Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2,2,7,7-Tetramethyl-1,2,3,4,5,6,7,8-octa-hydroacridine-1,8-dione

Sema Öztürk Yildirim, ${ }^{\text {a,b }}$ Ray J. Butcher, ${ }^{\text {a }}{ }^{*}$ Rahime Simsek, ${ }^{\text {c }}$ Ahmed El-Khouly ${ }^{\text {c }}$ and Cihat Safak ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, ${ }^{\mathbf{b}}$ Department of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and ${ }^{\text {ch}}$ Hacettepe University, Faculty of Pharmacy, Dept. of Pharmaceutical Chemistry, 06100 Sihhiye-Ankara, Turkey
Correspondence e-mail: rbutcher99@yahoo.com

Received 14 November 2012; accepted 29 November 2012
Key indicators: single-crystal X-ray study; $T=123 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.043 ; w R$ factor $=0.122 ;$ data-to-parameter ratio $=15.4$.

The whole molecule of the title compound, $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{2}$, is generated by twofold rotational symmetry. The N atom and the C and H atoms in position 4 of the pyridine ring lie on the twofold axis. The cyclohexene ring has a sofa conformation with the $\mathrm{CH}_{2} \mathrm{C}$ atom adjacent to the dimethyl-substituted C atom displaced by 0.5949 (16) A from the mean plane of the other five C atoms. In the crystal, weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions link the molecules into chains parallel to the a axis. In addition, $\pi-\pi$ stacking interactions [centroid-centroid distance $=3.8444$ (7) Å] contribute to the stabilization of the crystal structure.

Related literature

For background to potassium channels and biological functions and physiological roles, see: Horiuchi et al. (2001); Crestanello et al. (2000). For biological properties of 1,4dihydropyridines (DHP), see: Simşek et al. (2004); Fincan et al. (2012); Gündüz et al. (2009); Pyrko (2008); Li et al. (2010). For geometric analysis, see: Cremer \& Pople (1975). For a description of the Cambridge Structural Database, see: Allen (2002). For hydrogen-bond motifs, see: Bernstein et al. (1995). For similar structures, see: El-Khouly et al. (2012); Öztürk Yildirim et al. (2012, 2013); Gündüz et al. (2012).

Experimental

Crystal data
$\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{2}$
$M_{r}=271.35$
Tetragonal, $\mathrm{P4}_{3} 22$ 。
$Z=4$
$\mathrm{Cu} K \alpha$ radiation
$a=9.99077$ (19) \AA
$\mu=0.64 \mathrm{~mm}^{-1}$
$c=14.5063$ (4) A
$V=1447.95(6) \AA^{3}$
$0.50 \times 0.30 \times 0.25 \mathrm{~mm}$

Data collection

Agilent Xcalibur (Ruby, Gemini) diffractometer
Absorption correction: multi-scan [CrysAlis RED (Agilent, 2011), based on expressions derived by

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.122$
$S=1.09$
1452 reflections

Clark \& Reid (1995)]
$T_{\text {min }}=0.740, T_{\text {max }}=0.856$
3055 measured reflections 1452 independent reflections 1349 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.030$

94 parameters
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.16 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.24 \mathrm{e} \mathrm{A}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA \AA^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2-\mathrm{H} 2 B \cdots \mathrm{O}^{\mathrm{i}}$	0.99	2.52	$3.415(2)$	151
Symmetry code: (i) $-y+1, x, z-\frac{1}{4}$.				

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

RJB acknowledges the NSF-MRI program (grant No. CHE-0619278) for funds to purchase the diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: MW2098).

References

Agilent (2011). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.
Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Clark, R. C. \& Reid, J. S. (1995). Acta Cryst. A51, 887-897.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Crestanello, J. A., Doliba, N. M., Babsky, A. M., Doliba, N. M., Niibori, K., Osbakken, M. D. \& Whitman, G. J. (2000). J. Surg. Res. 94, 116-123.
El-Khouly, A., Öztürk Yildirim, S., Butcher, R. J., Şimsek, R. \& Şafak, C. (2012). Acta Cryst. E68, o3337.

Fincan, G. S. Ö., Gündüz, M. G., Vural, I. M., Şimşek, R., Sarioğlu, Y. \& Şafak, C. (2012). Med. Chem. Res. 21, 1817-1824.

Gündüz, M. G., Butcher, R. J., Öztürk Yildirim, S., El-Khouly, A., Şafak, C. \& Şimşek, R. (2012). Acta Cryst. E68, o3404-o3405.
Gündüz, M. G., Doğan, A. E., Şimşek, R., Erol, K. \& Şafak, C. (2009). Med. Chem. Res. 18, 317-325.
Horiuchi, T., Dietrich, H. H., Tsugane, S. \& Dacey, R. G. Jr (2001). Stroke, 32, 218-224.

Li, T., Feng, X., Yao, C., Yu, C., Jiang, B. \& Tu, S. (2010). Bioorg. Med. Chem. Lett. 21, 453-455.
Öztürk Yildirim, S., Butcher, R. J., El-Khouly, A., Safak, C. \& Şimsek, R. (2012). Acta Cryst. E68, o3365-o3366.

Öztürk Yildirim, S., Butcher, R. J., Gündüz, M. G., El-Khouly, A., Şimsek, R. \& Şafak, C. (2013). Acta Cryst. E69, o40-o41.

Pyrko, A. N. (2008). Russ. J. Org. Chem. 44, 1215-1224.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Simşek, R., Ozkan, M., Kismetli, E., Uma, S. \& Safak, C. (2004). Il Farmaco, 59, 939-943.

supporting information

2,2,7,7-Tetramethyl-1,2,3,4,5,6,7,8-octahydroacridine-1,8-dione

Sema Öztürk Yildirim, Ray J. Butcher, Rahime Şimsek, Ahmed El-Khouly and Cihat Şafak

S1. Comment

Potassium channels play an important role in cell function in both excitable and non-excitable cells. Potassium channel openers, which open vascular potassium channels, have the potential to restrain or prevent contractile responses to excitatory stimuli or clamp the vessel in a relaxed condition. Their vasorelaxant effect is due to an increase in the potassium efflux through opening plasmalemmal potassium channels, which reduce calcium release from intracellular sources (Horiuchi et al., 2001; Crestanello et al., 2000). It is well known that 1,4-dihydropyridine (DHP) and its bicyclo (quinoline) and tricyclo (acridine) analogs are a well known group of calcium channel blockers that are established in the clinic as having vasodilator and anti-hypertensive functions. Potassium channel opener activities of these compounds are well known (Simşek et al., 2004; Fincan et al., 2012; Gündüz et al., 2009; Pyrko, 2008; Li et al., 2010).

The molecular structure of (I) is shown in Fig. 1. The asymmetric unit consists of one half of the molecule and the complete molecule is generated from the asymmetric unit by a twofold axis which passes through the N 1 and C 7 atoms. The keto bond distance (C5-O1) is 1.215 (2) \AA and is comparable with those in similar structures obtained from the Cambrige Crystallographic Database (Allen, 2002).The deviation of atom C3 from the mean plane passing through C1, $\mathrm{C} 2, \mathrm{C} 4, \mathrm{C} 5, \mathrm{C} 6$ is 0.595 (2) \AA. The dihedral angle between the mean planes of $\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 5$ and C 6 and $\mathrm{C} 1^{\mathrm{i}}, \mathrm{C} 2^{\mathrm{i}}, \mathrm{C} 5^{\mathrm{i}}$ and C^{6} (related by 2-fold axis) is $6.02(3)^{\circ}$. The π conjugation along $\mathrm{N} 1 / \mathrm{C} 1 / \mathrm{C} 6 / \mathrm{C} 7 / \mathrm{C}^{\mathrm{i}} / \mathrm{C} 1^{\mathrm{i}}[\mathrm{N} 1 — \mathrm{C} 1=1.3423(18) \AA, \mathrm{N} 1-$ $\mathrm{C} 1^{\mathrm{i}}=1.3423(18) \AA, \mathrm{C} 1-\mathrm{C} 6=1.409(2) \AA, \mathrm{C} 6-\mathrm{C} 7=1.3861(17) \AA, \mathrm{C} 7-\mathrm{C} 6^{\mathrm{i}}=1.3861(17) \AA$ and $\mathrm{C} 1^{\mathrm{i}}-\mathrm{C} 6^{\mathrm{i}}=$ 1.409 (2) \AA, symmetry code: (i) $=y, x,-z+5 / 4]$ indicates the strong aromaticity in the central ring, which makes all the atoms of the ring lie almost in a plane with the maximum deviation being -0.017 (1) \AA for C 1 . This planarity of the central ring is further supported by the zero value for the puckering amplitude of this ring (Cremer \& Pople, 1975). The unique cyclohexene ring (C1-C6) is in a sofa conformation with puckering parameters (Cremer \& Pople, 1975) of $\mathrm{Q}_{\mathrm{T}}=$ $0.435(2) \AA, \theta=48.8(2)^{\circ}$ and $\varphi=123.7(3)^{\circ}$, respectively. The values of the bond lengths and bond angles are comparable with those of the related structures previously reported (El-Khouly et al., 2012; Öztürk Yildirim et al., 2012, 2013; Gündüz, et al., 2012).

Molecules of (I) are linked to each other via weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds forming D motifs (Bernstein et al., 1995) as chains parallel to the a axis (Table 1, Fig. 2). In the crystal, weak $\pi-\pi$ stacking interactions also contribute to the stabilization: $\left[C g 1 \cdots C g 1^{\text {ii }}\right.$ (symmetry code: (ii) $=1-y, x,-1 / 4+z$) $=3.844$ (7) \AA; where $C g 1$ is the centroid of the $\mathrm{N} 1 / \mathrm{C} 1 / \mathrm{C} 6 / \mathrm{C} 7 / \mathrm{C}^{\mathrm{i}} / \mathrm{Cl}^{1}$ (symmetry code: $\left.(\mathrm{i})=y, x,-z+5 / 4\right)$ ring $]$.

S2. Experimental

A mixture of paraformaldehyde (1.0 mmol), 4,4-dimethyl-1,3-cyclohexanedione (2.0 mmol) and 1 mL of glacial acetic acid was refluxed in 5 mL of methanol for 8 h . Ammonium acetate $(5.0 \mathrm{mmol})$ was then added and reflux was continued until the reaction was completed (monitored by TLC). The mixture was evaporated under reduced pressure, the residue was treated with 5 mL of water and 20 mL of dichloromethane. The dichloromethane extract was dried over sodium
sulfate and evaporated to give the desired product. Pure crystals suitable for X-ray structure analysis were obtained by slow evaporation method using methanol as a solvent.

S3. Refinement

H atoms bonded to C atoms were positioned geometrically and treated as riding with $\mathrm{C}-\mathrm{H}=0.95-0.99 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\mathrm{eq}}(\mathrm{C})$ for H , and $\mathrm{C}-\mathrm{H}=0.98 \AA$ and $U_{\mathrm{iso}}(\mathrm{H})=1.5 U_{\mathrm{eq}}(\mathrm{C})$ for methyl H . The crystal is a racemic twin with a BASF value of 0.3 (4).

Figure 1
The molecular structure of (I), showing 30\% probability displacement ellipsoids and the atom-numbering scheme. H atoms are drawn as spheres of arbitrary radii. Unlabelled atoms are related to labelled counterparts by the two-fold axis

Figure 2
Crystal packing of (I) viewed along the a axis showing the three dimensional network. Dashed lines indicate the C$\mathrm{H} \cdots \mathrm{O}$ interactions.

2,2,7,7-Tetramethyl-1,2,3,4,5,6,7,8-octahydroacridine-1,8-dione

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{2}$
$M_{r}=271.35$
Tetragonal, $P 4_{3} 22$
Hall symbol: P 4cw 2c
$a=9.99077$ (19) \AA
$c=14.5063$ (4) \AA
$V=1447.95(6) \AA^{3}$
$Z=4$
$F(000)=584$

Data collection

Agilent Xcalibur (Ruby, Gemini)
diffractometer
Radiation source: Enhance (Cu) X-ray Source
Graphite monochromator
Detector resolution: 10.5081 pixels mm^{-1}
ω scans
$D_{\mathrm{x}}=1.245 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54184 \AA$
Cell parameters from 1551 reflections
$\theta=3.0-75.1^{\circ}$
$\mu=0.64 \mathrm{~mm}^{-1}$
$T=123 \mathrm{~K}$
Block, colorless
$0.50 \times 0.30 \times 0.25 \mathrm{~mm}$

Absorption correction: multi-scan
[CrysAlis RED (Agilent, 2011), based on
expressions derived by Clark \& Reid (1995)]
$T_{\text {min }}=0.740, T_{\text {max }}=0.856$
3055 measured reflections
1452 independent reflections

1349 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.030$
$\theta_{\text {max }}=75.3^{\circ}, \theta_{\text {min }}=4.4^{\circ}$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.122$
$S=1.09$
1452 reflections
94 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

$$
\begin{aligned}
& h=-11 \rightarrow 12 \\
& k=-12 \rightarrow 7 \\
& l=-12 \rightarrow 18
\end{aligned}
$$

Special details

Experimental. Absorption correction: CrysAlis RED, (Agilent, 2011) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. (Clark \& Reid, 1995).
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} *^{*} U_{\text {eq }}$
O1	$0.54930(12)$	$0.19920(12)$	$0.62530(9)$	$0.0345(3)$
N1	$0.66208(13)$	$0.66208(13)$	0.6250	$0.0259(4)$
C1	$0.69529(15)$	$0.53223(15)$	$0.61859(10)$	$0.0231(3)$
C2	$0.84076(15)$	$0.49870(18)$	$0.60647(12)$	$0.0288(4)$
H2A	0.8957	0.5649	0.6403	0.035^{*}
H2B	0.8643	0.5049	0.5403	0.035^{*}
C3	$0.87361(17)$	$0.35818(18)$	$0.64155(11)$	$0.0297(4)$
H3A	0.8671	0.3579	0.7096	0.036^{*}
H3B	0.9674	0.3368	0.6251	0.036^{*}
C4	$0.78234(16)$	$0.24795(17)$	$0.60323(11)$	$0.0254(4)$
C5	$0.63570(16)$	$0.28413(16)$	$0.61821(11)$	$0.0240(3)$
C6	$0.59904(15)$	$0.42923(15)$	$0.62063(10)$	$0.0218(3)$
C7	$0.46519(15)$	$0.46519(15)$	0.6250	$0.0223(4)$
H7A	0.3980	0.3980	0.6250	0.027^{*}
C8	$0.79805(17)$	$0.23165(17)$	$0.49808(12)$	$0.0319(4)$
H8A	0.7307	0.1685	0.4752	0.048^{*}
H8B	0.8877	0.1974	0.4842	0.048^{*}
H8C	0.7856	0.3186	0.4680	0.048^{*}
C9	$0.8130(2)$	$0.1153(2)$	$0.65133(18)$	$0.0458(6)$
H9A	0.7559	0.0448	0.6257	0.069^{*}

H9B	0.7955	0.1242	0.7175	0.069^{*}
H9C	0.9072	0.0920	0.6416	0.069^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0283(6)$	$0.0225(5)$	$0.0527(8)$	$-0.0016(5)$	$0.0096(6)$	$0.0026(6)$
N1	$0.0238(6)$	$0.0238(6)$	$0.0300(9)$	$-0.0034(7)$	$0.0020(6)$	$-0.0020(6)$
C1	$0.0220(7)$	$0.0265(8)$	$0.0209(7)$	$-0.0006(7)$	$0.0003(6)$	$-0.0011(6)$
C2	$0.0202(7)$	$0.0309(9)$	$0.0352(8)$	$-0.0030(6)$	$0.0014(6)$	$-0.0046(7)$
C3	$0.0222(7)$	$0.0388(9)$	$0.0283(8)$	$0.0035(7)$	$-0.0034(7)$	$-0.0007(7)$
C4	$0.0222(8)$	$0.0251(7)$	$0.0288(8)$	$0.0040(6)$	$0.0006(6)$	$0.0038(6)$
C5	$0.0233(8)$	$0.0229(8)$	$0.0257(7)$	$0.0013(6)$	$0.0033(7)$	$0.0031(6)$
C6	$0.0229(7)$	$0.0227(7)$	$0.0197(7)$	$0.0001(6)$	$0.0007(6)$	$0.0020(6)$
C7	$0.0213(6)$	$0.0213(6)$	$0.0243(10)$	$-0.0026(8)$	$-0.0004(6)$	$0.0004(6)$
C8	$0.0263(8)$	$0.0357(9)$	$0.0338(9)$	$0.0008(7)$	$0.0036(7)$	$-0.0065(8)$
C9	$0.0353(10)$	$0.0389(10)$	$0.0631(13)$	$0.0080(8)$	$-0.0002(9)$	$0.0204(10)$

Geometric parameters ($A,{ }^{\circ}$)

O1-C5	1.215 (2)	C4-C9	1.528 (2)
N1-C1	1.3423 (18)	C4-C8	1.542 (2)
$\mathrm{N} 1-\mathrm{Cl}{ }^{\text {i }}$	1.3423 (18)	C5-C6	1.496 (2)
C1-C6	1.409 (2)	C6-C7	1.3861 (17)
C1-C2	1.502 (2)	C7- $\mathrm{C}^{\text {i }}$	1.3861 (17)
C2-C3	1.529 (2)	C7-H7A	0.9500
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9900	C8-H8A	0.9800
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	0.9900	C8-H8B	0.9800
C3-C4	1.534 (2)	C8-H8C	0.9800
C3-H3A	0.9900	C9—H9A	0.9800
C3-H3B	0.9900	C9-H9B	0.9800
$\mathrm{C} 4-\mathrm{C} 5$	1.525 (2)	C9-H9C	0.9800
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Cl}^{\mathrm{i}}$	118.85 (19)	O1-C5-C6	120.07 (15)
N1-C1-C6	122.40 (14)	O1-C5-C4	121.96 (15)
N1-C1-C2	117.57 (14)	C6-C5-C4	117.93 (13)
C6- $\mathrm{C} 1-\mathrm{C} 2$	120.01 (14)	C7-C6-C1	118.05 (15)
C1-C2-C3	111.93 (14)	C7-C6-C5	119.24 (14)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.2	C1-C6-C5	122.71 (14)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.2	C6--C7-C6	120.1 (2)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.2	C6-- 7 - ${ }^{\text {- }} 7$ A	119.9
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.2	C6-C7-H7A	119.9
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	107.9	C4-C8-H8A	109.5
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	114.27 (13)	C4-C8-H8B	109.5
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	108.7	H8A-C8-H8B	109.5
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	108.7	C4-C8-H8C	109.5
C2-C3-H3B	108.7	H8A-C8-H8C	109.5
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	108.7	H8B-C8-H8C	109.5

$\mathrm{H} 3 \mathrm{~A}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 9$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$
$\mathrm{C} 9-\mathrm{C} 4-\mathrm{C} 3$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 8$
$\mathrm{C} 9-\mathrm{C} 4-\mathrm{C} 8$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 8$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$
$\mathrm{~N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 9$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 8$
$\mathrm{C} 9-\mathrm{C} 4-\mathrm{C} 5-\mathrm{O} 1$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{O} 1$
$\mathrm{C} 8-\mathrm{C} 4-\mathrm{C} 5-\mathrm{O} 1$
$\mathrm{C} 9-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$
107.6
109.45 (15)
110.45 (13)
109.74 (15)
105.29 (13)
109.85 (16)
111.95 (14)
-1.60 (11)
176.83 (16)
154.89 (12)
-26.6 (2)
51.52 (19)
-52.49 (18)
-173.25 (15)
64.49 (18)
-32.0 (2)
-152.98 (16)
85.99 (19)
150.15 (17)

C4-C9—H9A
C4-C9—H9B
H9A-C9—H9B 109.5
C4—C9—H9C 109.5
H9A-C9—H9C 109.5
H9B-C9—H9C 109.5

C3-C4-C5-C6
C8-C4-C5-C6
N1-C1-C6-C7
C2-C1-C6-C7
N1-C1-C6-C5
C2-C1-C6-C5
O1-C5-C6-C7
C4-C5-C6-C7
O1-C5-C6-C1
C4-C5-C6-C1
C1-C6-C7- $6^{\text {i }}$
C5-C6-C7-C6 ${ }^{\text {i }}$
109.5
29.2 (2)
109.5
-91.81 (16)
3.1 (2)
-175.25 (13)
-176.91 (12)
4.7 (2)
-4.2 (2)
173.69 (12)
175.89 (15)
-6.3 (2)
-1.48 (10)
178.57 (16)

Symmetry code: (i) $y, x,-z+5 / 4$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2 — \mathrm{H} 2 B \cdots \mathrm{O}^{\mathrm{ii}}$	0.99	2.52	$3.415(2)$	151

Symmetry code: (ii) $-y+1, x, z-1 / 4$.

