

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-{[(Dimethylamino)methylidene]amino}-5-nitrobenzonitrile

Syed Muhammad Saad,^a Syed Moazzam Haider,^a Shahnaz Perveen,^b Khalid M. Khan^a and Sammer Yousuf^a*

^aH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan, and ^bPCSIR Labortories Complex, Karachi, Shahrah-e-Dr. Salmuzzaman Siddigui, Karachi 75280, Pakistan

Correspondence e-mail: dr.sammer.yousuf@gmail.com

Received 22 November 2012; accepted 28 November 2012

Key indicators: single-crystal X-ray study; T = 273 K; mean σ (C–C) = 0.003 Å; R factor = 0.046; wR factor = 0.134; data-to-parameter ratio = 13.4.

The title molecule, C₁₀H₁₀N₄O₂, is almost planar and adopts an *E* configuration of the azomethine [C=N = 1.298 (2) Å]double bond. The benzene ring is attached to an essentially planar (r.m.s. deviation = 0.0226 Å) amidine moiety (N=CN/ Me_2), the dihedral angle between the two mean planes being $18.42 (11)^{\circ}$. The cyano group lies in the plane of the benzene ring [the C and N atoms deviating by 0.030 (3) and 0.040 (3) Å, respectively], while the nitro group makes a dihedral angle 5.8 $(3)^{\circ}$ with the benzene ring. There are two distinct intermolecular hydrogen bonds, C-H···O and C- $H \cdots N$, that stabilize the crystal structure; the former interactions result in centrosymmetric dimers about inversion centers resulting in ten-membered rings, while the later give rise to chains of molecules running parallel to the b axis.

Related literature

For the biological activity of amidine derivatives, see: Sienkiewich et al. (2005); Sasaki et al. (1997). For a related structure, see: Cizak et al. (1989).

Experimental

Crystal data $C_{10}H_{10}N_4O_2$

 $M_r = 218.22$

Monoclinic, $P2_1/n$ Z = 4Mo $K\alpha$ radiation a = 7.6496 (11) Åb = 13.0693 (19) Å $\mu = 0.10 \text{ mm}^$ c = 11.1617 (17) Å T = 273 K $\beta = 106.475 (3)^{\circ}$ $0.25 \times 0.24 \times 0.09 \text{ mm}$ V = 1070.1 (3) Å³

Data collection

6194 measured reflections
1976 independent reflections
1427 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.025$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.046$	147 parameters
$wR(F^2) = 0.134$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.18 \text{ e} \text{ Å}^{-3}$
1976 reflections	$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D{\cdots}A$	$D - \mathbf{H} \cdots A$
$C1-H1A\cdotsO1^{i}$	0.93	2.48	3.354 (3)	156
$C8-H8A\cdots N1^{ii}$	0.93	2.61	3.525 (2)	166

Symmetry codes: (i) -x + 2, -y, -z + 2; (ii) $-x + \frac{1}{2}$, $y + \frac{1}{2}$, $-z + \frac{3}{2}$.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2009).

The authors are thankful to the Higher Education Commission (HEC) Pakistan (Project No. 20-2073) and the Pakistan Academy of Sciences (PAS) for their financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2610).

References

- Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Ciszak, E., Gdaniec, M., Jaskólski, M., Kosturkiewicz, Z., Owsiański, J. & Tykarska, E. (1989). Acta Cryst. C45, 433-438.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.

Sasaki, S., Fukushima, J., Arai, H., Kusakabe, K., Hamajima, K., Ishii, N., Hirahara, F., Okuda, K., Kawamoto, S., Ruysschaert, J. M., Vandenbranden, M. & Wahren, B. (1997). Eur. J. Immunol. 27, 3121-9.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Sienkiewich, P., Bielawaski, K., Bielawaska, A. & Palka, J. (2005). Environ. Toxicol. Pharm. 20, 118-124.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2013). E69, o75 [https://doi.org/10.1107/S1600536812048866]

2-{[(Dimethylamino)methylidene]amino}-5-nitrobenzonitrile

Syed Muhammad Saad, Syed Moazzam Haider, Shahnaz Perveen, Khalid M. Khan and Sammer Yousuf

S1. Comment

The compounds having amidine group (-N=CHNR₂) in their structures are known to have a wide range of pharmacological properties such as anti-HIV (Sasaki *et al.*, 1997) and anticancer (Sienkiewich *et al.*, 2005). The title compound is also an amidine derivatived we have synthesized in order to evaluate its biological potential and determined its crystal structure that is reported here.

In the title compound (Fig. 1) the benzene ring (C1–C6) is attached with an essentially planar amidine moiety (N3/N4/C8–C10) with r.m.s.d 0.0226 Å; the dihedral angle between the two mean planes being 18.42 (11)°. The atoms C7 and N1 of the cyano group lie in the plane of the benzene ring with deviations 0.030 (3) and 0.040 (3) Å, respectively. The nitro group (N2/O1/O2) makes a dihedral angle 5.8 (3) ° with the benzene ring. The bond distances and angles in the title compound agree very well with the corresponding bond distances and angles reported in a closely related compound (Cizak *et al.*, 1989).

There are two distinct intermolecular hydrogen bonds, C1—H1A···O1 and C8—H8A···N1 that stabilize the crystal structure (Table 2 and Fig. 2). The former interactions result in centrosymmetric dimers about inversion centers resulting in 10-membered rings, while the later give rise to chains of molecules running parallel to the *b*-axis.

S2. Experimental

5-Nitroanthranilonitrile (45.8 mmol, 7.47 g) was suspended in *N*,*N*-dimethylformamide dimethylacetal (137.4 mmol, 16.5 ml) and the mixture was allow to refluxed for 1.5 h. The progress of the reaction was monitored by thin layer chromatography. After the completion of the reaction, the resulting mixture was cooled to room temperature and refrigerated overnight to obtain yellow crystals. The crystals were filtered, washed with diethyl ether to afford the pure compound (9.4 g, 94% yield). Single-crystal suitable for X-ray diffraction studies were grown from ethanol. All chemicals were purchased by Sigma Aldrich Germany.

S3. Refinement

The H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 0.96 Å, for aryl and methyl H-atoms, respectively. The $U_{iso}(H)$ were allowed at $1.5U_{eq}(C \text{ methyl})$ or $1.2U_{eq}(C \text{ aryl})$. A rotating group model was applied to the methyl groups.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius.

Figure 2

A view of the C—-H…O and C—H…N hydrogen bonds (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity.

2-{[(Dimethylamino)methylidene]amino}-5-nitrobenzonitrile

Crystal data

 $C_{10}H_{10}N_4O_2$ $M_r = 218.22$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 7.6496 (11) Å b = 13.0693 (19) Å c = 11.1617 (17) Å $\beta = 106.475 (3)^\circ$ $V = 1070.1 (3) \text{ Å}^3$ Z = 4

Data collection

Bruker SMART APEX CCD area-detector	6194 measured reflections
diffractometer	1976 independent reflections
Radiation source: fine-focus sealed tube	1427 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.025$
ωscan	$\theta_{\rm max} = 25.5^{\circ}, \ \theta_{\rm min} = 2.5^{\circ}$
Absorption correction: multi-scan	$h = -9 \rightarrow 6$
(SADABS; Bruker, 2000)	$k = -15 \rightarrow 15$
$T_{\min} = 0.976, \ T_{\max} = 0.991$	$l = -13 \rightarrow 13$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.046$	Hydrogen site location: inferred from
$wR(F^2) = 0.134$	neighbouring sites
S = 1.04	H-atom parameters constrained
1976 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0727P)^2 + 0.0566P]$
147 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.18 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

F(000) = 456

 $\theta = 2.5 - 26.3^{\circ}$

 $\mu = 0.10 \text{ mm}^{-1}$

Block, yellow

 $0.25 \times 0.24 \times 0.09 \text{ mm}$

T = 273 K

 $D_{\rm x} = 1.355 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 1456 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	1.0056 (2)	0.13577 (12)	1.04462 (17)	0.0870 (6)	
02	0.8695 (2)	0.25597 (13)	1.11451 (17)	0.0883 (6)	
N1	0.4989 (2)	-0.15217 (12)	0.71893 (17)	0.0660 (5)	
N2	0.8674 (2)	0.18015 (13)	1.04982 (17)	0.0619 (5)	

N3	0.1940 (2)	0.02940 (11)	0.75738 (14)	0.0482 (4)	
N4	-0.1087 (2)	0.05091 (12)	0.65346 (15)	0.0543 (5)	
C1	0.6835 (3)	0.05189 (13)	0.91041 (16)	0.0463 (5)	
H1A	0.7889	0.0151	0.9140	0.056*	
C2	0.6912 (3)	0.14214 (13)	0.97521 (17)	0.0459 (5)	
C3	0.5357 (3)	0.19632 (13)	0.97190 (17)	0.0488 (5)	
H3B	0.5439	0.2565	1.0176	0.059*	
C4	0.3696 (3)	0.16215 (13)	0.90195 (17)	0.0501 (5)	
H4A	0.2657	0.1994	0.9011	0.060*	
C5	0.3520 (2)	0.07166 (12)	0.83108 (16)	0.0426 (4)	
C6	0.5146 (3)	0.01730 (12)	0.83973 (16)	0.0421 (4)	
C7	0.5035 (3)	-0.07743 (14)	0.77211 (17)	0.0490 (5)	
C8	0.0485 (3)	0.08563 (14)	0.72313 (16)	0.0481 (5)	
H8A	0.0558	0.1535	0.7491	0.058*	
С9	-0.2656 (3)	0.11779 (17)	0.6087 (2)	0.0711 (7)	
H9A	-0.2429	0.1815	0.6533	0.107*	
H9B	-0.3713	0.0857	0.6223	0.107*	
H9C	-0.2861	0.1303	0.5210	0.107*	
C10	-0.1270 (3)	-0.05486 (17)	0.6095 (2)	0.0753 (7)	
H10A	-0.0086	-0.0858	0.6275	0.113*	
H10B	-0.1837	-0.0560	0.5209	0.113*	
H10C	-0.2008	-0.0923	0.6510	0.113*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0470 (10)	0.0792 (11)	0.1247 (15)	0.0011 (8)	0.0079 (10)	-0.0227 (9)
O2	0.0709 (12)	0.0766 (11)	0.1064 (13)	-0.0137 (8)	0.0075 (10)	-0.0416 (9)
N1	0.0732 (13)	0.0482 (10)	0.0718 (11)	0.0013 (8)	0.0125 (10)	-0.0114 (8)
N2	0.0528 (12)	0.0526 (10)	0.0734 (12)	-0.0048 (8)	0.0068 (9)	-0.0053 (8)
N3	0.0436 (10)	0.0425 (8)	0.0543 (9)	0.0004 (7)	0.0070 (8)	-0.0005 (6)
N4	0.0458 (11)	0.0553 (10)	0.0566 (10)	0.0019 (7)	0.0059 (8)	0.0004 (7)
C1	0.0453 (12)	0.0409 (9)	0.0520 (11)	0.0044 (8)	0.0127 (9)	0.0026 (7)
C2	0.0456 (12)	0.0400 (9)	0.0493 (10)	-0.0033 (8)	0.0087 (9)	0.0021 (7)
C3	0.0559 (13)	0.0358 (9)	0.0518 (11)	0.0005 (8)	0.0103 (9)	-0.0021 (7)
C4	0.0491 (12)	0.0407 (10)	0.0577 (11)	0.0074 (8)	0.0103 (10)	-0.0007 (8)
C5	0.0457 (11)	0.0373 (9)	0.0432 (10)	0.0000 (8)	0.0100 (8)	0.0063 (7)
C6	0.0472 (12)	0.0342 (8)	0.0438 (9)	0.0003 (7)	0.0109 (8)	0.0035 (7)
C7	0.0506 (12)	0.0420 (10)	0.0514 (10)	0.0023 (8)	0.0098 (9)	0.0022 (8)
C8	0.0520 (13)	0.0441 (10)	0.0449 (10)	0.0007 (8)	0.0083 (9)	0.0033 (7)
C9	0.0523 (14)	0.0767 (15)	0.0736 (14)	0.0061 (11)	0.0004 (11)	0.0162 (11)
C10	0.0629 (16)	0.0674 (14)	0.0909 (17)	-0.0132 (11)	0.0141 (13)	-0.0176 (12)

Geometric parameters (Å, °)

01—N2	1.222 (2)	C3—C4	1.364 (3)
O2—N2	1.224 (2)	С3—Н3В	0.9300
N1—C7	1.138 (2)	C4—C5	1.408 (2)

supporting information

N2 C2	1 456 (2)		0.0200
N2 C8	1.430(2) 1.208(2)	C4—n4A	0.9300
N2 C5	1.290(2)	C_{3}	1.412(2)
N3-C3	1.3/1(2)		1.440(2)
N4	1.314(2)		0.9300
N4C9	1.454 (2)	C9—H9A	0.9600
N4—C10	1.460 (2)	C9—H9B	0.9600
	1.376 (2)	C9—H9C	0.9600
C1—C6	1.385 (2)	C10—H10A	0.9600
C1—H1A	0.9300	C10—H10B	0.9600
C2—C3	1.375 (3)	C10—H10C	0.9600
$01 - N^2 - 0^2$	123 09 (18)	C4—C5—C6	116 26 (16)
01 - N2 - C2	118 95 (17)	C1 - C6 - C5	110.20(10) 122.42(16)
$O_1 = N_2 = C_2$ $O_2 = N_2 = C_2$	117.95(17)	C1 - C6 - C7	122.42(10)
$C_2 = N_2 = C_2$	117.90(17) 110.04(15)	$C_{1} = C_{0} = C_{7}$	119.09 (10)
$C_8 = N_4 = C_9$	119.04(13) 121.57(17)	C_{3}	118.30(10) 178.4(2)
$C_8 = N_4 = C_9$	121.37(17) 120.60(17)	N1 - C7 - C0	170.4(2)
C8 - N4 - C10	120.09 (17)	$N_3 = C_8 = N_4$	122.92 (17)
$C_{9} = N_{4} = C_{10}$	11/.54 (17)	N3 - C8 - H8A	118.5
$C_2 = C_1 = C_6$	118.24 (17)	N4—C8—H8A	118.5
C2—C1—HIA	120.9	N4—C9—H9A	109.5
C6—C1—HIA	120.9	N4—C9—H9B	109.5
C3—C2—C1	121.29 (17)	Н9А—С9—Н9В	109.5
C3—C2—N2	119.53 (16)	N4—C9—H9C	109.5
C1—C2—N2	119.18 (17)	Н9А—С9—Н9С	109.5
C4—C3—C2	120.32 (17)	H9B—C9—H9C	109.5
С4—С3—Н3В	119.8	N4—C10—H10A	109.5
С2—С3—Н3В	119.8	N4—C10—H10B	109.5
C3—C4—C5	121.44 (17)	H10A—C10—H10B	109.5
C3—C4—H4A	119.3	N4—C10—H10C	109.5
C5—C4—H4A	119.3	H10A-C10-H10C	109.5
N3—C5—C4	127.10 (17)	H10B-C10-H10C	109.5
N3—C5—C6	116.62 (15)		
C6 C1 C2 C3	0.9(3)	C3 C4 C5 N3	-170 08 (17)
$C_{0} = C_{1} = C_{2} = C_{3}$	-170.70(16)	$C_{3} = C_{4} = C_{5} = C_{6}$	1/9.90(17) 1.8(3)
$C_0 = C_1 = C_2 = N_2$	-174.49(10)	$C_{3} - C_{4} - C_{5} - C_{0}$	1.0(3)
01 - N2 - C2 - C3	-1/4.40(10)	$C_2 = C_1 = C_0 = C_3$	0.7(3)
02 - N2 - C2 - C3	5.1(3)	$C_2 = C_1 = C_0 = C_7$	-1/9.40(10)
OI = N2 = C2 = C1	0.2(3)	$N_{3} = C_{3} = C_{0} = C_{1}$	1/9.02(13)
02 - 102 - 02 - 01	-1/4.19(18)	$\begin{array}{c} \mathbf{U}_{+} \\ \mathbf{U}_{-} \\ \mathbf{U}$	-2.0(3)
$U_1 - U_2 - U_3 - U_4$	-1.1(3)	$1N_{3} = C_{3} = C_{0} = C_{1}$	-0.2(2)
$N_2 - C_2 - C_3 - C_4$	1/9.03 (1/)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1/8.12 (16)
$U_2 - U_3 - U_4 - U_5$	-0.4(3)	C_{2} NJ C_{2} NJ	-1/9.43 (17)
$U_8 - N_3 - U_5 - U_4$	1/.3 (3)	C9—N4—C8—N3	-1/5.20 (18)
C8—N3—C5—C6	-164.50 (16)	C10—N4—C8—N3	-0.5 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C1—H1A···O1 ⁱ	0.93	2.48	3.354 (3)	156
C8—H8A…N1 ⁱⁱ	0.93	2.61	3.525 (2)	166

Symmetry codes: (i) -x+2, -y, -z+2; (ii) -x+1/2, y+1/2, -z+3/2.