175 (13)	0.0594 (6)	0.4709 (2)	0.0538 (17)
H14	0.198	0.0186	0.4825	0.065*
C15	0.3225 (12)	0.1027 (5)	0.4235 (2)	0.0463 (15)
H15	0.2048	0.0898	0.4036	0.056*
C16	0.3523 (9)	0.2918 (5)	0.3399 (2)	0.0388 (14)
C17	0.3425 (9)	0.3377 (6)	0.28883 (18)	0.0449 (14)
H17A	0.2222	0.3018	0.272	0.054*
H17B	0.3242	0.4246	0.2888	0.054*
C18	0.6951 (13)	0.4088 (5)	0.2648 (2)	0.0585 (18)
H18A	0.6372	0.4732	0.2457	0.088*
H18B	0.8305	0.3845	0.2517	0.088*
H18C	0.7144	0.4359	0.2975	0.088*
C19	0.4974 (12)	0.2744 (6)	0.21329 (19)	0.0564 (19)
H19A	0.4008	0.2072	0.2123	0.085*
H19B	0.6275	0.2535	0.1969	0.085*
H19C	0.4327	0.3425	0.1976	0.085*

Atomic displacement parameters $(Å^2)$

	I 711	I /22	I 733	1/12	I /13	I 723
	U	U	U	0	0	0
Pd1	0.02745 (18)	0.02875 (17)	0.03597 (17)	-0.0004(2)	-0.0021(2)	0.00213 (19)
Cl2	0.0515 (11)	0.0667 (12)	0.0677 (10)	0.0150 (10)	0.0197 (9)	0.0015 (9)
C11	0.0411 (9)	0.0440 (8)	0.0529 (8)	0.0055 (7)	0.0090 (7)	-0.0006 (7)
N1	0.041 (3)	0.037 (3)	0.052 (3)	-0.001 (3)	-0.009 (3)	0.008 (2)
N2	0.028 (2)	0.033 (3)	0.039 (2)	0.001 (2)	-0.001 (2)	0.004 (2)
C1	0.038 (3)	0.037 (3)	0.037 (3)	-0.011 (3)	-0.005 (3)	0.000 (2)
C2	0.058 (4)	0.042 (3)	0.075 (4)	0.014 (4)	-0.010 (4)	0.017 (4)
C3	0.048 (4)	0.033 (3)	0.045 (3)	-0.001 (4)	-0.006 (4)	0.012 (2)
C4	0.074 (6)	0.049 (4)	0.064 (4)	0.004 (4)	0.012 (4)	0.002 (3)
C5	0.068 (6)	0.094 (7)	0.088 (6)	0.018 (6)	0.021 (5)	0.027 (6)
C6	0.083 (8)	0.073 (6)	0.104 (7)	-0.016 (6)	0.001 (6)	0.040 (5)
C7	0.109 (9)	0.047 (4)	0.089 (6)	-0.018 (5)	-0.017 (6)	0.015 (4)
C8	0.082 (5)	0.051 (4)	0.049 (3)	0.004 (5)	-0.011 (4)	-0.002 (3)
C9	0.029 (3)	0.031 (3)	0.037 (3)	-0.005 (2)	-0.001 (2)	0.002 (2)
C10	0.035 (3)	0.035 (3)	0.039 (3)	-0.006 (3)	0.000 (2)	0.001 (3)
C11	0.040 (4)	0.050 (4)	0.047 (3)	-0.008 (4)	-0.004 (3)	-0.001 (3)
C12	0.052 (4)	0.059 (4)	0.043 (3)	0.006 (4)	-0.014 (3)	-0.002 (3)
C13	0.077 (5)	0.054 (4)	0.034 (3)	-0.001 (4)	0.010 (4)	0.005 (3)
C14	0.053 (4)	0.057 (4)	0.052 (3)	-0.015 (4)	0.008 (4)	0.012 (3)
C15	0.037 (4)	0.053 (4)	0.048 (3)	-0.012 (4)	-0.001 (3)	0.004 (3)
C16	0.030 (3)	0.040 (3)	0.046 (3)	-0.003 (3)	0.002 (3)	-0.005 (3)

supporting information

C17	0.034 (3)	0.048 (3)	0.053 (3)	0.011 (3)	0.004 (2)	0.003 (3)
C18	0.051 (4)	0.034 (3)	0.091 (5)	-0.006 (4)	-0.009 (5)	0.015 (3)
C19	0.056 (5)	0.068 (5)	0.044 (3)	0.006 (4)	-0.010 (3)	0.012 (3)

Geometric paran	neters (Å, °)
-----------------	---------------

Pd1—C1	1.928 (6)	С8—Н8	0.93
Pd1—C9	2.006 (5)	C9—C16	1.322 (8)
Pd1—N2	2.099 (4)	C9—C10	1.486 (7)
Pd1—Cl1	2.3927 (15)	C10—C15	1.379 (8)
Cl2—C16	1.762 (6)	C10—C11	1.384 (8)
N1—C1	1.148 (7)	C11—C12	1.390 (8)
N1—C2	1.445 (8)	C11—H11	0.93
N2-C19	1.478 (7)	C12—C13	1.353 (9)
N2-C18	1.483 (8)	C12—H12	0.93
N2-C17	1.485 (7)	C13—C14	1.357 (10)
C2—C3	1.513 (9)	C13—H13	0.93
C2—H2A	0.97	C14—C15	1.396 (7)
C2—H2B	0.97	C14—H14	0.93
C3—C4	1.365 (9)	C15—H15	0.93
C3—C8	1.377 (8)	C16—C17	1.503 (8)
C4—C5	1.371 (11)	C17—H17A	0.97
C4—H4	0.93	C17—H17B	0.97
C5—C6	1.363 (11)	C18—H18A	0.96
С5—Н5	0.93	C18—H18B	0.96
С6—С7	1.364 (12)	C18—H18C	0.96
С6—Н6	0.93	C19—H19A	0.96
С7—С8	1.376 (11)	C19—H19B	0.96
С7—Н7	0.93	C19—H19C	0.96
C1—Pd1—C9	94.0 (2)	C10-C9-Pd1	125.7 (4)
C1—Pd1—N2	176.6 (2)	C15-C10-C11	117.2 (5)
C9—Pd1—N2	83.7 (2)	C15—C10—C9	120.1 (5)
C1—Pd1—Cl1	90.08 (18)	C11—C10—C9	122.7 (5)
C9—Pd1—Cl1	175.44 (16)	C10-C11-C12	120.6 (6)
N2—Pd1—Cl1	92.31 (12)	C10-C11-H11	119.7
C1—N1—C2	176.5 (6)	C12—C11—H11	119.7
C19—N2—C18	108.6 (5)	C13—C12—C11	120.7 (6)
C19—N2—C17	108.6 (5)	C13—C12—H12	119.7
C18—N2—C17	110.1 (5)	C11—C12—H12	119.7
C19—N2—Pd1	113.4 (4)	C12—C13—C14	120.6 (6)
C18—N2—Pd1	106.5 (4)	C12—C13—H13	119.7
C17—N2—Pd1	109.7 (3)	C14—C13—H13	119.7
N1—C1—Pd1	173.8 (5)	C13—C14—C15	119.0 (7)
N1-C2-C3	111.9 (5)	C13—C14—H14	120.5
N1—C2—H2A	109.2	C15—C14—H14	120.5
C3—C2—H2A	109.2	C10—C15—C14	122.0 (7)
N1—C2—H2B	109.2	C10-C15-H15	119

C3—C2—H2B	109.2	C14—C15—H15	119
H2A—C2—H2B	107.9	C9—C16—C17	123.6 (5)
C4—C3—C8	119.6 (7)	C9—C16—Cl2	124.7 (5)
C4—C3—C2	121.5 (6)	C17—C16—Cl2	111.7 (4)
C8—C3—C2	118.9 (7)	N2—C17—C16	108.3 (5)
C3—C4—C5	120.6 (7)	N2—C17—H17A	110
C3—C4—H4	119.7	С16—С17—Н17А	110
C5—C4—H4	119.7	N2—C17—H17B	110
C6-C5-C4	119.4 (9)	С16—С17—Н17В	110
С6—С5—Н5	120.3	H17A—C17—H17B	108.4
C4—C5—H5	120.3	N2-C18-H18A	109.5
C5-C6-C7	120.8 (9)	N2-C18-H18B	109.5
C5-C6-H6	119.6	H18A - C18 - H18B	109.5
C7—C6—H6	119.6	N2-C18-H18C	109.5
C6-C7-C8	119.7 (8)	$H_{18} - C_{18} - H_{18} C_{18}$	109.5
C6-C7-H7	120.2	H18B - C18 - H18C	109.5
C8-C7-H7	120.2	N2 - C19 - H194	109.5
$C_7 C_8 C_3$	110.8 (8)	$N_2 = C_{19} = H_{19R}$	109.5
C7 C8 H8	120.1	$H_{10A} = C_{10} = H_{10B}$	109.5
C_{3} C_{8} H_{8}	120.1	$N_2 C_{10} H_{10}C$	109.5
$C_{16} = C_{9} = C_{10}$	120.1	$H_{10A} = C_{10} = H_{10C}$	109.5
$C_{10} = C_{10} = C_{10}$	122.9(3)	H10R C10 H10C	109.5
C10-C9-101	111.4 (4)	1119B-C19-1119C	109.5
C1—Pd1—N2—C19	-90(3)	Cl1—Pd1—C9—C16	35 (2)
C9 - Pd1 - N2 - C19	-136.9(4)	C1 - Pd1 - C9 - C10	10.9(5)
Cl1— $Pd1$ — $N2$ — $Cl9$	45.2 (4)	N2—Pd1—C9—C10	-171.6(5)
C1 - Pd1 - N2 - C18	151 (3)	Cl1—Pd1—C9—C10	-144.0(18)
C9 - Pd1 - N2 - C18	103.8 (4)	$C_{16} - C_{9} - C_{10} - C_{15}$	61.4 (8)
C11—Pd1—N2—C18	-741(4)	Pd1—C9—C10—C15	-1199(6)
C1 - Pd1 - N2 - C17	32 (3)	$C_{16} - C_{9} - C_{10} - C_{11}$	-117.9(7)
C9 - Pd1 - N2 - C17	-153(4)	Pd1—C9—C10—C11	60.8 (8)
C11 - Pd1 - N2 - C17	166.8 (3)	C_{15} C_{10} C_{11} C_{12}	-1.5(9)
$C_2 = N_1 = C_1 = P_d_1$	-56(14)	C9-C10-C11-C12	177.8 (6)
C_{2} P_{d1} C_{1} N_{1}	142(5)	C_{10} C_{11} C_{12} C_{13}	1,7,0(0) 1.8 (10)
$N_2 - Pd_1 - C_1 - N_1$	95 (6)	C_{11} C_{12} C_{13} C_{14}	-1.3(11)
$C_1 - Pd_1 - C_1 - N_1$	-40(5)	C_{12} C_{13} C_{14} C_{15}	0.6(11)
C1 - N1 - C2 - C3	-42(11)	C_{11} C_{10} C_{15} C_{14}	0.0(11)
N1 - C2 - C3 - C4	-493(9)	$C_{10} - C_{10} - C_{15} - C_{14}$	-178.6(6)
N1 - C2 - C3 - C4	130.8 (6)	C_{13} C_{14} C_{15} C_{10}	-0.3(10)
$C_{8} - C_{3} - C_{4} - C_{5}$	0.3(11)	C_{10} C_{9} C_{16} C_{17}	-1783(6)
$C_{2} - C_{3} - C_{4} - C_{5}$	-179.6(7)	Pd1 - C9 - C16 - C17	29(7)
$C_2 = C_3 = C_4 = C_5$	-10(13)	$C_{10} - C_{9} - C_{16} - C_{17}$	2.5(7)
$C_{3} - C_{4} - C_{5} - C_{6} - C_{7}$	1.0(13)	Pd1 = C0 = C16 = C12	-178.3(3)
$C_{4} = C_{5} = C_{6} = C_{7}$	-0.7(14)	C19 N2 C17 C16	1/8.5(5)
$C_{0} = C_{0} = C_{0} = C_{0}$	-0.1 (12)	C18 = N2 = C17 = C16	-97.6 (6)
C_{4} C_{3} C_{8} C_{7}	0.1(12) 0.2(11)	$Pd1_N2_C17_C16$	19.2 (6)
$C_{1} = C_{2} = C_{3} = C_{4} = C_{7}$	-170.8(6)	$C_{0} = C_{1} = C_{1$	-15.2(0)
$C_2 = C_3 = C_0 = C_1$	1/7.0(0) -170.2(4)	$C_{2} = C_{10} = C_{17} = N_{2}$	15.7(0)
UI-FUI-UV-UI0	1/0.3 (4)	$U_{12} - U_{10} - U_{1} - W_{2}$	103.4 (4)

N2—Pd1—C9—C16 7.2 (4)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C10–C15 ring.

D—H···A	D—H	Н…А	$D \cdots A$	D—H··· A
C19—H19B…C11	0.96	2.65	3.275 (8)	123
C17—H17A····Cl1 ⁱ	0.97	2.80	3.729 (6)	160
C4—H4… <i>Cg</i> 1	0.93	2.76	3.622 (8)	155

Symmetry code: (i) x-1, y, z.