Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

[$\mu-N^{1}, N^{2}$-Bis(pyridin-2-yl)hydrazine-1,2-dicarbothioamidato]bis[chloridocopper(II)]

Yang Liu, Bingguang Zhang* and Kejian Deng

College of Chemistry and Material Science, South-Central University for Nationalities, Wuhan, Hubei 430074, People's Republic of China
Correspondence e-mail: zhangbg68@yahoo.com
Received 16 March 2012; accepted 27 November 2012
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.024 ; w R$ factor $=0.068$; data-to-parameter ratio $=14.2$.

The binuclear title compound, $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{6} \mathrm{~S}_{2}\right) \mathrm{Cl}_{2}\right]$, possesses twofold rotational symmetry. The $\mathrm{Cu}^{\mathrm{II}}$ atom occupies a four-coordinate pseudo-tetrahedral environment bound to one S atom, one imine N atom and one pyridine N atom from the N^{1}, N^{2}-bis(pyridin-2-yl)hydrazine-1,2-dicarbothioamidate ligand, and one Cl^{-}anion. The metal atoms are connected via the bis-tridentate ligand into a binuclear structure. The molecule is bow-shaped with the pyridine rings inclined to one another by $51.56(14)^{\circ}$. In the crystal, $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds lead to the formation of ribbons propagating along [001]. These ribbons are connected via $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{Cl}, \mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ and $\pi-\pi$ interactions [centroid-centroid distance $=3.6146(19) \AA$], leading to the formation of a threedimensional structure.

Related literature

For the biological activity of thiosemicarbazides and their metal complexes, see: West et al. (1993). For related structures, see: Wang et al. (2011); Yamin \& Yusof (2003); Akinchan et al. (2002). For the synthesis of the ligand, see: Szecsenyi et al. (2006).

Experimental

Crystal data

$\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{6} \mathrm{~S}_{2}\right) \mathrm{Cl}_{2}\right]$
$M_{r}=500.36$

Monoclinic, $C 2$ /c
$a=15.825$ (3) A
$b=7.6190(13) \AA$
$c=15.082$ (4) A
$\beta=118.179$ (2) ${ }^{\circ}$
$V=1602.9$ (6) \AA^{3}
$Z=4$

Data collection
Bruker SMART APEX CCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2003)
$T_{\text {min }}=0.422, T_{\text {max }}=0.474$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$w R\left(F^{2}\right)=0.068$
$S=1.07$
1561 reflections

Mo $K \alpha$ radiation
$\mu=3.26 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.32 \times 0.28 \times 0.27 \mathrm{~mm}$

4270 measured reflections 1561 independent reflections 1445 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.018$

Table 1
Selected bond lengths (\AA).

$\mathrm{Cu} 1-\mathrm{Cl} 1$	$2.2619(10)$	$\mathrm{Cu} 1-\mathrm{N} 1$	$1.986(2)$
$\mathrm{Cu} 1-\mathrm{S} 2$	$2.2295(9)$	$\mathrm{Cu} 1-\mathrm{N} 3^{\mathrm{i}}$	$1.961(3)$

Symmetry code: (i) $-x, y,-z+\frac{1}{2}$.

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{Cl} 1^{\text {ii }}$	0.86	2.70	$3.507(2)$	156
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{Cl} 1^{\text {iii }}$	0.93	2.77	$3.482(3)$	134
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{~S} 2^{\text {iv }}$	0.93	2.82	$3.425(3)$	124
Symmetry codes:	(ii) $\quad x,-y+1, z+\frac{1}{2} ;$	(iii)	$x-\frac{1}{2},-y+\frac{3}{2}, z-\frac{1}{2} ;$	(iv)
$-x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{1}{2}$.				

Data collection: SMART (Bruker, 2003); cell refinement: SAINTPlus (Bruker, 2003); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was sponsored by the National Natural Science Foundation of China (No. 20977115).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2393).

References

Akinchan, N. T., Drozdzewski, P. M. \& Battagli, L. P. (2002). J. Chem. Crystallogr. 32, 91-97.
Bruker (2003). SADABS, SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Szecsenyi, K. M., Leovac, V. M. \& Evans, I. R. (2006). J. Coord. Chem. 59, $523-$ 530.

Wang, H. Y., Zhao, P. S., Song, J. \& Li, R. Q. (2011). J. Chem. Crystallogr. 41, 379-385.
West, D. X., Liberta, A. E., Padhye, S. B., Chikate, R. C., Sonawane, P. B., Kumbhar, A. S. \& Yerande, R. G. (1993). Coord. Chem. Rev. 123, 49-71.
Yamin, B. M. \& Yusof, M. S. M. (2003). Acta Cryst. E59, o358-o359.

supporting information

Acta Cryst. (2013). E69, m45 [https://doi.org/10.1107/S1600536812048659]
[$\mu-N^{1}, N^{2}$-Bis(pyridin-2-yl)hydrazine-1,2-dicarbothioamidato]bis[chloridocopper(II)]

Yang Liu, Bingguang Zhang and Kejian Deng

S1. Comment

Thiosemicarbazide and their metal complexes have attracked considerable interest due to their biological activities, such as antiviral, antibacterial, antimalarial, antifungal, and antitumoral activities (West et al., 1993). Thiosemicarbazide are versatile ligands that can coordinate as neutral ligands or in the deprotonated form. They can also be used as flexible spacers with potential multiple binding sites to construct coordination polymers with multiple dimensions and various topologies. In the present paper, the synthesis and crystal structure of the title thiosemicarbazide binuclear copper(II) compound is reported.
The title compound possesses twofold rotational symmetry (Fig.1). Each $\mathrm{Cu}^{\text {II }}$ center occupies a four-coordinated pseudotetrahedral environment bound to one sulfur atom, one imine nitrogen atom, and one pyridine nitrogen atom from one N, N^{\prime}-di(pyridin-2-yl)hydrazine-1,2-bis(carbothioamide) ligand, and one chlorine anion. The metal centres are connected via the hexadentate ligand into a binuclear structure. The molecule is bow-shaped. The thiosemicarbazide moiety ($\mathrm{S} 2 / \mathrm{N} 2(\mathrm{~N} 3 / \mathrm{N} 6)$ is twisted by $20.14(13)^{\circ}$ from the pyridine ring to which it is attached. The two thiosemicarbazide moieties, (S2/N2/N3/N6) and (S2A/N2A/N3A/N6A), are inclined to one another by $23.36(13)^{\circ}$, while the pyrdine rings make a dihedral angle of $51.56(14)^{\circ}$.

The $\mathrm{Cu}-\mathrm{S}$ distance is 2.2295 (9) \AA, and the $\mathrm{Cu}-\mathrm{N}$ distances vary between 1.961 (3)-1.986 (2) \AA. The $\mathrm{C} — \mathrm{~S}$ bond distances of 1.711 (3) \AA are within the normal range for a $\mathrm{C}-\mathrm{S}$ single bond, indicating that the thiosemicarbazide moieties adopt the thiol tautomeric form, acting as a doubly charged negative ligand. The C6-N distances of 1.311 (3)1.366 (3) \AA and the N3—N3A distance of 1.399 (3) \AA are intermediate between formal single and double bonds, pointing to extensive electron delocalization over the entire ligand skeleton. This agrees well with the same distances observed in related compounds (Wang et al., 2011; Yamin \& Yusof, 2003; Akinchan et al., 2002).

In the crystal, there are $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds, leading to the formation of ribbons propagating along [001], and C$\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ interactions (Table 1). The latter link the ribbons and together with $\pi-\pi$ interactions lead to the formation of a three-dimensional structure $\left[\mathrm{Cg} 1 \cdots \mathrm{Cg} 1^{1} 3.6146\right.$ (19) \AA; perpendicular separation 3.5312 (11) \AA; slippage $0.772 \AA ; \mathrm{Cg} 1$ is the centroid of pyrdine ring N1/C1-C5; symmetry code: (i) $-\mathrm{x},-\mathrm{y}+2,-\mathrm{z}]$.

S2. Experimental

The ligand (L), N, N^{\prime}-di(pyridin-2-yl)hydrazine-1,2-bis(carbothioamide,) was prepared by the literature method (Szecsenyi et al., 2006). L (0.05 mmol) was solved in DMF (5 ml) in a test tube, then an 8 ml solvent mixture of $\mathrm{CH}_{3} \mathrm{OH}$ and $\operatorname{DMF}(\mathrm{v} / \mathrm{v}=1: 1)$ was added as a buffer layer. A solution of $\mathrm{CuCl}_{2}(0.10 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{OH}(3 \mathrm{ml})$ was then carefully layered on top. The system was sealed and kept for a week, after which black block-like single crystals, suitable for X-ray analysis, were obtained. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{Cu}_{2} \mathrm{~N}_{6} \mathrm{~S}_{2}$: C 28.80, H 2.01, N16.80. Found: C 29.23; H, 2.40; N, 16.44.

S3. Refinement

The NH and C-bound H atoms were included in calculated positions and treated as riding atoms: $\mathrm{N}-\mathrm{H}=0.86 \AA$ and $\mathrm{C}-\mathrm{H}$ $=0.93 \AA$, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{N}, \mathrm{C})$.

Figure 1
The molecular structure of title compound, with the atom numbering. The displacement ellipsoids are drawn at the 50% probability level [symmetry code: (a) - $x, y,-z+1 / 2$].
[$\mu-N^{1}, N^{2}$-Bis(pyridin-2-yl)hydrazine-1,2- dicarbothioamidato]bis[chloridocopper(II)]

Crystal data

$\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{6} \mathrm{~S}_{2}\right) \mathrm{Cl}_{2}\right]$
$M_{r}=500.36$
Monoclinic, C2/c
Hall symbol: -C 2yc
$a=15.825$ (3) \AA
$b=7.6190(13) \AA$
$c=15.082$ (4) \AA
$\beta=118.179(2)^{\circ}$
$V=1602.9(6) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& F(000)=992 \\
& D_{\mathrm{x}}=2.073 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo K } K \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 253 \text { reflections } \\
& \theta=2.9-29.5^{\circ} \\
& \mu=3.26 \mathrm{~mm}^{-1} \\
& T=293 \mathrm{~K} \\
& \text { Block, black } \\
& 0.32 \times 0.28 \times 0.27 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART APEX CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
$T_{\min }=0.422, T_{\max }=0.474$

4270 measured reflections
1561 independent reflections
1445 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.018$
$\theta_{\text {max }}=26.0^{\circ}, \theta_{\text {min }}=2.9^{\circ}$
$h=-19 \rightarrow 18$
$k=-9 \rightarrow 7$
$l=-18 \rightarrow 17$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$w R\left(F^{2}\right)=0.068$
$S=1.07$
1561 reflections
110 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

> Hydrogen site location: inferred from \quad neighbouring sites
> H -atom parameters constrained
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0374 P)^{2}+2.3083 P\right]$
> \quad where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }<0.001$
> $\Delta \rho_{\max }=0.73 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\min }=-0.34$ e \AA^{-3}
> Extinction correction: $S H E L X L 97($ Sheldrick, \quad 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
> Extinction coefficient: $0.0018(3)$

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iss }} * / U_{\text {eq }}$
Cu1	$0.12780(2)$	$0.63445(4)$	$0.20890(2)$	$0.0266(1)$
C11	$0.25399(4)$	$0.50248(9)$	$0.20491(5)$	$0.0355(2)$
S2	$0.18501(4)$	$0.59737(10)$	$0.37400(5)$	$0.0336(2)$
N1	$0.07304(14)$	$0.7259(3)$	$0.06931(14)$	$0.0267(6)$
N2	$0.08612(15)$	$0.6577(3)$	$0.46876(15)$	$0.0297(6)$
N3	$-0.00303(14)$	$0.6631(3)$	$0.29480(15)$	$0.0258(6)$
C1	$-0.02056(17)$	$0.7259(3)$	$0.00390(18)$	$0.0265(7)$
C2	$-0.05668(19)$	$0.7912(4)$	$-0.09283(19)$	$0.0356(8)$
C3	$0.0058(2)$	$0.8611(4)$	$-0.1223(2)$	$0.0452(10)$
C4	$0.1031(2)$	$0.8622(4)$	$-0.0559(2)$	$0.0434(10)$
C5	$0.13323(19)$	$0.7951(4)$	$0.03822(19)$	$0.0340(8)$
C6	$0.07986(17)$	$0.6433(3)$	$0.37555(18)$	$0.0248(7)$
H2	-0.12210	0.78770	-0.13690	0.0430^{*}
H2A	0.13840	0.61870	0.51760	0.0360^{*}
H3	-0.01690	0.90740	-0.18660	0.0540^{*}
H4	0.14670	0.90750	-0.07490	0.0520^{*}
H5	0.19850	0.79710	0.08320	0.0410^{*}

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	$0.0178(2)$	$0.0406(2)$	$0.0238(2)$	$0.0017(1)$	$0.0118(1)$	$0.0002(1)$
C11	$0.0250(3)$	$0.0472(4)$	$0.0381(3)$	$0.0039(3)$	$0.0181(3)$	$-0.0055(3)$
S2	$0.0188(3)$	$0.0567(4)$	$0.0270(3)$	$0.0091(3)$	$0.0123(3)$	$0.0067(3)$

N1	$0.0221(10)$	$0.0354(12)$	$0.0249(10)$	$-0.0031(8)$	$0.0131(8)$	$-0.0023(9)$
N2	$0.0190(10)$	$0.0477(13)$	$0.0217(10)$	$0.0072(9)$	$0.0090(9)$	$0.0026(9)$
N3	$0.0191(10)$	$0.0392(12)$	$0.0213(9)$	$-0.0001(8)$	$0.0113(8)$	$0.0005(8)$
C1	$0.0251(12)$	$0.0323(13)$	$0.0260(11)$	$-0.0019(10)$	$0.0152(10)$	$-0.0031(10)$
C2	$0.0294(13)$	$0.0508(17)$	$0.0245(12)$	$-0.0022(12)$	$0.0109(11)$	$0.0020(11)$
C3	$0.0462(18)$	$0.064(2)$	$0.0302(14)$	$-0.0015(14)$	$0.0221(14)$	$0.0078(13)$
C4	$0.0428(17)$	$0.0564(19)$	$0.0422(16)$	$-0.0074(13)$	$0.0294(15)$	$0.0031(13)$
C5	$0.0268(13)$	$0.0445(15)$	$0.0354(13)$	$-0.0062(11)$	$0.0186(12)$	$-0.0029(12)$
C6	$0.0204(12)$	$0.0304(13)$	$0.0252(11)$	$0.0001(9)$	$0.0121(10)$	$0.0007(9)$

Geometric parameters ($\mathrm{A},{ }^{\circ}$)

Cu1-Cl1	2.2619 (10)	N3-N3 ${ }^{\text {i }}$	1.399 (3)
$\mathrm{Cu} 1-\mathrm{S} 2$	2.2295 (9)	N2-H2A	0.8600
$\mathrm{Cu} 1-\mathrm{N} 1$	1.986 (2)	C1-C2	1.384 (4)
Cu1-N3 ${ }^{\text {i }}$	1.961 (3)	C2-C3	1.369 (5)
S2-C6	1.711 (3)	C3-C4	1.385 (4)
N1-C1	1.337 (4)	C4- C 5	1.366 (4)
N1-C5	1.352 (4)	C2-H2	0.9300
N2-C6	1.366 (3)	C3-H3	0.9300
N2-C1 ${ }^{\text {i }}$	1.386 (4)	C4-H4	0.9300
N3-C6	1.311 (3)	C5-H5	0.9300
$\mathrm{C} 11-\mathrm{Cu} 1-\mathrm{S} 2$	94.32 (3)	N1-C1-C2	122.7 (3)
$\mathrm{Cl} 1-\mathrm{Cu} 1-\mathrm{N} 1$	94.39 (7)	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2^{\text {i }}$	120.3 (2)
$\mathrm{Cl} 1-\mathrm{Cu} 1-\mathrm{N} 3^{\text {i }}$	159.80 (7)	C1-C2-C3	118.7 (3)
S2-Cu1-N1	166.41 (7)	C2-C3-C4	119.6 (3)
$\mathrm{S} 2-\mathrm{Cu} 1-\mathrm{N3}^{\text {i }}$	85.31 (6)	C3-C4-C5	118.2 (3)
N1-Cu1-N3 ${ }^{\text {i }}$	90.08 (9)	N1-C5-C4	123.3 (3)
Cu1-S2-C6	96.01 (9)	N2-C6-N3	120.1 (3)
$\mathrm{Cu}-\mathrm{N} 1-\mathrm{C} 1$	123.98 (19)	S2-C6-N2	115.6 (2)
$\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 5$	118.58 (18)	S2-C6-N3	124.3 (2)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5$	117.4 (2)	C1-C2-H2	121.00
C1-N2-C6	129.5 (2)	C3-C2-H2	121.00
Cu1- ${ }^{\text {- }} 3$ - ${ }^{\text {C6 }}$	124.48 (19)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	120.00
N3i-N3-C6	113.7 (2)	C4-C3-H3	120.00
$\mathrm{Cu1}{ }^{\text {i }}$ - $\mathrm{N} 3-\mathrm{N} 3^{\text {i }}$	119.99 (16)	C3-C4-H4	121.00
C6-N2-H2A	115.00	C5-C4-H4	121.00
C1 ${ }^{\text {i }}$ - $\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	115.00	N1-C5-H5	118.00
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 2$	117.0 (3)	C4-C5-H5	118.00
$\mathrm{Cl} 1-\mathrm{Cu} 1-\mathrm{S} 2-\mathrm{C} 6$	-165.43 (8)	C5-N1-C1-N2 ${ }^{\text {i }}$	-179.7 (2)
N3i-Cu1-S2-C6	-5.68 (11)	$\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	-179.7 (2)
$\mathrm{Cl} 1-\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 1$	138.8 (2)	$\mathrm{C} 1{ }^{\text {i }}$ - $\mathrm{N} 2-\mathrm{C} 6-\mathrm{S} 2$	166.0 (2)
$\mathrm{Cl} 1-\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 5$	-42.3 (2)	C6 ${ }^{\text {- }} \mathrm{N} 2^{\text {i }}-\mathrm{C} 1-\mathrm{N} 1$	26.4 (4)
$\mathrm{N} 3{ }^{\text {- }} \mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 1$	-21.5 (2)	C6 ${ }^{\text {- }} \mathrm{N} 2-\mathrm{C}^{-} \mathrm{C} 1-\mathrm{C} 2$	-154.0 (3)
$\mathrm{N} 3{ }^{\text {- }} \mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 5$	157.5 (2)	C1- ${ }^{\text {- }}$ - $2-\mathrm{C} 6-\mathrm{N} 3$	-14.5 (4)
$\mathrm{Cl} 1-\mathrm{Cu} 1-\mathrm{N} 3-\mathrm{N} 3$	94.0 (2)	N3 ${ }^{\text {- }}$ N3-C6-N2	173.7 (2)

$\mathrm{C} 11-\mathrm{Cu} 1-\mathrm{N} 3{ }^{\mathrm{i}}-\mathrm{C}^{\mathrm{i}}$	$-69.8(3)$
$\mathrm{S} 2-\mathrm{Cu} 1-\mathrm{N} 3-\mathrm{N} 3$	$4.18(18)$
$\mathrm{S} 2-\mathrm{Cu} 1-\mathrm{N} 3-\mathrm{C}^{\mathrm{i}}$	$-159.6(2)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 3^{i}-\mathrm{N} 3$	$-163.03(19)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 3^{\mathrm{i}}-\mathrm{C}^{\mathrm{i}}$	$33.2(2)$
$\mathrm{Cu} 1-\mathrm{S} 2-\mathrm{C} 6-\mathrm{N} 2$	$-171.77(17)$
$\mathrm{Cu} 1-\mathrm{S} 2-\mathrm{C} 6-\mathrm{N} 3$	$8.8(2)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	$-0.7(4)$
$\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$179.7(2)$
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$0.8(4)$
$\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2^{\mathrm{i}}$	$-0.7(3)$

$\mathrm{Cu} 1-\mathrm{N} 3-\mathrm{C} 6-\mathrm{S} 2$	$157.76(14)$
$\mathrm{Cu} 1-\mathrm{N} 3-\mathrm{C} 6-\mathrm{N} 2$	$-21.7(3)$
$\mathrm{C} 6-\mathrm{N} 3-\mathrm{N} 3-\mathrm{Cu} 1$	$0.2(3)$
$\mathrm{C} 6-\mathrm{N} 3-\mathrm{N} 3-\mathrm{C} 6^{\mathrm{i}}$	$165.6(2)$
$\mathrm{Cu} 1^{\mathrm{i}}-\mathrm{N} 3-\mathrm{N} 3-\mathrm{Cu} 1$	$-165.23(11)$
$\mathrm{N} 3-\mathrm{N} 3-\mathrm{C} 6-\mathrm{S} 2$	$-6.9(3)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-1.0(4)$
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$179.4(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$1.1(4)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-1.0(5)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1$	$0.8(5)$

Symmetry code: (i) $-x, y,-z+1 / 2$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2 — \mathrm{H} 2 A \cdots \mathrm{Cl} 1^{\mathrm{ii}}$	0.86	2.70	$3.507(2)$	156
$\mathrm{C} 2 — \mathrm{H} 2 \cdots \mathrm{Cl1} 1^{\mathrm{iii}}$	0.93	2.77	$3.482(3)$	134
$\mathrm{C} 5 — \mathrm{H} 5 \cdots \mathrm{~S}^{\mathrm{iv}}$	0.93	2.82	$3.425(3)$	124

Symmetry codes: (ii) $x,-y+1, z+1 / 2$; (iii) $x-1 / 2,-y+3 / 2, z-1 / 2$; (iv) $-x+1 / 2, y+1 / 2,-z+1 / 2$.

