metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tris(2,2'-bipyridine- $\kappa^2 N, N'$)cobalt(II) bis(hexafluoridophosphate)

Ayfer Mentes^a* and Kuldip Singh^b

^aAksaray University, Faculty of Arts and Sciences, Department of Chemistry, 68100 Aksaray, Turkey, and ^bDepartment of Chemistry, Leicester University, Leicester LE1 7RH, England

Correspondence e-mail: amentes@aksaray.edu.tr

Received 15 November 2012; accepted 9 December 2012

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.008 Å; R factor = 0.049; wR factor = 0.088; data-to-parameter ratio = 13.6.

In the title compound, $[Co(C_{10}H_8N_2)_3](PF_6)_2$, the Co^{II} atom is coordinated by the six N atoms of three 2,2'-bipyridyl ligands and adopts a highly distorted octahedral geometry. The crystal used was a merohedral twin, the refined ratio of twin components being 0.820 (1):0.180 (1). The crystal structure features weak C-H···F interactions, forming a threedimensional network.

Related literature

For related structures, see: Chygorin *et al.* (2012); Liu *et al.* (2008, 2010).

Experimental

Crystal data $[Co(C_{10}H_8N_2)_3](PF_6)_2$ $M_r = 817.42$ Trigonal, $P3_2$

a = 10.3524 (18) Åc = 26.140 (6) Å $V = 2426.2 (8) \text{ Å}^3$ Z = 3Mo $K\alpha$ radiation $\mu = 0.73 \text{ mm}^{-1}$

Data collection

Bruker APEX 2000 CCD areadetector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2005) *T*_{min} = 0.581, *T*_{max} = 0.862

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.088$ S = 0.946285 reflections 461 parameters 1 restraint T = 150 K $0.35 \times 0.16 \times 0.13 \text{ mm}$

19252 measured reflections
6285 independent reflections
5344 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.087$

H-atom parameters constrained $\Delta \rho_{max} = 0.30 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{min} = -0.31 \text{ e} \text{ Å}^{-3}$ Absolute structure: Flack (1983), 3114 Friedel pairs Flack parameter: 0.010 (18)

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C24-H24\cdots F2^{i}$	0.95	2.49	3.324 (7)	146
$C23-H23\cdots F4^{i}$	0.95	2.55	3.253 (7)	131
C18−H18···F11 ⁱⁱ	0.95	2.52	3.149 (6)	124
C13−H13···F10 ⁱⁱⁱ	0.95	2.50	3.208 (6)	131
C10−H10···F11 ^{iv}	0.95	2.51	3.265 (6)	137
$C9-H9\cdots F7^{iv}$	0.95	2.33	3.136 (6)	142
$C7 - H7 \cdot \cdot \cdot F8^{v}$	0.95	2.38	3.160 (7)	139
$C2-H2\cdot\cdot\cdot F2^{vi}$	0.95	2.33	3.081 (7)	136

Symmetry codes: (i) $-y, x - y, z - \frac{1}{3}$, (ii) $-x + y - 1, -x + 1, z + \frac{1}{3}$, (iii) $-x + y - 1, -x, z + \frac{1}{3}$, (iv) x, y - 1, z; (v) x + 1, y, z; (vi) x, y + 1, z.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors are grateful to Leicester University for the use of the X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LR2090).

References

Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Chygorin, E. N., Petrusenko, S. R., Kokozay, V. N., Omelchenko, I. V. & Shishkin, O. V. (2012). Acta Cryst. E68, m233–m234.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Liu, W., Xu, W., Lin, J.-L. & Xie, H.-Z. (2008). Acta Cryst. E64, m1586.

Liu, Y., Zhang, X., Xue, Z. & Sheng, J. (2010). Acta Cryst. E66, m756–m757. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Acta Cryst. (2013). E69, m58 [https://doi.org/10.1107/S1600536812050234] Tris(2,2'-bipyridine- $\kappa^2 N, N'$)cobalt(II) bis(hexafluoridophosphate)

Ayfer Menteş and Kuldip Singh

S1. Comment

The reaction of Cobalt(II) pentafluoropropionate with NaPF₆ in the presence of 2,2'-bipyridine yields the coordination compound *tris*(bipyridine)cobalt(II) hexafluorophosphate (1), [Co(bipy)₃][PF₆]₂. Crystals were grown by allowing slow evaporation of the complex in ethanol. The title complex crystallizes in the space group P3(2) in contrast to the related compound [Co(bipy)₃][Mo₆O₁₉]₂ which crystallizes in $P2_1/n$ (Liu *et al.*, 2010). The structure of (1) is shown in Fig. 1. Within the divalent complex cations, the cobalt atoms are each surrounded by six N atoms of three chelating bipy ligands to complete a distorted octahedral coordination with d(Co—N) = 2.098 (7) – 2.149 (8) Å, the *cis* and *trans* N—Co—N bond angles in the range 76.6 (3) – 96.9 (3) and 167.6 (3) – 170.5 (3)°, respectively. Such distances are similar to those found in other related structures (Liu *et al.*, 2008, Chygorin *et al.* 2012). There has been great interest in homoleptic imine complexes, because of great potential applications in many fields such as, catalysis, material science and medicine. The crystal packing of the title compound is presented in Fig. 2. The crystal structure is stabilized by weak intermolecular C—H…F bonds.

S2. Experimental

Tris(bipyridine)cobalt(II) hexafluorophosphate was prepared by stirring a mixture of a solution containing $Co(O_2CC_2F_5)_2$ (0.100 g, 0.25 mmol) and bipyridine (0.120 g, 0.77 mmol) in ethanol (10 ml). The reaction mixture was stirred for 2 h. After this time NaPF₆ (0.100 g, 0.59 mmol) was added and stirred for 1 h. Solid of title compound was obtained by slow evaporation of an ethanol solution in refrigerator (Yield 0.150 g, 79%; m.p. 594 K). Yellow block crystals were obtained in acetonitrile/ethanol (1:1) solution after few days. ATR-IR: 1603 v(C=N), 1566 v(C=C) cm⁻¹.

S3. Refinement

Hydrogen atoms were included in calculated positions (C—H = 0.95 Å) riding on the bonded atom with isotropic displacement parameters set to 1.2Ueq(C) for all hydrogen atoms. All non-H atoms were refined with anisotropic displacement ellipsoids. Merohedral twinning is indicated and applying the twin instruction [TWIN 0 1 0, 1 0 0, 0 0 - 1] with a BASF parameter in *SHELXTL* (Sheldrick, 2008), the R1 value drops to 0.049 (0.0886 without TWIN Instruction) and wR2 value drops to 0.0883 (0.2284 without TWIN instruction).

A view of the crystal packing of the title compound.

Tris(2,2'-bipyridine- $\kappa^2 N, N'$) cobalt(II) bis(hexafluoridophosphate)

Crystal data

 $[Co(C_{10}H_8N_2)_3](PF_6)_2$ $M_r = 817.42$ Trigonal, P3₂ Hall symbol: P 32 a = 10.3524 (18) Å c = 26.140 (6) Å $V = 2426.2 (8) \text{ Å}^3$ Z = 3F(000) = 1233

Data collection

Bruker APEX 2000 CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator phi and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2005) $T_{\min} = 0.581, T_{\max} = 0.862$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.088$ S = 0.946285 reflections $D_x = 1.678 \text{ Mg m}^{-3}$ Melting point: 594 K Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 812 reflections $\theta = 2.3-28.2^{\circ}$ $\mu = 0.73 \text{ mm}^{-1}$ T = 150 KNeedle, yellow $0.35 \times 0.16 \times 0.13 \text{ mm}$

19252 measured reflections 6285 independent reflections 5344 reflections with $I > 2\sigma(I)$ $R_{int} = 0.087$ $\theta_{max} = 26.0^{\circ}, \theta_{min} = 0.8^{\circ}$ $h = -12 \rightarrow 12$ $k = -12 \rightarrow 12$ $l = -32 \rightarrow 32$

461 parameters1 restraintPrimary atom site location: structure-invariant direct methodsSecondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0279P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.002$

Special details

$$\begin{split} &\Delta\rho_{\rm max}=0.30~{\rm e}~{\rm \AA}^{-3}\\ &\Delta\rho_{\rm min}=-0.31~{\rm e}~{\rm \AA}^{-3}\\ &{\rm Absolute~structure:~Flack~(1983),~3114~Friedel}\\ &{\rm pairs}\\ &{\rm Absolute~structure~parameter:~0.010~(18)} \end{split}$$

Experimental. SADABS (Bruker, 2005). Absorption correction based on 7715 reflections;Rint 0.1489 before correction and 0.0570 after.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and	isotropic	or equivalent	isotropic dis	splacement	parameters ($(Å^2$)
-----------------------------------	-----------	---------------	---------------	------------	--------------	--------	---

	x	V	Z	$U_{\rm iso}^*/U_{\rm eq}$	
Col	0.31501 (7)	0.63587 (6)	0.16543 (3)	0.02682 (14)	
N1	0.5410 (4)	0.7831 (4)	0.18887 (15)	0.0288 (9)	
N2	0.4286 (4)	0.5271 (4)	0.13828 (15)	0.0286 (9)	
N3	0.2500 (4)	0.5252 (4)	0.23714 (14)	0.0278 (9)	
N4	0.2286 (4)	0.7570 (4)	0.20398 (14)	0.0270 (9)	
N5	0.1048 (4)	0.4858 (4)	0.13110 (14)	0.0285 (9)	
N6	0.3326 (4)	0.7329 (4)	0.09234 (14)	0.0321 (9)	
C1	0.5893 (5)	0.9086 (5)	0.21651 (19)	0.0322 (11)	
H1	0.5220	0.9440	0.2229	0.039*	
C2	0.7309 (5)	0.9875 (6)	0.23577 (18)	0.0339 (12)	
H2	0.7617	1.0756	0.2552	0.041*	
C3	0.8278 (6)	0.9347 (6)	0.22598 (19)	0.0426 (13)	
H3	0.9265	0.9853	0.2392	0.051*	
C4	0.7788 (6)	0.8074 (6)	0.19675 (19)	0.0394 (13)	
H4	0.8443	0.7703	0.1895	0.047*	
C5	0.6371 (5)	0.7354 (5)	0.17835 (17)	0.0270 (10)	
C6	0.5765 (5)	0.5992 (5)	0.14565 (17)	0.0271 (10)	
C7	0.6663 (6)	0.5535 (6)	0.12261 (19)	0.0353 (11)	
H7	0.7711	0.6079	0.1279	0.042*	
C8	0.6041 (6)	0.4286 (6)	0.0919 (2)	0.0411 (13)	
H8	0.6653	0.3981	0.0747	0.049*	
C9	0.4511 (6)	0.3490 (6)	0.0865 (2)	0.0374 (13)	
H9	0.4042	0.2593	0.0671	0.045*	
C10	0.3682 (5)	0.4021 (5)	0.10954 (18)	0.0348 (12)	
H10	0.2630	0.3483	0.1051	0.042*	
C11	0.2541 (6)	0.4024 (5)	0.24997 (19)	0.0365 (13)	
H11	0.3111	0.3731	0.2296	0.044*	
C12	0.1780 (6)	0.3163 (5)	0.2920 (2)	0.0383 (13)	

H12	0.1845	0.2307	0.3007	0.046*
C13	0.0928 (6)	0.3568 (6)	0.3209 (2)	0.0452 (14)
H13	0.0366	0.2974	0.3491	0.054*
C14	0.0903 (6)	0.4854 (6)	0.3082 (2)	0.0425 (13)
H14	0.0332	0.5162	0.3278	0.051*
C15	0.0332 0.1714 (5)	0.5678(5)	0.3270 0.26678 (17)	0.0282(10)
C16	0.1714(5) 0.1705(5)	0.3078(5)	0.20070(17) 0.25162(18)	0.0282(10)
C10 C17	0.1793(3)	0.7093(3)	0.23102(18)	0.0280(11)
C17	0.1413 (0)	0.7889 (0)	0.2842 (2)	0.0392 (13)
HI/	0.1033	0.7519	0.31/4	0.04/*
C18	0.1594 (7)	0.9260 (6)	0.2675 (2)	0.0486 (15)
H18	0.1396	0.9862	0.2900	0.058*
C19	0.2056 (6)	0.9712 (6)	0.2188 (2)	0.0395 (13)
H19	0.2144	1.0613	0.2062	0.047*
C20	0.2391 (5)	0.8847 (5)	0.18840 (19)	0.0312 (11)
H20	0.2716	0.9171	0.1544	0.037*
C21	-0.0026 (5)	0.3604 (6)	0.1512 (2)	0.0385 (12)
H21	0.0053	0.3407	0.1862	0.046*
C22	-0.1253 (6)	0.2570 (6)	0.1241 (2)	0.0435 (14)
H22	-0.1999	0.1683	0.1400	0.052*
C23	-0.1365(6)	0.2856 (6)	0.0737(2)	0.0456 (14)
H23	-0.2178	0.2151	0.0536	0.055*
C24	-0.0301(6)	0.4160 (6)	0.0526(2)	0.0405(13)
H24	-0.0391	0.4384	0.0180	0.049*
C25	0.0928(5)	0.5172 (6)	0.08174(19)	0.0302(11)
C26	0.0920(5)	0.5172(0) 0.6598(5)	0.06185(18)	0.0302(11)
C27	0.2125(5)	0.0598(5)	0.00105(10)	0.0305(11)
C27	0.2050 (0)	0.7100(0)	0.01385 (19)	0.0423(14)
П27 С28	0.1100 0.2202(7)	0.0070	-0.0047	0.031°
C28	0.3202 (7)	0.8352 (0)	-0.0003 (2)	0.0433 (14)
H28	0.3144	0.8953	-0.0320	0.054*
C29	0.4451 (6)	0.9257 (6)	0.0299 (2)	0.0438 (14)
H29	0.5286	1.0173	0.0193	0.053*
C30	0.4453 (6)	0.8611 (6)	0.07615 (19)	0.0391 (13)
H30	0.5307	0.9113	0.0974	0.047*
P1	0.6353 (2)	0.34156 (18)	0.26409 (5)	0.0455 (4)
F1	0.7904 (4)	0.4131 (6)	0.23794 (18)	0.1132 (18)
F2	0.6499 (10)	0.2092 (8)	0.2842 (2)	0.210 (4)
F3	0.7010 (5)	0.4240 (6)	0.31495 (16)	0.1132 (18)
F4	0.4748 (5)	0.2696 (4)	0.29142 (15)	0.0856 (13)
F5	0.6100 (5)	0.4687 (5)	0.24542 (17)	0.0983 (15)
F6	0.5659 (6)	0.2568 (6)	0.21402 (18)	0.147 (2)
P2	0.03045 (17)	0.98203 (18)	0.07188 (5)	0.0404 (4)
F7	0.1988 (3)	1.0180 (4)	0.06828 (15)	0.0606 (10)
F8	-0.0149 (4)	0.8242 (4)	0.09591 (15)	0.0720 (12)
F9	0.0629 (4)	1.0539 (3)	0.12771 (11)	0.0566 (9)
F10	-0.1379(3)	0 9457 (4)	0.07615(14)	0.0608 (10)
F11	0 0790 (4)	1 1424 (3)	0.04879(12)	0.0582 (9)
F12		0.9120(4)	0.01613(12)	0.0502(9)
112	0.0020 (4)	0.9120 (4)	0.01015 (15)	0.0043 (10)

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	U^{33}	U^{12}	U^{13}	U^{23}
Col	0.0283 (4)	0.0289 (3)	0.0231 (3)	0.0142 (3)	-0.0001 (3)	0.0007 (3)
N1	0.030 (2)	0.028 (2)	0.026 (2)	0.0130 (19)	-0.0016 (17)	0.0015 (17)
N2	0.031 (2)	0.029 (2)	0.026 (2)	0.0143 (19)	0.0033 (18)	0.0013 (18)
N3	0.032 (2)	0.029 (2)	0.024 (2)	0.0158 (19)	-0.0067 (18)	-0.0026 (17)
N4	0.027 (2)	0.029 (2)	0.027 (2)	0.0162 (18)	0.0002 (17)	0.0004 (18)
N5	0.027 (2)	0.033 (2)	0.026 (2)	0.0156 (19)	-0.0062 (17)	-0.0019 (18)
N6	0.033 (2)	0.034 (2)	0.029 (2)	0.017 (2)	-0.0004 (18)	0.0030 (18)
C1	0.037 (3)	0.033 (3)	0.031 (3)	0.020 (2)	0.003 (2)	0.002 (2)
C2	0.036 (3)	0.031 (3)	0.027 (3)	0.010(2)	0.003 (2)	-0.003 (2)
C3	0.032 (3)	0.054 (4)	0.036 (3)	0.017 (3)	-0.004 (2)	-0.008 (3)
C4	0.032 (3)	0.049 (3)	0.040 (3)	0.023 (3)	0.003 (2)	-0.007 (3)
C5	0.035 (3)	0.026 (2)	0.021 (2)	0.016 (2)	-0.001 (2)	0.001 (2)
C6	0.031 (3)	0.026 (3)	0.022 (3)	0.012 (2)	0.000 (2)	0.001 (2)
C7	0.036 (3)	0.035 (3)	0.037 (3)	0.020 (3)	0.000 (2)	-0.003 (2)
C8	0.039 (3)	0.041 (3)	0.047 (3)	0.023 (3)	0.010 (3)	-0.003 (3)
C9	0.043 (3)	0.031 (3)	0.038 (3)	0.018 (3)	0.001 (2)	-0.005 (2)
C10	0.027 (3)	0.030 (3)	0.040 (3)	0.008 (2)	-0.002 (2)	-0.003 (2)
C11	0.041 (3)	0.031 (3)	0.040 (3)	0.020 (2)	0.000 (2)	-0.003 (2)
C12	0.047 (3)	0.026 (3)	0.041 (3)	0.018 (3)	-0.002 (3)	0.006 (2)
C13	0.061 (4)	0.042 (3)	0.032 (3)	0.026 (3)	0.007 (3)	0.010 (3)
C14	0.054 (3)	0.050 (3)	0.032 (3)	0.032 (3)	0.012 (3)	0.008 (3)
C15	0.032 (2)	0.031 (3)	0.022 (2)	0.016 (2)	-0.003 (2)	-0.001 (2)
C16	0.022 (2)	0.030 (3)	0.030 (3)	0.010 (2)	0.002 (2)	0.003 (2)
C17	0.059 (4)	0.046 (3)	0.025 (3)	0.036 (3)	0.007 (3)	0.010 (3)
C18	0.072 (4)	0.053 (4)	0.044 (4)	0.049 (3)	-0.001 (3)	-0.004 (3)
C19	0.052 (3)	0.037 (3)	0.040 (3)	0.030 (3)	-0.005 (3)	-0.001 (3)
C20	0.030 (3)	0.032 (3)	0.030 (3)	0.014 (2)	0.001 (2)	0.006 (2)
C21	0.028 (3)	0.044 (3)	0.037 (3)	0.014 (3)	0.002 (2)	0.002 (2)
C22	0.034 (3)	0.041 (3)	0.044 (3)	0.009 (3)	-0.004 (2)	0.004 (3)
C23	0.030 (3)	0.050 (4)	0.045 (4)	0.011 (3)	-0.008(3)	-0.004 (3)
C24	0.044 (3)	0.052 (4)	0.028 (3)	0.026 (3)	-0.009(2)	-0.003(3)
C25	0.027 (3)	0.036 (3)	0.030 (3)	0.018 (2)	0.002 (2)	0.003 (2)
C26	0.033 (3)	0.038 (3)	0.028 (3)	0.023 (2)	0.000 (2)	-0.004(2)
C27	0.052 (4)	0.053 (4)	0.025 (3)	0.028 (3)	-0.001(3)	0.005 (3)
C28	0.056 (4)	0.055 (4)	0.028 (3)	0.030 (3)	0.006 (3)	0.010 (3)
C29	0.054 (4)	0.045 (3)	0.032 (3)	0.025 (3)	0.012 (3)	0.008 (2)
C30	0.045 (3)	0.042 (3)	0.024 (3)	0.017 (3)	0.002 (2)	0.002 (2)
P1	0.0655 (11)	0.0525 (10)	0.0310 (9)	0.0388 (9)	0.0047 (7)	0.0015 (7)
F1	0.064 (3)	0.187 (5)	0.088 (3)	0.062 (3)	0.025 (2)	-0.003 (3)
F2	0.424 (12)	0.227 (7)	0.152 (5)	0.293 (9)	0.170 (7)	0.125 (5)
F3	0.094 (3)	0.200 (5)	0.047 (2)	0.075 (4)	-0.028 (2)	-0.044 (3)
F4	0.089 (3)	0.077 (3)	0.074 (3)	0.029 (2)	0.034 (2)	0.009 (2)
F5	0.126 (4)	0.107 (4)	0.101 (3)	0.087 (3)	0.032 (3)	0.055 (3)
F6	0.148 (5)	0.124 (4)	0.074 (3)	-0.004(4)	0.016 (3)	-0.057 (3)
P2	0.0351 (8)	0.0404 (8)	0.0340 (8)	0.0101 (6)	-0.0021 (6)	-0.0015 (7)

57	0.0200 (10)	0.050 (2)	0.001 (2)	0.0120 (1.6)	0.002((10)	0.0054 (10)
F /	0.0390 (19)	0.050 (2)	0.081(3)	0.0129 (16)	-0.0036 (18)	-0.0054 (18)
F8	0.073 (3)	0.0357 (19)	0.087 (3)	0.0123 (18)	0.017 (2)	0.0097 (18)
F9	0.067 (2)	0.056 (2)	0.0326 (17)	0.0197 (18)	-0.0080 (15)	-0.0012 (14)
F10	0.0332 (17)	0.068 (2)	0.066 (2)	0.0142 (17)	-0.0034 (16)	-0.0194 (19)
F11	0.072 (2)	0.0511 (19)	0.0422 (19)	0.0244 (19)	-0.0013 (18)	0.0096 (16)
F12	0.060 (2)	0.072 (2)	0.048 (2)	0.0230 (19)	-0.0049 (17)	-0.0207 (19)

Geometric parameters (Å, °)

Co1—N2	2.117 (4)	C14—C15	1.374 (7)
Co1—N3	2.123 (4)	C14—H14	0.9500
Co1—N6	2.124 (4)	C15—C16	1.479 (6)
Co1—N4	2.124 (4)	C16—C17	1.374 (7)
Co1—N5	2.139 (4)	C17—C18	1.405 (7)
Co1—N1	2.146 (4)	C17—H17	0.9500
N1—C5	1.342 (6)	C18—C19	1.357 (7)
N1—C1	1.345 (6)	C18—H18	0.9500
N2—C6	1.340 (6)	C19—C20	1.366 (7)
N2	1.349 (6)	C19—H19	0.9500
N3—C11	1.336 (6)	C20—H20	0.9500
N3—C15	1.347 (6)	C21—C22	1.379 (7)
N4C20	1.335 (6)	C21—H21	0.9500
N4C16	1.342 (6)	C22—C23	1.367 (7)
N5-C21	1.324 (6)	C22—H22	0.9500
N5-C25	1.352 (6)	C23—C24	1.362 (7)
N6—C30	1.324 (6)	С23—Н23	0.9500
N6—C26	1.344 (6)	C24—C25	1.402 (7)
C1—C2	1.368 (6)	C24—H24	0.9500
C1—H1	0.9500	C25—C26	1.469 (7)
C2—C3	1.385 (7)	C26—C27	1.374 (6)
C2—H2	0.9500	C27—C28	1.375 (7)
C3—C4	1.382 (7)	С27—Н27	0.9500
С3—Н3	0.9500	C28—C29	1.374 (8)
C4—C5	1.359 (6)	C28—H28	0.9500
C4—H4	0.9500	C29—C30	1.383 (7)
C5—C6	1.493 (6)	С29—Н29	0.9500
C6—C7	1.374 (6)	С30—Н30	0.9500
C7—C8	1.378 (7)	P1—F6	1.539 (5)
С7—Н7	0.9500	P1—F3	1.542 (4)
C8—C9	1.380 (7)	P1—F2	1.544 (5)
C8—H8	0.9500	P1—F5	1.545 (4)
C9—C10	1.368 (7)	P1—F1	1.551 (4)
С9—Н9	0.9500	P1—F4	1.609 (4)
C10—H10	0.9500	P2—F12	1.587 (4)
C11—C12	1.386 (7)	P2—F8	1.587 (4)
C11—H11	0.9500	P2—F10	1.592 (3)
C12—C13	1.376 (7)	P2—F7	1.592 (4)
C12—H12	0.9500	P2—F11	1.594 (4)

C13—C14	1.385 (7)	P2—F9	1.596 (3)
С13—Н13	0.9500		
	$0 \leq 0 \leq \langle 1 \rangle$		100 7 (4)
N2 - Col - N3	96.86 (15)	C14 - C15 - C16	122.7 (4)
N2—Col—N6	90.63 (15)	N4-C16-C17	121.6 (4)
N3—Co1—N6	168.13 (15)	N4—C16—C15	115.9 (4)
N2—Co1—N4	169.58 (15)	C17—C16—C15	122.5 (4)
N3—Co1—N4	77.66 (14)	C16—C17—C18	118.7 (5)
N6—Co1—N4	96.28 (15)	С16—С17—Н17	120.6
N2—Co1—N5	96.15 (15)	C18—C17—H17	120.6
N3—Co1—N5	92.62 (14)	C19—C18—C17	119.0 (5)
N6—Co1—N5	77.38 (15)	C19—C18—H18	120.5
N4—Co1—N5	92.97 (14)	C17—C18—H18	120.5
N2—Co1—N1	77.02 (15)	C18—C19—C20	118.8 (5)
N3—Co1—N1	94.01 (14)	C18—C19—H19	120.6
N6—Co1—N1	96.65 (15)	С20—С19—Н19	120.6
N4—Co1—N1	94.39 (15)	N4—C20—C19	123.3 (5)
N5—Co1—N1	171.00 (15)	N4—C20—H20	118.3
C5—N1—C1	118.6 (4)	C19—C20—H20	118.3
C5—N1—Co1	115.2 (3)	N5—C21—C22	123.6 (5)
C1—N1—Co1	125.9 (3)	N5—C21—H21	118.2
C6—N2—C10	117.8 (4)	C22—C21—H21	118.2
C6-N2-Co1	116.1 (3)	C_{23} C_{22} C_{21} C_{21}	118.1 (5)
$C10 - N^2 - Co1$	125.6 (3)	C^{23} C^{22} H^{22}	120.9
$C_{11} = N_3 = C_{15}$	118 6 (4)	C_{21} C_{22} H_{22}	120.9
$C_{11} = N_3 = C_{01}$	125.6 (3)	C_{24} C_{23} C_{22}	120.5 119.5(5)
C_{15} N3 C_{01}	125.0(3) 114 3 (3)	$C_{24} = C_{23} = C_{22}$	120.3
$C_{10} = N_{10} = C_{10}$	114.3(3) 118 A(A)	$C_{24} = C_{23} = H_{23}$	120.3
$C_{20} = N_{4} = C_{10}$	110.4(4) 126.2(2)	$C_{22} = C_{23} = H_{23}$	120.3
C_{20} N4 C_{21}	120.2(3)	$C_{23} = C_{24} = C_{23}$	120.1(3)
$C_{10} = N_{4} = C_{01}$	114.0(3) 118.8(4)	$C_{23} = C_{24} = H_{24}$	119.9
$C_2 I = N_5 = C_2 I$	110.0(4) 126.6(2)	N5 C25 C24	119.9
$C_{21} = N_{5} = C_{21}$	120.0(3)	N5-C25-C24	119.8 (4)
$C_{23} = N_{3} = C_{01}$	114.1 (3)	$N_{3} = C_{23} = C_{26}$	110.5 (4)
$C_{30} = N_{6} = C_{26}$	118.5 (4)	$C_{24} = C_{25} = C_{26}$	123.7(5)
C_{30} NG C_{1}	125.9 (3)	N6-C26-C27	121.2 (5)
C26—N6—C01	115.5 (3)	N6-C26-C25	115.8 (4)
NI—CI—C2	123.0 (5)	$C_27 - C_26 - C_25$	123.0 (5)
NI-CI-HI	118.5	C26—C27—C28	119.9 (5)
C2—C1—H1	118.5	С26—С27—Н27	120.1
C1—C2—C3	117.9 (5)	С28—С27—Н27	120.1
C1—C2—H2	121.1	C29—C28—C27	119.1 (5)
С3—С2—Н2	121.1	С29—С28—Н28	120.5
C4—C3—C2	119.1 (5)	C27—C28—H28	120.5
С4—С3—Н3	120.5	C28—C29—C30	117.8 (5)
С2—С3—Н3	120.5	С28—С29—Н29	121.1
C5—C4—C3	120.0 (5)	С30—С29—Н29	121.1
C5—C4—H4	120.0	N6-C30-C29	123.4 (5)
C3—C4—H4	120.0	N6-C30-H30	118.3

N1—C5—C4	121.4 (4)	С29—С30—Н30	118.3
N1—C5—C6	115.3 (4)	F6—P1—F3	178.5 (3)
C4—C5—C6	123.3 (4)	F6—P1—F2	90.5 (4)
N2—C6—C7	121.7 (4)	F3—P1—F2	89.2 (4)
N2—C6—C5	115.6 (4)	F6—P1—F5	89.3 (3)
C7-C6-C5	122.6 (4)	F3—P1—F5	90.9 (3)
C6-C7-C8	1199(5)	F2—P1—F5	1762(4)
C6-C7-H7	120.0	F6 - P1 - F1	88 5 (3)
С8—С7—Н7	120.0	F3 - P1 - F1	92.9(3)
C7 - C8 - C9	120.0 118 6 (5)	$F_2 P_1 F_1$	92.9(3)
C7 C8 H8	120.7	F5 P1 F1	92.1(4)
C_{1} C_{2} C_{3} H_{8}	120.7	F6-P1-F4	91.7(3) 91.9(3)
$C_{2} = C_{3} = 118$	120.7	$F_{1} = F_{1} = F_{1}$	91.9(3)
$C_{10} = C_{2} = C_{8}$	110.0 (5)	Γ_{3} Γ_{1} Γ_{4} Γ_{2} Γ_{1} Γ_{4} Γ_{2} Γ_{1} Γ_{4} Γ_{4} Γ_{2} Γ_{1} Γ_{4} Γ_{4	80.0(2)
C° C° L°	120.7	F2 - F1 - F4 E5 D1 E4	88.0(3)
C_{0} C_{0} C_{0} C_{0}	120.7	$\Gamma J \longrightarrow \Gamma I \longrightarrow \Gamma 4$	$\frac{87.0}{2}$
N2-C10-C9	123.2 (5)	$F1 \longrightarrow F4$	1/9.2 (3)
N2-C10-H10	118.4	F12 - P2 - F8	90.4 (2)
C9—C10—H10	118.4	F12 - P2 - F10	90.0 (2)
N3—C11—C12	122.2 (5)	F8—P2—F10	90.2 (2)
N3—C11—H11	118.9	F12—P2—F7	90.5 (2)
C12—C11—H11	118.9	F8—P2—F7	89.4 (2)
C13—C12—C11	119.0 (5)	F10—P2—F7	179.4 (2)
C13—C12—H12	120.5	F12—P2—F11	90.7 (2)
C11—C12—H12	120.5	F8—P2—F11	178.6 (2)
C12—C13—C14	118.9 (5)	F10—P2—F11	90.6 (2)
C12—C13—H13	120.5	F7—P2—F11	89.8 (2)
C14—C13—H13	120.5	F12—P2—F9	179.4 (2)
C15—C14—C13	119.1 (5)	F8—P2—F9	90.2 (2)
C15—C14—H14	120.5	F10—P2—F9	89.79 (19)
C13—C14—H14	120.5	F7—P2—F9	89.68 (19)
N3—C15—C14	122.1 (4)	F11—P2—F9	88.70 (19)
N3—C15—C16	115.2 (4)		
N2—Co1—N1—C5	-3.2 (3)	C10—N2—C6—C7	3.6(7)
N3—Co1—N1—C5	92.9 (3)	Co1—N2—C6—C7	-169.0 (4)
N6—Co1—N1—C5	-92.3 (3)	C10—N2—C6—C5	-179.1 (4)
N4—Co1—N1—C5	170.8 (3)	Co1—N2—C6—C5	8.2 (5)
N2—Co1—N1—C1	-176.9(4)	N1—C5—C6—N2	-11.1 (6)
N3 - Co1 - N1 - C1	-80.8(4)	C4—C5—C6—N2	168.7 (5)
N6-Co1-N1-C1	94.0 (4)	N1—C5—C6—C7	166.1 (4)
N4-Co1-N1-C1	-2.9(4)	C4-C5-C6-C7	-141(7)
N_3 —Co1—N2—C6	-956(3)	N_{2} C6 C7 C8	-14(7)
N_{6} C_{01} N_{2} C_{6}	93 7 (3)	C_{5} C_{6} C_{7} C_{8}	-1784(4)
$N4-C_01-N2-C_6$	-380(10)	C_{6} C_{7} C_{8} C_{9}	-23(7)
$N_{2} = C_{0} = N_{2} = C_{0}$	1710(3)	C7 - C8 - C9 - C10	2.5(7)
N1 - Co1 - N2 - C6	-30(3)	$C_{6} = 0 = 0 = 0 = 0 = 0$	-22(7)
$N_{1} = C_{1} = N_{2} = C_{1}$	925(4)	$C_0 = \frac{112}{10} = \frac{110}{10} = \frac{100}{10} = \frac{100}{10}$	2.2(7)
N6 Co1 N2 C10	-78.2(4)	$C_{1} = C_{1} = C_{1} = C_{2}$	-1.4(9)
INU-CUI-IN2-CIU	/0.3 (4)	00-09-010-1N2	-1.4(8)

N4—Co1—N2—C10	150.0 (7)	C15—N3—C11—C12	1.3 (7)
N5—Co1—N2—C10	-0.9 (4)	Co1—N3—C11—C12	-164.1 (4)
N1—Co1—N2—C10	-175.0 (4)	N3-C11-C12-C13	1.4 (8)
N2—Co1—N3—C11	-14.2 (4)	C11—C12—C13—C14	-2.4(8)
N6—Co1—N3—C11	114.6 (8)	C12—C13—C14—C15	0.8 (8)
N4—Co1—N3—C11	174.8 (4)	C11—N3—C15—C14	-3.0(7)
N5—Co1—N3—C11	82.4 (4)	Co1—N3—C15—C14	164.0 (4)
N1—Co1—N3—C11	-91.5 (4)	C11—N3—C15—C16	176.7 (4)
N2—Co1—N3—C15	179.9 (3)	Co1—N3—C15—C16	-16.3(5)
N6—Co1—N3—C15	-51.3 (9)	C13—C14—C15—N3	2.0 (8)
N4-Co1-N3-C15	8.9 (3)	C_{13} C_{14} C_{15} C_{16}	-177.7(5)
N_{5} —Co1—N3—C15	-83.6(3)	C_{20} N4 C_{16} C_{17}	-0.3(7)
N1 - Co1 - N3 - C15	102.5(3)	$C_01 - N4 - C_{16} - C_{17}$	170.2(4)
N_2 —Co1—N4—C20	111.0 (8)	C_{20} N4 C_{16} C_{15}	-1795(4)
N_{3} Co1 N_{4} C20	170 1 (4)	C_{01} N4 C_{16} C_{15}	-91(5)
N6-Co1-N4-C20	-203(4)	N3-C15-C16-N4	17.1 (6)
N_{5} Col N_{4} C20	-979(4)	C_{14} C_{15} C_{16} N_{4}	-163.2(5)
N1 - Co1 - N4 - C20	76 9 (4)	N_{3} C15 C16 C17	-162.1(4)
N_2 —Co1—N4—C16	-586(9)	C_{14} C_{15} C_{16} C_{17}	176(7)
N_{3} Col N_{4} Cl6	0.5(3)	N4-C16-C17-C18	-2.3(8)
N6-Co1-N4-C16	170.2(3)	C_{15} C_{16} C_{17} C_{18}	176.9(5)
$N_5 - C_{01} - N_4 - C_{16}$	925(3)	C_{16} C_{17} C_{18} C_{19}	39(9)
N1 - Co1 - N4 - C16	-92.7(3)	$C_{17} - C_{18} - C_{19} - C_{20}$	-2.8(9)
N_2 Col N_5 C21	92.7 (5) 87 5 (4)	$C_{16} N_{4} C_{20} C_{19}$	14(7)
$N_2 = Co1 = N_3 = C_2 I$	-9.7(4)	$C_{0} = N_{4} = C_{2} = C_{1}$	-167.8(4)
$N_{0} = C_{0} = N_{0} = C_{2}$	176 8 (4)	C18 - C19 - C20 - C19	107.0(4)
N4-Co1-N5-C21	-87.5(4)	C_{25} N5 C_{21} C_{22}	1.9(7)
$N_{-}C_{01}N_{-}C_{21}$	-841(3)	$C_{23} = N_{3} = C_{21} = C_{22}$	-1694(4)
$N_2 = Co1 = N_2 = C_{23}$	1787(3)	N5 C21 C22 C23	109.4(4)
N_{3} C_{01} N_{5} C_{25}	5 2 (3)	$C_{21} C_{22} C_{23} C_{24}$	-21(8)
$N_{1} = C_{1} = N_{2} = C_{2}$	100.9(3)	$C_{21} = C_{22} = C_{23} = C_{24}$	2.1(0)
$N_{-}C_{01} = N_{-}C_{23}$	-88.2(4)	$C_{22} = C_{23} = C_{24} = C_{23}$	-1.5(7)
$N_2 = Co1 = N_0 = C_{30}$	1425(7)	$C_{21} = N_{3} = C_{23} = C_{24}$	1.3(7) 170.8(4)
$N_{4} = C_{01} = N_{6} = C_{30}$	142.3(7)	$C_{1} = N_{5} = C_{25} = C_{24}$	170.0(4) 178.3(4)
$N_{-}C_{01} = N_{0} = C_{30}$	175.7(4)	$C_{21} = N_{5} = C_{25} = C_{26}$	-0.4(5)
$N_{1} = C_{01} = N_{0} = C_{30}$	-111(4)	$C_{23} = C_{24} = C_{25} = C_{20}$	-0.6(7)
N1 = C01 = N0 = C30	-11.1(4)	$C_{23} = C_{24} = C_{23} = N_3$	-0.0(7)
$N_2 = Co1 = N_0 = C_20$	-33.1(0)	$C_{23} = C_{24} = C_{23} = C_{20}$	-20(7)
$N_{1} = C_{1} = N_{0} = C_{20}$	-33.1(9)	$C_{30} = N_{0} = C_{20} = C_{27}$	-2.9(7) 173 1 (4)
$N_{-}C_{01} = N_{-}C_{20}$	-91.0(3)	$C_{01} = N_{0} = C_{20} = C_{27}$	173.1(4) 170.1(4)
$N_{1} = C_{01} = N_{0} = C_{20}$	0.1(3)	$C_{30} = N_{0} = C_{20} = C_{23}$	1/9.1 (4)
NI = C0I = N0 = C20	1/3.2(3)	$C_{01} = N_{0} = C_{20} = C_{23}$	-4.9(3)
$C_3 = N_1 = C_1 = C_2$	-2.1(7)	$N_{3} = C_{23} = C_{20} = N_{0}$	9.7 (0)
$\begin{array}{c} \text{COI-INI-CI-C2} \\ \text{NI} \text{CI} \text{C2} \text{C2} \\ \end{array}$	1/1.4(4)	124 - 223 - 220 - 100	-168.2(5)
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	0.2(7)	103 - 023 - 020 - 027	115(7)
$C_1 - C_2 - C_3 - C_4$	1.1(0) -0.4(8)	124 - 123 - 120 - 127	11.3(/) 10(8)
$C_2 - C_3 - C_4 - C_3$	-0.4(8)	100-0.20-0.27-0.28	1.7 (0)
$C_1 = N_1 = C_2 = C_4$	2.8 (/)	123 - 120 - 127 - 128	1/9.8(3)
C01—N1—C3—C4	-1/1.4 (4)	C20-C2/-C28-C29	U.S (8)

C1—N1—C5—C6	-177.5 (4)	C27—C28—C29—C30	-1.8 (8)
Co1—N1—C5—C6	8.3 (5)	C26—N6—C30—C29	1.5 (7)
C3—C4—C5—N1	-1.5 (8)	Co1—N6—C30—C29	-174.0 (4)
C3—C4—C5—C6	178.7 (4)	C28-C29-C30-N6	0.8 (8)

Hydrogen-bond geometry (Å, °)

	<i>D</i> —Н	H···A	D····A	D—H···A
C24—H24···F2 ⁱ	0.95	2.49	3.324 (7)	146
C23—H23…F4 ⁱ	0.95	2.55	3.253 (7)	131
C18—H18…F11 ⁱⁱ	0.95	2.52	3.149 (6)	124
C13—H13…F10 ⁱⁱⁱ	0.95	2.50	3.208 (6)	131
C10-H10F11 ^{iv}	0.95	2.51	3.265 (6)	137
$C9$ — $H9$ ···· $F7^{iv}$	0.95	2.33	3.136 (6)	142
C7—H7···F8 ^v	0.95	2.38	3.160 (7)	139
C2— $H2$ ··· $F2$ ^{vi}	0.95	2.33	3.081 (7)	136

Symmetry codes: (i) -*y*, *x*-*y*, *z*-1/3; (ii) -*x*+*y*-1, -*x*+1, *z*+1/3; (iii) -*x*+*y*-1, -*x*, *z*+1/3; (iv) *x*, *y*-1, *z*; (v) *x*+1, *y*, *z*; (vi) *x*, *y*+1, *z*.