

V = 3107.93 (14) Å³

 $0.30 \times 0.25 \times 0.15 \text{ mm}$

12009 measured reflections

6009 independent reflections

5366 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

Cu Ka radiation

 $\mu = 0.67 \text{ mm}^{-1}$

T = 100 K

 $R_{\rm int} = 0.018$

414 parameters

 $\Delta \rho_{\text{max}} = 0.26 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.31 \text{ e } \text{\AA}^{-3}$

Z = 4

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1,5-Dimethyl-2-phenyl-1*H*-pyrazol-3(2*H*)-one-4,4'-(propane-2,2-diyl)bis-[1,5-dimethyl-2-phenyl-1*H*-pyrazol-3(2*H*)-one] (1/1)

Krzysztof Lyczko

Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland

Correspondence e-mail: k.lyczko@ichtj.waw.pl

Received 5 November 2012; accepted 14 December 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.040; wR factor = 0.099; data-to-parameter ratio = 14.5.

The asymmetric unit of the title compound, $C_{11}H_{12}N_2O$.- $C_{25}H_{28}N_4O_2$, contains two different molecules. The smaller is known as antipyrine [systematic name: 1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one] and the larger is built up from two antypirine molecules which are connected through a C atom of the pyrazolone ring to a central propanyl part [systematic name: 4,4'-(propane-2,2-diyl)bis[1,5-dimethyl-2-phenyl-1Hpyrazol-3(2H)-one]. Intramolecular C-H···O hydrogen bonds occur in the latter molecule. In the crystal, C-H···O hydrogen bonds link the molecules into a two-dimensional network parallel to (001).

Related literature

Structural data on metal complexes with antipyrine were reported by Vijayan & Viswamitra (1966); Biagini Cingi *et al.* (1972); Baker & Jeffery (1974); Brassy *et al.* (1974); Mahadevan *et al.* (1984); Rheingold & King (1989) and Su *et al.* (2000). For related structures, see: Singh & Vijayan (1973); Panneerselvam *et al.* (1996); Merz (2002); Yuchi *et al.* (1991). Some properties of antipyrine and its derivatives were described by Peter *et al.* (1991).

Experimental

Crvstal data

 $C_{11}H_{12}N_2O \cdot C_{25}H_{28}N_4O_2$ $M_r = 604.74$ Monoclinic, $P_{2_1/n}$ a = 11.1751 (3) Å b = 7.4623 (2) Å c = 37.2830 (8) Å $\beta = 91.570$ (2)°

Data collection

Agilent SuperNova (Dual, Cu at zero, Eos) diffractometer Absorption correction: multi-scan (*CrysAlis PRO*; Agilent, 2010) $T_{min} = 0.938, T_{max} = 1.000$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.099$ S = 1.036009 reflections

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C2-H2\cdots O1^{i}$	0.95	2.50	3.2949 (17)	142
$C5-H5C\cdots O2$	0.98	2.44	3.3930 (17)	163
C10−H10···O3 ⁱⁱ	0.95	2.53	3.4670 (18)	171
$C14 - H14A \cdots O3$	0.98	2.45	3.1228 (17)	126
$C14 - H14B \cdots O2$	0.98	2.34	3.0275 (17)	126
C21-H21···O1 ⁱⁱⁱ	0.95	2.49	3.3428 (18)	150
C25-H25···O2	0.95	2.37	2.8811 (17)	113
$C29 - H29B \cdots O3^{iv}$	0.98	2.38	3.2956 (17)	155
$C30-H30A\cdots O3^{iv}$	0.98	2.32	3.3015 (16)	176
	. 1 1	. 1 (**)		

Symmetry codes: (i) $-x + \frac{3}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$, (ii) x + 1, y + 1, z; (iii) x - 1, y - 1, z; (iv) x, y + 1, z.

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97.

organic compounds

The author thanks the Institute of Nuclear Chemistry and Technology for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KJ2216).

References

Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.

- Baker, R. W. & Jeffery, J. W. (1974). J. Chem. Soc. Dalton Trans. pp. 229–232. Brassy, C., Renaud, A., Delettré, J. & Mornon, J.-P. (1974). Acta Cryst. B30, 2246–2248.
- Cingi, M. B., Guastini, C., Musatti, A. & Nardelli, M. (1972). Acta Cryst. B28, 667–672.

- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Mahadevan, C., Radha, A. & Seshasayee, M. (1984). Z. Kristallogr. 169, 159-163.
- Merz, K. (2002). Acta Cryst. E58, 0338-0340.
- Panneerselvam, K., Jayanthi, N., Rudiño-Piñera, E. & Soriano-García, M. (1996). Acta Cryst. C52, 1257–1258.
- Peter, J. V. St., Abul-Hajj, Y. & Awni, W. M. (1991). Pharm. Res. 8, 1470–1476.
- Rheingold, A. L. & King, W. (1989). Inorg. Chem. 28, 1715-1719.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Singh, T. P. & Vijayan, M. (1973). Acta Cryst. B29, 714-720.
- Su, C.-Y., Yang, X.-P., Xu, A.-W., Zhang, Z.-F., Liu, H.-K. & Kang, B.-S. (2000). Acta Cryst. C56, e82–e83.
- Vijayan, M. & Viswamitra, M. A. (1966). Acta Cryst. 21, 522-532.
- Yuchi, A., Shiro, M., Wada, H. & Nakagawa, G. (1991). Bull. Chem. Soc. Jpn, 64, 760–765.

supporting information

Acta Cryst. (2013). E69, o127–o128 [https://doi.org/10.1107/S160053681205091X]

1,5-Dimethyl-2-phenyl-1*H*-pyrazol-3(2*H*)-one–4,4'-(propane-2,2-diyl)bis[1,5-dimethyl-2-phenyl-1*H*-pyrazol-3(2*H*)-one] (1/1)

Krzysztof Lyczko

S1. Comment

1,5-Dimethyl-2-phenyl-1H-pyrazol-3(2H)-one, known as antipyrine or phenazone, is an interesting synthetic compound from the medicinal (pharmaceutical) point of view because of its analgesic and antipyretic properties. It is also used as a probe of oxidative metabolism (Peter *et al.*, 1991). Antipyrine is a bulky monodentate donor ligand. Its functional carbonyl group can coordinate to metal ions. Some structures of homoleptic antipyrine-metal complexes were punlished, such as [Pb(antipyrine)₆](ClO₄)₂ (Vijayan & Viswamitra, 1966), [Y(antipyrine)₆]I₃ (Baker & Jeffery, 1974), [Cd(antipyrine)₆](ClO₄)₂ (Mahadevan *et al.*, 1984), [Tb(antipyrine)₆]I₃ (Rheingold & King, 1989) and [Tb(antipyrine)₆] (ClO₄)₃ (Su *et al.*, 2000). Moreover, the crystal structures of other complexes, *e.g.*, [Zn(antipyrine)₂Cl₂] (Biagini Cingi *et al.*, 1972) and [Cu(antipyrine)₂(NO₃)₂] (Brassy *et al.*, 1974) have been reported.

The aim of this work was to crystallize the hexa-coordinated complex between Pb^{II} ions and antipyrine with nitrate as a counterion. Previously the hexakis(antipyrine)lead(II) perchlorate complex was successfully crystallized from a solution in water (Vijayan & Viswamitra, 1966). Unexpectedly, under the reaction conditions applied in this work (see Experimental), instead of the hexakis(antipyrine)lead(II) nitrate complex, two different organic molecules were co-crystallized (Fig. 1). The first one is antipyrine and the second one is 4,4'-propane-2,2-diyldiantipyrine - a compound containing two antipyrine molecules linked by a propanyl group. The molecules in the crystal structure are interacting together through very weak intermolecular C—H···O hydrogen bonds (Table 1, Fig. 2) forming a two-dimensional network parallel to (0 0 1). Additionally, the structure of 4,4'-propane-2,2-diyldiantipyrine is stabilized by three intramolecular C—H···O hydrogen bonds (Table 1, Fig. 2).

Previously antipyrine (Singh & Vijayan, 1973), 4-hydroxyantipyrine (Panneerselvam *et al.*, 1996) and 4,4'-methylenediantipyrine (Merz, 2002), the similar compounds to 4,4'-propane-2,2-diyldiantipyrine, were crystallized. The reaction of 4,4'-methylenediantipyrine with titanium(IV) has been used for selective photometric determination of this cation. The structure of tris(4,4'-methylenediantipyrine)titanium(IV) perchlorate complex has been presented by Yuchi *et al.*, (1991).

The presence of an antipyrine derivative in this crystal structure is extremely strange and in my opinion can probably be ascribed to the catalyzed conversion of antipyrine into such a complicated compound as in the presented reaction system.

S2. Experimental

The title compounds were crystallized unintentionally in an attempt to synthesize single crystals of the hexakis-(antipyrine)lead(II) nitrate complex. Lead(II) nitrate (0.236 g, 0.712 mmol) and antipyrine (0.809 g, 4.293 mmol) were dissolved in 1.0 ml of water and methanol (1:1). Next about 1/5 of the solvent was evaporated off at a temperature of about 75°C. After one year of storage in the refrigerator some colourless block like crystals were found.

S3. Refinement

H atoms were placed in calculated positions with C—H = 0.98 (methyl) or 0.95 Å (aromatic) and were refined isotropically using a riding model with $U_{iso}(H) = 1.5 U_{eq}(C)$ for methyl H atoms and $U_{iso}(H) = 1.2 U_{eq}(C)$ for aromatic H atoms.

Figure 1

A molecular structure of the title compounds. Displacement ellipsoids of the non-hydrogen atoms are drawn at the 50% probability level.

A fragment of the crystal structure showing the intra- and intermolecular hydrogen bonds.

1,5-Dimethyl-2-phenyl-1*H*-pyrazol-3(2*H*)-one- 4,4'-(propane-2,2-diyl)bis[1,5-dimethyl-2-phenyl-1*H*-pyrazol-3(2*H*)-one] (1/1)

Crystal data

C₂₅H₂₈N₄O₂·C₁₁H₁₂N₂O $M_r = 604.74$ Monoclinic, P2₁/n Hall symbol: -P 2yn a = 11.1751 (3) Å b = 7.4623 (2) Å c = 37.2830 (8) Å $\beta = 91.570$ (2)° V = 3107.93 (14) Å³ Z = 4

Data collection

Agilent SuperNova (Dual, Cu at zero, Eos)
diffractometerRadiation source: SuperNova (Cu) X-ray
SourceMirror monochromatorDetector resolution: 16.0131 pixels mm⁻¹ω scansAbsorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)

F(000) = 1288 $D_x = 1.292 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 5594 reflections $\theta = 3.6-71.8^{\circ}$ $\mu = 0.67 \text{ mm}^{-1}$ T = 100 KBlock, colourless $0.30 \times 0.25 \times 0.15 \text{ mm}$

 $T_{\min} = 0.938, T_{\max} = 1.000$ 12009 measured reflections 6009 independent reflections 5366 reflections with $I > 2\sigma(I)$ $R_{int} = 0.018$ $\theta_{\max} = 72.0^{\circ}, \theta_{\min} = 4.1^{\circ}$ $h = -13 \rightarrow 13$ $k = -4 \rightarrow 9$ $l = -45 \rightarrow 42$ Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.040$	Hydrogen site location: inferred from
$wR(F^2) = 0.099$	neighbouring sites
<i>S</i> = 1.03	H-atom parameters constrained
6009 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0422P)^2 + 1.6129P]$
414 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.26 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.31 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.73885 (12)	0.5494 (2)	0.19813 (4)	0.0176 (3)	
C2	0.70121 (13)	0.4021 (2)	0.22001 (4)	0.0201 (3)	
H2	0.7288	0.3775	0.2438	0.024*	
C3	0.61974 (12)	0.30441 (19)	0.20087 (4)	0.0191 (3)	
C4	0.55955 (15)	0.1333 (2)	0.21067 (4)	0.0281 (3)	
H4A	0.5944	0.0341	0.1973	0.042*	
H4B	0.4738	0.1418	0.2047	0.042*	
H4C	0.5710	0.1117	0.2365	0.042*	
C5	0.57888 (13)	0.2704 (2)	0.13580 (4)	0.0201 (3)	
H5A	0.6543	0.2098	0.1306	0.030*	
H5B	0.5546	0.3459	0.1154	0.030*	
H5C	0.5167	0.1808	0.1400	0.030*	
C6	0.65888 (12)	0.65797 (18)	0.13835 (3)	0.0160 (3)	
C7	0.54464 (13)	0.69605 (19)	0.12467 (4)	0.0191 (3)	
H7	0.4769	0.6379	0.1342	0.023*	
C8	0.53013 (14)	0.8194 (2)	0.09705 (4)	0.0230 (3)	
H8	0.4524	0.8436	0.0873	0.028*	
C9	0.62883 (15)	0.9074 (2)	0.08366 (4)	0.0246 (3)	
H9	0.6188	0.9905	0.0645	0.029*	
C10	0.74213 (14)	0.87403 (19)	0.09827 (4)	0.0227 (3)	
H10	0.8091	0.9375	0.0896	0.027*	
C11	0.75846 (13)	0.74826 (19)	0.12551 (4)	0.0189 (3)	
H11	0.8362	0.7241	0.1352	0.023*	
N1	0.59546 (10)	0.38236 (16)	0.16795 (3)	0.0166 (2)	
N2	0.67665 (10)	0.52572 (16)	0.16531 (3)	0.0161 (2)	

01	0.80765 (9)	0.67590 (15)	0.20421 (3)	0.0244 (2)
C12	0.26030 (12)	0.43381 (19)	0.11446 (4)	0.0179 (3)
H12A	0.2893	0.5128	0.0956	0.027*
H12B	0.3282	0.3712	0.1259	0.027*
H12C	0.2192	0.5053	0.1324	0.027*
C13	0.17264 (11)	0.29586 (17)	0.09789 (3)	0.0139 (3)
C14	0.24097 (12)	0.18958 (19)	0.06911 (4)	0.0182 (3)
H14A	0.1884	0.0971	0.0587	0.027*
H14B	0.3118	0.1329	0.0803	0.027*
H14C	0 2659	0 2716	0.0502	0.027*
C15	0.2009 (12)	0.04833(18)	0.14514(3)	0.027
C16	0.13547(11)	0.17061 (17)	0.17818(3)	0.0137(3)
C17	0.13947(11) 0.03074(12)	0.17001(17) 0.15140(18)	0.12510(3) 0.14544(3)	0.0137(3)
C18	-0.08452(12)	0.15149(10) 0.2527(2)	0.14373(4)	0.0143(3)
U18A	-0.08402 (12)	0.2327(2)	0.14323 (4)	0.0201(3)
	-0.1516	0.3321	0.1041	0.030*
	-0.1310	0.1082	0.1430	0.030*
HI8C	-0.08/6	0.3244	0.1212	0.030*
C19	-0.01645 (13)	0.0347 (2)	0.20569 (4)	0.0209 (3)
HI9A	0.0201	0.1378	0.2180	0.031*
HI9B	-0.0029	-0.0736	0.2201	0.031*
H19C	-0.1027	0.0550	0.2024	0.031*
C20	0.19083 (12)	-0.20882(18)	0.18707 (3)	0.0163 (3)
C21	0.10387 (13)	-0.3368 (2)	0.19420 (4)	0.0205 (3)
H21	0.0220	-0.3141	0.1883	0.025*
C22	0.13810 (15)	-0.4980(2)	0.21008 (4)	0.0267 (3)
H22	0.0786	-0.5836	0.2158	0.032*
C23	0.25744 (15)	-0.5362 (2)	0.21774 (4)	0.0279 (3)
H23	0.2800	-0.6475	0.2283	0.034*
C24	0.34341 (14)	-0.4095 (2)	0.20980 (4)	0.0248 (3)
H24	0.4255	-0.4356	0.2145	0.030*
C25	0.31133 (13)	-0.2447 (2)	0.19507 (3)	0.0192 (3)
H25	0.3708	-0.1573	0.1905	0.023*
C26	-0.02192 (11)	0.26949 (18)	0.05944 (3)	0.0137 (3)
C27	0.06521 (11)	0.38047 (18)	0.07869 (3)	0.0135 (3)
C28	0.02835 (11)	0.55412 (18)	0.07508 (3)	0.0138 (3)
C29	0.08036 (13)	0.72665 (18)	0.08890 (4)	0.0189 (3)
H29A	0.0926	0.7190	0.1150	0.028*
H29B	0.0252	0.8252	0.0831	0.028*
H29C	0.1573	0.7486	0.0777	0.028*
C30	-0.10277(12)	0.69931 (18)	0.02819 (3)	0.0169(3)
H30A	-0.0781	0.8171	0.0373	0.025*
H30R	-0.1883	0.7018	0.0217	0.025*
H30C	-0.0568	0.6698	0.0070	0.025*
C31	-0.22286(12)	0 34094 (18)	0.03238 (3)	0.023
C32	-0.23650(12)	0.37077(10) 0.20851(10)	0.05250(5) 0.00621(4)	0.0175(3)
U32 H32	-0.1684	0.20031 (17)	-0.00021(4)	0.01/0(3)
C22	-0.25122(12)	0.1507	-0.0052	0.021°
(33	-0.55122(15)	0.10203 (19)	-0.00380 (4)	0.0204 (3)
пээ	-0.3010	0.0/19	-0.0237	0.024*

C34	-0.45076 (13)	0.2464 (2)	0.00795 (4)	0.0217 (3)	
H34	-0.5288	0.2144	-0.0005	0.026*	
C35	-0.43591 (13)	0.37752 (19)	0.03412 (4)	0.0199 (3)	
H35	-0.5040	0.4350	0.0436	0.024*	
C36	-0.32209 (12)	0.42511 (19)	0.04652 (3)	0.0170 (3)	
H36	-0.3120	0.5144	0.0645	0.020*	
N3	0.03776 (10)	0.01203 (16)	0.17043 (3)	0.0154 (2)	
N4	0.15874 (10)	-0.04046 (16)	0.17199 (3)	0.0160 (2)	
N5	-0.08054 (10)	0.56315 (14)	0.05609 (3)	0.0137 (2)	
N6	-0.10503 (10)	0.38756 (15)	0.04440 (3)	0.0142 (2)	
O2	0.32678 (8)	0.01806 (14)	0.13877 (3)	0.0215 (2)	
03	-0.03072 (9)	0.10492 (12)	0.05679 (3)	0.0181 (2)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0138 (6)	0.0231 (7)	0.0160 (6)	0.0009 (6)	0.0012 (5)	-0.0033 (5)
C2	0.0194 (7)	0.0249 (7)	0.0161 (6)	0.0009 (6)	0.0015 (5)	0.0000 (6)
C3	0.0176 (7)	0.0194 (7)	0.0204 (7)	0.0026 (6)	0.0028 (5)	0.0013 (5)
C4	0.0316 (8)	0.0238 (8)	0.0290 (8)	-0.0051 (7)	0.0001 (6)	0.0059 (6)
C5	0.0169 (7)	0.0216 (7)	0.0218 (7)	-0.0013 (6)	-0.0005 (5)	-0.0064 (6)
C6	0.0189 (7)	0.0148 (6)	0.0142 (6)	0.0003 (5)	0.0023 (5)	-0.0031 (5)
C7	0.0184 (7)	0.0203 (7)	0.0187 (6)	0.0008 (6)	0.0028 (5)	-0.0022 (5)
C8	0.0255 (8)	0.0229 (7)	0.0204 (7)	0.0082 (6)	-0.0002 (6)	-0.0022 (6)
C9	0.0395 (9)	0.0160 (7)	0.0184 (7)	0.0049 (6)	0.0045 (6)	0.0006 (6)
C10	0.0303 (8)	0.0162 (7)	0.0219 (7)	-0.0042 (6)	0.0093 (6)	-0.0041 (6)
C11	0.0191 (7)	0.0186 (7)	0.0193 (6)	-0.0010 (6)	0.0042 (5)	-0.0045 (5)
N1	0.0166 (6)	0.0151 (6)	0.0180 (5)	-0.0034 (5)	0.0004 (4)	-0.0011 (4)
N2	0.0150 (5)	0.0169 (6)	0.0162 (5)	-0.0033 (5)	-0.0002 (4)	0.0000 (4)
01	0.0228 (5)	0.0292 (6)	0.0210 (5)	-0.0091 (5)	-0.0016 (4)	-0.0043 (4)
C12	0.0142 (6)	0.0164 (7)	0.0228 (7)	-0.0012 (5)	-0.0019 (5)	0.0007 (5)
C13	0.0128 (6)	0.0128 (6)	0.0161 (6)	-0.0007(5)	0.0010 (5)	0.0002 (5)
C14	0.0174 (7)	0.0194 (7)	0.0180 (6)	0.0027 (6)	0.0029 (5)	0.0009 (5)
C15	0.0152 (6)	0.0139 (6)	0.0173 (6)	-0.0012 (5)	0.0005 (5)	0.0005 (5)
C16	0.0130 (6)	0.0123 (6)	0.0157 (6)	-0.0003(5)	-0.0008(5)	-0.0016 (5)
C17	0.0141 (6)	0.0147 (6)	0.0141 (6)	-0.0004(5)	-0.0017 (5)	-0.0011 (5)
C18	0.0146 (7)	0.0243 (7)	0.0216 (7)	0.0044 (6)	0.0026 (5)	0.0007 (6)
C19	0.0245 (7)	0.0214 (7)	0.0171 (7)	0.0008 (6)	0.0062 (5)	0.0010 (5)
C20	0.0213 (7)	0.0147 (6)	0.0128 (6)	0.0009 (5)	0.0007 (5)	-0.0001 (5)
C21	0.0227 (7)	0.0203 (7)	0.0184 (7)	-0.0015 (6)	0.0017 (5)	-0.0003 (5)
C22	0.0382 (9)	0.0179 (7)	0.0242 (7)	-0.0038 (7)	0.0067 (6)	0.0026 (6)
C23	0.0435 (10)	0.0187 (7)	0.0218 (7)	0.0084 (7)	0.0039 (6)	0.0053 (6)
C24	0.0293 (8)	0.0279 (8)	0.0170 (7)	0.0104 (7)	-0.0005 (6)	0.0014 (6)
C25	0.0214 (7)	0.0209 (7)	0.0152 (6)	0.0012 (6)	-0.0006(5)	0.0000 (5)
C26	0.0141 (6)	0.0138 (6)	0.0133 (6)	0.0003 (5)	0.0019 (5)	-0.0005 (5)
C27	0.0133 (6)	0.0135 (6)	0.0138 (6)	-0.0009(5)	0.0020 (5)	-0.0007 (5)
C28	0.0129 (6)	0.0146 (6)	0.0140 (6)	-0.0012 (5)	0.0013 (5)	-0.0009 (5)
C29	0.0207 (7)	0.0119 (6)	0.0239 (7)	0.0001 (5)	-0.0048 (5)	-0.0016 (5)

supporting information

C30	0.0207 (7)	0.0141 (6)	0.0159 (6)	0.0008 (5)	-0.0004 (5)	0.0023 (5)
C31	0.0159 (6)	0.0130 (6)	0.0138 (6)	-0.0021 (5)	-0.0018 (5)	0.0024 (5)
C32	0.0201 (7)	0.0157 (7)	0.0168 (6)	0.0004 (5)	0.0005 (5)	-0.0008 (5)
C33	0.0246 (7)	0.0174 (7)	0.0188 (6)	-0.0026 (6)	-0.0041 (5)	-0.0020 (5)
C34	0.0180 (7)	0.0223 (7)	0.0246 (7)	-0.0043 (6)	-0.0060 (5)	0.0030 (6)
C35	0.0165 (7)	0.0193 (7)	0.0239 (7)	0.0014 (6)	0.0009 (5)	0.0022 (6)
C36	0.0197 (7)	0.0158 (7)	0.0156 (6)	-0.0006 (5)	0.0002 (5)	-0.0005 (5)
N3	0.0116 (5)	0.0184 (6)	0.0162 (5)	0.0011 (4)	0.0017 (4)	0.0012 (4)
N4	0.0110 (5)	0.0175 (6)	0.0196 (6)	0.0004 (4)	0.0003 (4)	0.0025 (5)
N5	0.0162 (5)	0.0095 (5)	0.0154 (5)	-0.0006 (4)	-0.0011 (4)	-0.0007 (4)
N6	0.0154 (6)	0.0100 (5)	0.0170 (5)	-0.0006 (4)	-0.0016 (4)	-0.0012 (4)
O2	0.0123 (5)	0.0237 (5)	0.0287 (5)	0.0033 (4)	0.0038 (4)	0.0073 (4)
03	0.0193 (5)	0.0114 (5)	0.0236 (5)	-0.0008 (4)	-0.0027 (4)	-0.0009 (4)

Geometric parameters (Å, °)

C1—C2	1.439 (2)	С19—Н19С	0.9800
С2—Н2	0.9500	C20—C21	1.393 (2)
C3—C2	1.354 (2)	C20—C25	1.3972 (19)
C3—C4	1.493 (2)	C21—H21	0.9500
C4—H4A	0.9800	C22—C21	1.390 (2)
C4—H4B	0.9800	C22—C23	1.386 (2)
C4—H4C	0.9800	C22—H22	0.9500
С5—Н5А	0.9800	C23—H23	0.9500
С5—Н5В	0.9800	C24—C23	1.386 (2)
С5—Н5С	0.9800	C24—C25	1.390 (2)
C6—C7	1.3909 (19)	C24—H24	0.9500
С7—Н7	0.9500	C25—H25	0.9500
C8—C7	1.387 (2)	C27—C26	1.4529 (18)
С8—С9	1.389 (2)	C28—C27	1.3652 (19)
С8—Н8	0.9500	C28—C29	1.4982 (18)
С9—Н9	0.9500	C29—H29A	0.9800
С10—С9	1.387 (2)	C29—H29B	0.9800
C10—H10	0.9500	C29—H29C	0.9800
C11—C6	1.3966 (19)	C30—H30A	0.9800
C11—C10	1.391 (2)	C30—H30B	0.9800
C11—H11	0.9500	C30—H30C	0.9800
N1—C3	1.3785 (18)	C31—C32	1.3942 (18)
N1—C5	1.4683 (17)	С32—Н32	0.9500
N2C1	1.4018 (17)	C33—C32	1.391 (2)
N2—C6	1.4187 (17)	C33—C34	1.389 (2)
N2—N1	1.4079 (16)	С33—Н33	0.9500
O1—C1	1.2342 (17)	C34—H34	0.9500
C12—H12A	0.9800	C35—C34	1.389 (2)
C12—H12B	0.9800	С35—Н35	0.9500
C12—H12C	0.9800	C36—C31	1.3908 (19)
C13—C12	1.5388 (18)	C36—C35	1.3877 (19)
C13—C16	1.5318 (17)	С36—Н36	0.9500

supporting information

C13—C27	1.5185 (18)	N3—C17	1.3975 (17)
C14—C13	1.5519 (18)	N3—C19	1.4724 (16)
C14—H14A	0.9800	N4—C15	1.4009 (17)
C14—H14B	0.9800	N4—C20	1.4184 (17)
C14—H14C	0.9800	N4—N3	1.4072 (15)
C15—C16	1.4533 (18)	O2—C15	1.2335 (16)
C17—C16	1.3587 (18)	03-026	1.2357 (17)
C17 - C18	1 4936 (18)	N5-C28	1 3926 (17)
C18—H18A	0.9800	N5-C30	1 4705 (16)
C18—H18B	0.9800	N5—N6	1.1703(10) 1.4054(15)
C18—H18C	0.9800	N6-C26	1 3873 (17)
C19—H19A	0.9800	N6-C31	1.3075(17) 1 4225(17)
C19—H19R	0.9800		1.1223 (17)
	0.9000		
01—C1—C2	132.09 (13)	H18B—C18—H18C	109.5
01—C1—N2	123.27 (13)	H19A—C19—H19B	109.5
N2	104.63 (12)	H19A—C19—H19C	109.5
C3—C2—C1	108.39 (12)	H19B—C19—H19C	109.5
С3—С2—Н2	125.8	N3—C19—H19A	109.5
C1—C2—H2	125.8	N3—C19—H19B	109.5
C2—C3—C4	129.21 (13)	N3—C19—H19C	109.5
C2-C3-N1	110.80 (13)	C21—C20—C25	120.07 (13)
N1 - C3 - C4	119.98 (13)	$C_{21} - C_{20} - N_{4}$	120.84(12)
C3—C4—H4A	109.5	C_{25} C_{20} N4	119.09 (12)
C3-C4-H4B	109.5	C20—C21—H21	120.3
C3—C4—H4C	109.5	$C_{22} - C_{21} - C_{20}$	119.30 (14)
H4A—C4—H4B	109.5	C22—C21—H21	120.3
H4A - C4 - H4C	109.5	C21—C22—H22	119.4
H4B-C4-H4C	109.5	C_{23} C_{22} C_{21} C_{21}	121 17 (14)
H5A—C5—H5B	109.5	C23—C22—H22	119.4
H5A_C5_H5C	109.5	C22 C22 H22	120.5
H5R—C5—H5C	109.5	$C_{22} = C_{23} = C_{23}$	119.00(14)
N1-C5-H5A	109.5	C24 C23 C22	120.5
N1 C5 H5B	109.5	$C_{24} = C_{25} = 1125$ $C_{23} = C_{24} = C_{25}$	120.3 121.01.(14)
N1-C5-H5C	109.5	C23-C24-C25	110.5
C7 - C6 - C11	109.5	C_{25} C_{24} H_{24}	119.5
C7 C6 N2	120.31(13) 120.73(12)	$C_{20} = C_{24} = H_{24}$	119.5
$C_1 = C_0 = N_2$	120.75(12) 118 75 (12)	$C_{20} = C_{25} = C_{20}$	120.3 110 30 (14)
CII = CO = IN2	110.75 (12)	$C_{24} = C_{25} = C_{20}$	119.39 (14)
$C_{0} - C_{1} - H_{1}$	120.2 110.67(12)	N6 C26 C27	120.3
$C_{0} = C_{1} = C_{0}$	119.07 (13)	$n_{0} = c_{20} = c_{27}$	105.05(11) 121.05(12)
$C_0 - C_1 - \Pi_1$	120.2 120.20(14)	$O_{3} = C_{20} = C_{27}$	131.03(13) 122.22(12)
$C_{1} = C_{0} = C_{2}$	120.20 (14)	$C_{20} = C_{20} = N_0$	123.23(12) 120.42(11)
$C_1 = C_0 = \Pi_0$	119.9	$C_{20} - C_{27} - C_{13}$	120.43(11) 122.24(12)
$C_7 = C_0 = \Pi_0$	119.9	$C_{20} = C_{27} = C_{13}$	132.34(12) 107.22(11)
$C_0 - C_y - \Pi_y$	120.0 110.05 (14)	$C_{20} - C_{21} - C_{20}$	107.22(11) 121.06(12)
C_{10} C_{20} C_{10} C_{10} C_{10} C_{10} C_{10} C_{10}	119.93 (14)	$C_{27} = C_{28} = C_{29}$	131.90 (12)
$C_{10} - C_{2} - C_{11}$	120.0	$\frac{1}{2} - \frac{1}{2} - \frac{1}$	110.0/(11)
U)-UIU-UII	120.33(14)	NJ-UZO-UZ9	11/.30(12)

C9—C10—H10	119.7	C28—C29—H29A	109.5
C11—C10—H10	119.7	C28—C29—H29B	109.5
C6-C11-H11	120.5	С28—С29—Н29С	109.5
C10—C11—C6	119.07 (13)	H29A—C29—H29B	109.5
C10-C11-H11	120.5	H29A—C29—H29C	109.5
C3—N1—C5	120.26 (12)	H29B—C29—H29C	109.5
C3—N1—N2	105.75 (11)	H30A—C30—H30B	109.5
N2—N1—C5	116.26 (11)	H30A-C30-H30C	109.5
C1—N2—C6	125.95 (12)	H30B-C30-H30C	109.5
C1—N2—N1	109.88 (11)	N5-C30-H30A	109.5
N1—N2—C6	120.01 (11)	N5-C30-H30B	109.5
C13—C12—H12A	109.5	N5-C30-H30C	109.5
C13—C12—H12B	109.5	C32—C31—N6	118.45 (12)
C13—C12—H12C	109.5	C36—C31—C32	120.83 (12)
H12A—C12—H12B	109.5	C36—C31—N6	120.72 (12)
H12A—C12—H12C	109.5	С31—С32—Н32	120.5
H12B—C12—H12C	109.5	C33—C32—C31	119.03 (13)
C12—C13—C14	107.43 (11)	С33—С32—Н32	120.5
C16—C13—C12	107.15 (10)	С32—С33—Н33	119.8
C16—C13—C14	110.26 (11)	C34—C33—C32	120.48 (13)
C27—C13—C12	113.43 (11)	С34—С33—Н33	119.8
C27—C13—C14	106.50 (10)	С33—С34—Н34	120.1
C27—C13—C16	111.99 (10)	C35—C34—C33	119.89 (13)
C13—C14—H14A	109.5	С35—С34—Н34	120.1
C13—C14—H14B	109.5	С34—С35—Н35	119.8
C13—C14—H14C	109.5	C36—C35—C34	120.35 (13)
H14A—C14—H14B	109.5	С36—С35—Н35	119.8
H14A—C14—H14C	109.5	С31—С36—Н36	120.3
H14B—C14—H14C	109.5	C35—C36—C31	119.41 (13)
N4—C15—C16	105.96 (11)	С35—С36—Н36	120.3
O2—C15—C16	130.79 (12)	C17—N3—C19	119.52 (11)
O2—C15—N4	123.24 (12)	C17—N3—N4	105.74 (10)
C15—C16—C13	121.04 (11)	N4—N3—C19	114.42 (10)
C17—C16—C13	131.90 (12)	C15—N4—C20	125.25 (11)
C17—C16—C15	106.99 (11)	C15—N4—N3	109.50 (10)
C16—C17—C18	132.34 (13)	N3—N4—C20	119.68 (11)
C16—C17—N3	111.14 (11)	C28—N5—C30	121.43 (11)
N3—C17—C18	116.50 (11)	C28—N5—N6	105.82 (10)
C17—C18—H18A	109.5	N6—N5—C30	113.40 (10)
C17—C18—H18B	109.5	C26—N6—C31	125.14 (11)
C17—C18—H18C	109.5	C26—N6—N5	110.14 (10)
H18A—C18—H18B	109.5	N5—N6—C31	119.77 (10)
H18A—C18—H18C	109.5		
N2—C1—C2—C3	-1.74 (15)	C23—C22—C21—C20	-2.3 (2)
O1—C1—C2—C3	177.25 (15)	C21—C22—C23—C24	0.9 (2)
C4—C3—C2—C1	175.98 (14)	C25—C24—C23—C22	1.3 (2)
N1—C3—C2—C1	-3.07 (16)	C23—C24—C25—C20	-2.1 (2)

C11—C6—C7—C8	2.6 (2)	C13—C27—C26—N6	-178.31 (11)
N2—C6—C7—C8	-176.75 (12)	C13—C27—C26—O3	4.7 (2)
C9—C8—C7—C6	-1.5 (2)	C28—C27—C26—N6	1.73 (14)
C7—C8—C9—C10	-0.9(2)	C28—C27—C26—O3	-175.24 (14)
C11—C10—C9—C8	2.1 (2)	C29—C28—C27—C13	-0.2 (2)
C10—C11—C6—C7	-1.4 (2)	C29—C28—C27—C26	179.77 (13)
C10—C11—C6—N2	177.97 (12)	N5-C28-C27-C13	-177.14 (12)
C6-C11-C10-C9	-1.0(2)	N5-C28-C27-C26	2.81 (15)
C5—N1—C3—C2	140.75 (13)	C36—C31—C32—C33	0.4 (2)
C5—N1—C3—C4	-38.41(19)	N6-C31-C32-C33	-179.81(12)
N2—N1—C3—C2	6.58 (15)	C34—C33—C32—C31	0.0 (2)
N2—N1—C3—C4	-172.58(12)	C32—C33—C34—C35	-0.3(2)
C6-N2-C1-C2	162.62 (12)	$C_{36} - C_{35} - C_{34} - C_{33}$	0.1 (2)
C6-N2-C1-O1	-165(2)	C_{35} C_{36} C_{31} C_{32}	-0.6(2)
N1-N2-C1-C2	5 83 (14)	$C_{35} = C_{36} = C_{31} = N_6$	179.63(12)
N1 - N2 - C1 - O1	-17327(12)	$C_{31} - C_{36} - C_{35} - C_{34}$	0.3(2)
C1 - N2 - C6 - C7	-127.36(14)	C19 - N3 - C17 - C16	139 18 (12)
C1 - N2 - C6 - C11	53 23 (18)	C19 N3 C17 C18	-39.15(17)
N1 - N2 - C6 - C7	27 30 (18)	N4-N3-C17-C16	8 40 (14)
N1 - N2 - C6 - C11	-152 11 (12)	N4 N3 C17 C18	-169.93(11)
C1 - N2 - N1 - C3	-7.69(14)	$C_{15} N_{4} C_{20} C_{21}$	-13874(14)
C1 - N2 - N1 - C5	-143.99(12)	$C_{15} = N_{14} = C_{20} = C_{25}$	41.86 (18)
C6-N2-N1-C3	-166.08(11)	$N_3 N_4 C_{20} C_{21}$	12 09 (18)
C6-N2-N1-C5	57.62 (16)	$N_3 N_4 C_{20} C_{25}$	-167.32(11)
C_{12} C_{13} C_{16} C_{15}	-67.73(15)	$C_{20} N_{4} C_{15} C_{16}$	157.61 (12)
$C_{12} = C_{13} = C_{10} = C_{13}$	108 90 (16)	$C_{20} N_{4} C_{15} O_{2}$	-215(2)
$C_{12} = C_{13} = C_{16} = C_{17}$	100.90 (10) 48 90 (16)	$N_{20} = N_{4} = C_{15} = C_{20}$	431(14)
$C_{14} = C_{13} = C_{16} = C_{17}$	-134.48(15)	$N_3 = N_4 = C_{15} = C_{10}$	-174.79(12)
$C_{14} = C_{13} = C_{10} = C_{17}$	157.70(15)	$N_{3} = N_{4} = C_{13} = C_{2}$	-7.68(14)
$C_{27} = C_{13} = C_{16} = C_{17}$	-161(2)	$C_{13} = N_{4} = N_{3} = C_{17}$	-141.33(12)
$C_{2}^{12} = C_{13}^{13} = C_{10}^{10} = C_{17}^{17}$	10.1(2) 175 72 (11)	$C_{13} = 114 = 113 = C_{13}$	-162.70(12)
$C_{12} = C_{13} = C_{27} = C_{20}$	1/3./3 (11)	$C_{20} = N_{4} = N_{3} = C_{10}$	-102.70(11)
C12 - C13 - C27 - C28	-4.3(2)	$C_{20} = 104 = 103 = C_{19}$	-127.22(12)
C14 - C13 - C27 - C20	37.70(13)	$C_{30} = N_{5} = C_{28} = C_{20}$	-137.23(12)
C14 - C13 - C27 - C28	-122.29(13) -62.84(15)	C_{30} N5 C28 C27	43.31(17)
C16 - C13 - C27 - C20	-02.84(13)	$N_{0} = N_{0} = C_{20} = C_{20}$	-0.17(14)
C10-C13-C27-C28	117.11(13) 17822(11)	$N_0 - N_3 - C_{20} - C_{29}$	1/0.3/(11) 7 20 (12)
N4 - C15 - C16 - C13	1/6.23(11)	C_{20} N5 N6 C_{21}	7.30(13)
N4-C15-C16-C17	0.80(14)	C_{28} N5 N6 C_{26}	103.00(11) 142.70(11)
02 - C15 - C16 - C13	-2.8(2)	$C_{30} = N_{5} = N_{6} = C_{20}$	142.79(11)
02-013-016-017	1/9.80 (14)	C_{30} NG C_{31}	-60.86(15)
C18 - C17 - C16 - C13	-4.8(3)	$C_{31} = N_{6} = C_{26} = C_{27}$	-160.42(11)
	1/2.16 (14)	$C_{31} = N_{0} = C_{20} = C_{32}$	16.9(2)
N_{3} $-C_{1}$ $-C_{16}$ $-C_{13}$	1//.21 (12)	$N_{5}-N_{6}-C_{26}-C_{27}$	-5.62(13)
$N_{2} = U_{1} = U_{1$	-3.81(13)	$N_{0} = N_{0} = U_{2} = U_{3}$	1/1.00 (12)
$C_{25} - C_{20} - C_{21} - C_{22}$	1.5 (2)	$C_{20} = N_0 = C_{31} = C_{32}$	-5/.86 (17)
N4-C20-C21-C22	-1//.89(12)	$U_{20} - N_0 - U_{31} - U_{30}$	121.90 (14)
C21—C20—C25—C24	0.7 (2)	N5—N6—C31—C32	149.55 (12)
N4—C20—C25—C24	-179.91 (12)	N5—N6—C31—C36	-30.68 (17)

D—H···A	D—H	$H \cdots A$	$D \cdots A$	D—H···A
C2—H2…O1 ⁱ	0.95	2.50	3.2949 (17)	142
С5—Н5С…О2	0.98	2.44	3.3930 (17)	163
C10—H10…O3 ⁱⁱ	0.95	2.53	3.4670 (18)	171
C14—H14A…O3	0.98	2.45	3.1228 (17)	126
C14—H14 <i>B</i> ···O2	0.98	2.34	3.0275 (17)	126
C21—H21···O1 ⁱⁱⁱ	0.95	2.49	3.3428 (18)	150
C25—H25…O2	0.95	2.37	2.8811 (17)	113
C29—H29 <i>B</i> ···O3 ^{iv}	0.98	2.38	3.2956 (17)	155
C30—H30A····O3 ^{iv}	0.98	2.32	3.3015 (16)	176

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) -x+3/2, y-1/2, -z+1/2; (ii) x+1, y+1, z; (iii) x-1, y-1, z; (iv) x, y+1, z.