Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# 8-Hydroxy-5,7-dimethylquinolin-1-ium hydrogen sulfate

## Kaliyaperumal Thanigaimani, Nuridayanti Che Khalib, Suhana Arshad and Ibrahim Abdul Razak\*‡

School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: arazaki@usm.my

Received 27 November 2012; accepted 3 December 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean  $\sigma$ (C–C) = 0.002 Å; R factor = 0.039; wR factor = 0.103; data-to-parameter ratio = 18.8.

The quinoline ring system of the title salt,  $C_{11}H_{12}NO^+ \cdot HSO_4^-$ , is essentially planar, with a maximum deviation of 0.054 (2) Å for all non H atoms. In the crystal, the cations and anions are linked *via* N-H···O, O-H···O and weak C-H···O hydrogen bonds, and are stacked respectively in columns along the *a* axis.  $\pi$ - $\pi$  stacking interactions, with centroidcentroid distances of 3.5473 (12) and 3.6926 (12) Å, are also observed. The crystal studied was an inversion twin with refined components of 0.43 (7):0.57 (7).

### **Related literature**

For background to and the biological activity of quinoline derivatives, see: Sasaki *et al.* (1998); Reux *et al.* (2009); Morimoto *et al.* (1991); Markees *et al.* (1970). For related structures, see: Loh *et al.* (2010*a,b*). For bond-length data, see: Allen *et al.* (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).



 $M_r = 271.28$ 

#### **Experimental**

Crystal data

C<sub>11</sub>H<sub>12</sub>NO<sup>+</sup>·HSO<sub>4</sub><sup>-</sup>

‡ Thomson Reuters ResearcherID: A-5599-2009.

Orthorhombic,  $P2_12_12_1$  a = 6.6750 (9) Å b = 11.6952 (14) Å c = 14.7283 (18) Å V = 1149.8 (3) Å<sup>3</sup>

#### Data collection

Bruker APEXII DUO CCD areadetector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2009)  $T_{min} = 0.889, T_{max} = 0.956$ 

#### Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.039 \\ wR(F^2) &= 0.103 \\ S &= 1.05 \\ 3341 \text{ reflections} \\ 178 \text{ parameters} \\ \text{H atoms treated by a mixture of} \\ \text{independent and constrained} \\ \text{refinement} \end{split}$$

Z = 4Mo K\alpha radiation  $\mu = 0.30 \text{ mm}^{-1}$ T = 100 K $0.41 \times 0.17 \times 0.15 \text{ mm}$ 

9735 measured reflections 3341 independent reflections 3142 reflections with  $I > 2\sigma(I)$  $R_{\text{int}} = 0.040$ 

 $\begin{array}{l} \Delta \rho_{\rm max} = 0.84 \ {\rm e} \ {\rm \mathring{A}}^{-3} \\ \Delta \rho_{\rm min} = -0.42 \ {\rm e} \ {\rm \mathring{A}}^{-3} \\ {\rm Absolute \ structure: \ Flack \ (1983),} \\ 1410 \ {\rm Friedel \ pairs} \\ {\rm Flack \ parameter: \ 0.43 \ (7)} \end{array}$ 

| Table 1                | -   |     |
|------------------------|-----|-----|
| Hydrogen-bond geometry | (Å, | °). |

|                                                                                                                                                                        | • • • •                                          |                                                  |                                                                   |                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------|
| $D - H \cdot \cdot \cdot A$                                                                                                                                            | D-H                                              | $H \cdot \cdot \cdot A$                          | $D \cdots A$                                                      | $D - \mathbf{H} \cdot \cdot \cdot A$        |
| $\begin{array}{c} N1 - H1N1 \cdots O3^{i} \\ O5 - H1O5 \cdots O2^{ii} \\ O1 - H1O1 \cdots O4^{i} \\ C3 - H3A \cdots O5^{iii} \\ C11 - H11C \cdots O3^{ii} \end{array}$ | 0.91 (2)<br>0.79 (3)<br>0.97 (4)<br>0.95<br>0.98 | 1.90 (2)<br>1.91 (3)<br>1.64 (4)<br>2.46<br>2.50 | 2.7753 (17)<br>2.698 (2)<br>2.601 (2)<br>3.3448 (19)<br>3.445 (3) | 161 (2)<br>172 (2)<br>172 (3)<br>154<br>161 |
| Symmetry codes: (i)                                                                                                                                                    | $x + \frac{1}{2}, -y + \frac{3}{2}$              | $\frac{1}{2}, -z+2;$ (ii)                        | $-x + \frac{1}{2}, -y + 1,$                                       | $z + \frac{1}{2};$ (iii)                    |

Symmetry codes: (1)  $x + \frac{1}{2}, -y + \frac{2}{2}, -z + 2;$  (11)  $-x + \frac{1}{2}, -y + 1, z + \frac{1}{2};$  (11)  $-x + \frac{3}{2}, -y + 1, z - \frac{1}{2}.$ 

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT* (Bruker, 2009); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008) and *PLATON* (Spek, 2009).

The authors thank the Malaysian Government and Universiti Sains Malaysia (USM) for the research facilities and USM Short Term Grant No. 304/PFIZIK/6312078 to conduct this work. KT thanks The Academy of Sciences for the Developing World and USM for a TWAS–USM fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5225).

#### References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Loh, W.-S., Quah, C. K., Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, 02357.
- Loh, W.-S., Quah, C. K., Hemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, 02396.
- Markees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem. 13, 324–326.



Morimoto, Y., Matsuda, F. & Shirahama, H. (1991). Synlett, **3**, 202–203. Reux, B., Nevalainen, T., Raitio, K. H. & Koskinen, A. M. P. (2009). *Bioorg.* Med. Chem. 17, 4441-4447.

Sasaki, K., Tsurumori, A. & Hirota, T. (1998). J. Chem. Soc. Perkin Trans. 1, Sasaki, K., Isurumon, A. & Tinota, I. (1996). J. Cr pp. 3851–3856.
 Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
 Spek, A. L. (2009). Acta Cryst. D65, 148–155.

## supporting information

## Acta Cryst. (2013). E69, o42–o43 [https://doi.org/10.1107/S1600536812049483]

## 8-Hydroxy-5,7-dimethylquinolin-1-ium hydrogen sulfate

## Kaliyaperumal Thanigaimani, Nuridayanti Che Khalib, Suhana Arshad and Ibrahim Abdul Razak

## S1. Comment

Recently, hydrogen-bonding patterns involving quinoline and its derivatives with organic acid have been investigated (Loh *et al.*, 2010*a,b*). Syntheses of the quinoline derivatives were discussed earlier (Sasaki *et al.*, 1998; Reux *et al.*, 2009). Quinolines and their derivatives are very important compounds because of their wide occurrence in natural products (Morimoto *et al.*, 1991) and biologically active compounds (Markees *et al.*, 1970). Herein we report the synthesis of 8-hydroxy-5,7-dimethylquinolin-1-ium hydrogen sulfate.

The asymmetric unit of the title compound (Fig. 1) consists of one 8-hydroxy-5,7-dimethylquinolin-1-ium cation and one hydrogen sulfate anion. One proton is transferred from the hydroxyl group of sulfuric acid to the atom N1 of 8-hy-droxy-5,7-dimethylquinoline during the crystallization, resulting in the formation of salt. The quinoline ring system (C1–C9/N1) is essentially planar with a maximum deviation of 0.054 (2) Å at atom C8. The bond lengths (Allen *et al.*, 1987) and angles are normal.

In the crystal packing (Fig. 2), the cations are linked by the anions *via* intermolecular N1—H1N1···O3<sup>i</sup>, O5—H1O5···O2<sup>ii</sup>, O1—H1O1···O4<sup>i</sup>, C3—H3A···O5<sup>iii</sup> and C11—H11C···O3<sup>ii</sup> hydrogen bonds (symmetry codes in Table 1) into a three-dimensional network. Furthermore, the crystal structure is stabilized by the following  $\pi$ - $\pi$  interactions: (*a*) between pyridine (N1/C1–C5, centroid *Cg*1) and benzene (C1/C5–C9, centroid *Cg*2) rings *Cg*1···*Cg*2 (1/2 + *x*, 1/2 - *y*, 2 - *z*) 3.5473 (12) Å and (*b*) between benzene rings (C1/C5–C9, centroid *Cg*2) *Cg*2···*Cg*2 (-1/2 + *x*, 1/2 - *y*, 2 - *z*) 3.6926 (12) Å. The crystal studied was an inversion twin, with a ratio of the twin components of 0.43 (7):0.57 (7).

## **S2. Experimental**

A few drops of sulfuric acid were added to a hot methanol solution (20 ml) of 8-hydroxy-5,7-dimethylquinoline (36 mg, Aldrich) which had been warmed over a heating magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound (I) appeared after a few days.

## **S3. Refinement**

O- and N-bound H atoms were located in a difference Fourier map and refined freely [refined distances: O—H = 0.97 (4) and 0.79 (3) Å, N—H = 0.91 (2) Å]. The remaining hydrogen atoms were positioned geometrically (C—H = 0.95–0.98 Å) and were refined using a riding model, with  $U_{iso}(H) = 1.2 U_{eq}(C)$  or  $1.5U_{eq}(methyl C)$ . A rotating-group model was used for the methyl group. The crystal studied was an inversion twin, with a ratio of the twin components of 0.43 (7):0.57 (7). The Hooft y parameter was 0.48 (4).



## Figure 1

The molecular structure of the title compound with atom labels with 50% probability displacement ellipsoids.



## Figure 2

The crystal packing of the title compound. The H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.

8-Hydroxy-5,7-dimethylquinolin-1-ium hydrogen sulfate

| Crystal data                     |
|----------------------------------|
| $C_{11}H_{12}NO^+ \cdot HSO_4^-$ |
| $M_r = 271.28$                   |

Orthorhombic, *P*2<sub>1</sub>2<sub>1</sub>2<sub>1</sub> Hall symbol: P 2ac 2ab a = 6.6750 (9) Å b = 11.6952 (14) Å c = 14.7283 (18) Å  $V = 1149.8 (3) \text{ Å}^{3}$  Z = 4 F(000) = 568 $D_{x} = 1.567 \text{ Mg m}^{-3}$ 

Data collection

Bruker APEXII DUO CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator  $\varphi$  and  $\omega$  scans Absorption correction: multi-scan (*SADABS*; Bruker, 2009)  $T_{\min} = 0.889, T_{\max} = 0.956$ 

### Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.039$  $wR(F^2) = 0.103$ S = 1.053341 reflections 178 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map

## Mo K $\alpha$ radiation, $\lambda = 0.71073$ Å Cell parameters from 6153 reflections $\theta = 2.8-29.9^{\circ}$ $\mu = 0.30 \text{ mm}^{-1}$ T = 100 KBlock, yellow $0.41 \times 0.17 \times 0.15 \text{ mm}$

9735 measured reflections 3341 independent reflections 3142 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.040$  $\theta_{max} = 30.0^{\circ}, \ \theta_{min} = 2.8^{\circ}$  $h = -9 \rightarrow 9$  $k = -16 \rightarrow 16$  $l = -20 \rightarrow 20$ 

Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement  $w = 1/[\sigma^2(F_o^2) + (0.0699P)^2 + 0.0691P]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} = 0.001$  $\Delta\rho_{max} = 0.84$  e Å<sup>-3</sup>  $\Delta\rho_{min} = -0.42$  e Å<sup>-3</sup> Absolute structure: Flack (1983), 1410 Friedel pairs Absolute structure parameter: 0.43 (7)

## Special details

**Experimental**. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|            | x           | у            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|------------|-------------|--------------|--------------|-----------------------------|--|
| <b>S</b> 1 | 0.15917 (7) | 0.73295 (3)  | 0.89075 (3)  | 0.01680 (11)                |  |
| 01         | 0.3784 (2)  | 0.68512 (11) | 0.89220 (9)  | 0.0235 (3)                  |  |
| 02         | 0.0640 (3)  | 0.66640 (10) | 0.82023 (10) | 0.0284 (3)                  |  |
| O3         | 0.1707 (3)  | 0.85435 (10) | 0.87008 (9)  | 0.0270 (3)                  |  |
| 04         | 0.0779 (3)  | 0.70976 (12) | 0.98112 (10) | 0.0307 (3)                  |  |
| 05         | 0.7154 (2)  | 0.37726 (9)  | 1.19245 (7)  | 0.0180 (3)                  |  |
|            |             |              |              |                             |  |

| N1   | 0.7224 (2) | 0.45539 (10) | 1.01976 (9)  | 0.0145 (3)  |
|------|------------|--------------|--------------|-------------|
| C1   | 0.7217 (3) | 0.33937 (12) | 1.03458 (9)  | 0.0126 (3)  |
| C2   | 0.7309 (3) | 0.50147 (13) | 0.93688 (10) | 0.0165 (3)  |
| H2A  | 0.7349     | 0.5822       | 0.9302       | 0.020*      |
| C3   | 0.7339 (3) | 0.43178 (14) | 0.85994 (10) | 0.0175 (3)  |
| H3A  | 0.7394     | 0.4646       | 0.8010       | 0.021*      |
| C4   | 0.7288 (3) | 0.31450 (14) | 0.87066 (9)  | 0.0158 (3)  |
| H4A  | 0.7283     | 0.2665       | 0.8186       | 0.019*      |
| C5   | 0.7243 (3) | 0.26499 (13) | 0.95828 (9)  | 0.0128 (3)  |
| C6   | 0.7217 (3) | 0.14410 (12) | 0.97396 (10) | 0.0138 (3)  |
| C7   | 0.7275 (3) | 0.10657 (13) | 1.06266 (10) | 0.0156 (3)  |
| H7A  | 0.7291     | 0.0265       | 1.0733       | 0.019*      |
| C8   | 0.7312 (3) | 0.18055 (14) | 1.13898 (10) | 0.0151 (3)  |
| C9   | 0.7197 (3) | 0.29722 (12) | 1.12470 (9)  | 0.0137 (3)  |
| C10  | 0.7169 (3) | 0.06073 (13) | 0.89626 (11) | 0.0189 (3)  |
| H10A | 0.7094     | -0.0174      | 0.9201       | 0.028*      |
| H10B | 0.8388     | 0.0692       | 0.8598       | 0.028*      |
| H10C | 0.5994     | 0.0760       | 0.8583       | 0.028*      |
| C11  | 0.7464 (3) | 0.13120 (14) | 1.23285 (11) | 0.0203 (4)  |
| H11A | 0.8315     | 0.1804       | 1.2704       | 0.030*      |
| H11B | 0.8052     | 0.0545       | 1.2296       | 0.030*      |
| H11C | 0.6125     | 0.1264       | 1.2598       | 0.030*      |
| H1N1 | 0.713 (4)  | 0.5064 (18)  | 1.0663 (15)  | 0.015 (5)*  |
| H1O5 | 0.630 (5)  | 0.359 (2)    | 1.227 (2)    | 0.038 (8)*  |
| H1O1 | 0.454 (6)  | 0.718 (3)    | 0.942 (2)    | 0.060 (10)* |
|      |            |              |              |             |

Atomic displacement parameters  $(\mathring{A}^2)$ 

|     | $U^{11}$    | $U^{22}$     | $U^{33}$     | $U^{12}$     | $U^{13}$      | $U^{23}$      |
|-----|-------------|--------------|--------------|--------------|---------------|---------------|
| S1  | 0.0199 (2)  | 0.01535 (16) | 0.01516 (16) | 0.00047 (15) | -0.00309 (16) | -0.00102 (12) |
| O1  | 0.0210 (7)  | 0.0244 (5)   | 0.0250 (6)   | 0.0039 (5)   | 0.0003 (6)    | -0.0053 (5)   |
| O2  | 0.0380 (9)  | 0.0183 (5)   | 0.0289 (6)   | -0.0014 (6)  | -0.0167 (7)   | -0.0033 (5)   |
| O3  | 0.0395 (9)  | 0.0146 (5)   | 0.0268 (6)   | -0.0008 (6)  | -0.0120 (6)   | -0.0010 (4)   |
| O4  | 0.0316 (8)  | 0.0373 (7)   | 0.0232 (6)   | 0.0046 (7)   | 0.0116 (6)    | 0.0026 (5)    |
| O5  | 0.0252 (7)  | 0.0174 (5)   | 0.0113 (4)   | -0.0031 (5)  | 0.0034 (5)    | -0.0027 (4)   |
| N1  | 0.0161 (7)  | 0.0135 (5)   | 0.0139 (5)   | 0.0003 (5)   | 0.0017 (5)    | 0.0007 (4)    |
| C1  | 0.0130 (7)  | 0.0129 (6)   | 0.0120 (6)   | 0.0003 (6)   | 0.0007 (6)    | 0.0000 (5)    |
| C2  | 0.0174 (8)  | 0.0151 (6)   | 0.0170 (6)   | 0.0011 (6)   | 0.0006 (7)    | 0.0044 (5)    |
| C3  | 0.0179 (9)  | 0.0205 (7)   | 0.0142 (6)   | -0.0002 (7)  | 0.0005 (7)    | 0.0039 (5)    |
| C4  | 0.0169 (8)  | 0.0193 (6)   | 0.0112 (6)   | -0.0002 (6)  | 0.0003 (6)    | 0.0004 (5)    |
| C5  | 0.0125 (7)  | 0.0153 (6)   | 0.0107 (5)   | 0.0004 (6)   | 0.0000 (5)    | -0.0002 (5)   |
| C6  | 0.0136 (7)  | 0.0133 (6)   | 0.0146 (6)   | 0.0003 (6)   | 0.0005 (6)    | -0.0020 (5)   |
| C7  | 0.0151 (8)  | 0.0141 (6)   | 0.0177 (6)   | 0.0007 (6)   | 0.0018 (6)    | 0.0012 (5)    |
| C8  | 0.0139 (8)  | 0.0180 (6)   | 0.0134 (6)   | 0.0006 (6)   | 0.0011 (6)    | 0.0016 (5)    |
| C9  | 0.0159 (7)  | 0.0156 (6)   | 0.0098 (6)   | -0.0014 (6)  | -0.0005 (6)   | -0.0008 (5)   |
| C10 | 0.0219 (9)  | 0.0172 (6)   | 0.0176 (6)   | -0.0010 (6)  | 0.0010 (7)    | -0.0053 (5)   |
| C11 | 0.0240 (10) | 0.0219 (7)   | 0.0149 (6)   | 0.0038 (7)   | 0.0012 (7)    | 0.0067 (5)    |
|     |             |              |              |              |               |               |

Geometric parameters (Å, °)

| <u>81—02</u>            | 1.4451 (13) | C4—C5                           | 1.4148 (18)  |  |
|-------------------------|-------------|---------------------------------|--------------|--|
| S1—O3                   | 1.4542 (12) | C4—H4A                          | 0.9500       |  |
| S1—O4                   | 1.4626 (14) | C5—C6                           | 1.433 (2)    |  |
| S1—01                   | 1.5668 (15) | C6—C7                           | 1.379 (2)    |  |
| 01—H101                 | 0.97 (4)    | C6—C10                          | 1.504 (2)    |  |
| O5—C9                   | 1.3685 (17) | С7—С8                           | 1.419 (2)    |  |
| O5—H1O5                 | 0.79 (3)    | C7—H7A                          | 0.9500       |  |
| N1—C2                   | 1.3355 (18) | C8—C9                           | 1.383 (2)    |  |
| N1-C1                   | 1.3743 (17) | C8—C11                          | 1.502 (2)    |  |
| N1—H1N1                 | 0.91 (2)    | C10—H10A                        | 0.9800       |  |
| C1—C9                   | 1.4160 (18) | C10—H10B                        | 0.9800       |  |
| C1—C5                   | 1.4212 (19) | C10—H10C                        | 0.9800       |  |
| C2—C3                   | 1.396 (2)   | C11—H11A                        | 0.9800       |  |
| C2—H2A                  | 0.9500      | C11—H11B                        | 0.9800       |  |
| C3—C4                   | 1.381 (2)   | C11—H11C                        | 0.9800       |  |
| С3—НЗА                  | 0.9500      |                                 |              |  |
| 02-81-03                | 113.50 (8)  | C1—C5—C6                        | 118.45 (12)  |  |
| 02 - 81 - 04            | 113.03 (10) | C7—C6—C5                        | 117.81 (13)  |  |
| 03-\$1-04               | 113.04 (8)  | C7—C6—C10                       | 121.01 (13)  |  |
| 02-81-01                | 103.19 (8)  | C5-C6-C10                       | 121.17 (13)  |  |
| 03—S1—01                | 107.56 (9)  | C6—C7—C8                        | 123.86 (14)  |  |
| 04—S1—01                | 105.54 (9)  | С6—С7—Н7А                       | 118.1        |  |
| S1—O1—H1O1              | 111 (2)     | C8—C7—H7A                       | 118.1        |  |
| С9—05—Н1О5              | 108 (2)     | C9—C8—C7                        | 118.70 (13)  |  |
| C2—N1—C1                | 122.94 (13) | C9—C8—C11                       | 121.54 (14)  |  |
| C2—N1—H1N1              | 115.2 (14)  | C7—C8—C11                       | 119.75 (14)  |  |
| C1—N1—H1N1              | 121.8 (14)  | O5—C9—C8                        | 124.42 (13)  |  |
| N1—C1—C9                | 119.52 (13) | O5—C9—C1                        | 116.46 (13)  |  |
| N1—C1—C5                | 118.60 (13) | C8—C9—C1                        | 119.05 (13)  |  |
| C9—C1—C5                | 121.89 (13) | C6C10H10A                       | 109.5        |  |
| N1—C2—C3                | 120.46 (14) | C6—C10—H10B                     | 109.5        |  |
| N1—C2—H2A               | 119.8       | H10A—C10—H10B                   | 109.5        |  |
| C3—C2—H2A               | 119.8       | C6—C10—H10C                     | 109.5        |  |
| C4—C3—C2                | 119.12 (14) | H10A—C10—H10C                   | 109.5        |  |
| С4—С3—Н3А               | 120.4       | H10B-C10-H10C                   | 109.5        |  |
| С2—С3—НЗА               | 120.4       | C8—C11—H11A                     | 109.5        |  |
| C3—C4—C5                | 120.74 (13) | C8—C11—H11B                     | 109.5        |  |
| C3—C4—H4A               | 119.6       | H11A—C11—H11B                   | 109.5        |  |
| C5—C4—H4A               | 119.6       | C8—C11—H11C                     | 109.5        |  |
| C4—C5—C1                | 118.11 (13) | H11A—C11—H11C                   | 109.5        |  |
| C4—C5—C6                | 123.44 (13) | H11B—C11—H11C                   | 109.5        |  |
| C2—N1—C1—C9             | 177 73 (17) | C1—C5—C6—C10                    | 177 83 (16)  |  |
| $C_2 = N_1 = C_1 = C_2$ | -19(3)      | $C_{1} = C_{2} = C_{1} = C_{1}$ | 1 5 (3)      |  |
| C1 - N1 - C2 - C3       | 1.8 (3)     | C10-C6-C7-C8                    | -179.68 (18) |  |
|                         |             |                                 |              |  |

## supporting information

| N1 $C2$ $C3$ $C4$ | -0.2(2)      | $C \in C 7 = C \otimes C 0$ | 20(2)        |
|-------------------|--------------|-----------------------------|--------------|
| N1 = C2 = C3 = C4 | -0.3(3)      | 0-0/-0-09                   | 2.9(3)       |
| C2—C3—C4—C5       | -1.2 (3)     | C6—C7—C8—C11                | -177.37 (18) |
| C3—C4—C5—C1       | 1.1 (3)      | C7—C8—C9—O5                 | 177.81 (17)  |
| C3—C4—C5—C6       | -179.12 (17) | C11—C8—C9—O5                | -1.9 (3)     |
| N1-C1-C5-C4       | 0.4 (2)      | C7—C8—C9—C1                 | -5.3 (3)     |
| C9—C1—C5—C4       | -179.20 (17) | C11—C8—C9—C1                | 175.01 (17)  |
| N1—C1—C5—C6       | -179.41 (16) | N1-C1-C9-O5                 | 1.0 (3)      |
| C9—C1—C5—C6       | 1.0 (3)      | C5-C1-C9-O5                 | -179.39 (16) |
| C4—C5—C6—C7       | 176.82 (17)  | N1-C1-C9-C8                 | -176.17 (17) |
| C1—C5—C6—C7       | -3.4 (3)     | C5-C1-C9-C8                 | 3.4 (3)      |
| C4—C5—C6—C10      | -2.0 (3)     |                             |              |
|                   |              |                             |              |

Hydrogen-bond geometry (Å, °)

| D—H···A                             | <i>D</i> —Н | H···A    | $D \cdots A$ | <i>D</i> —H… <i>A</i> |
|-------------------------------------|-------------|----------|--------------|-----------------------|
| N1—H1 <i>N</i> 1····O3 <sup>i</sup> | 0.91 (2)    | 1.90 (2) | 2.7753 (17)  | 161 (2)               |
| O5—H1 <i>O</i> 5···O2 <sup>ii</sup> | 0.79 (3)    | 1.91 (3) | 2.698 (2)    | 172 (2)               |
| O1—H1 <i>O</i> 1···O4 <sup>i</sup>  | 0.97 (4)    | 1.64 (4) | 2.601 (2)    | 172 (3)               |
| C3—H3A····O5 <sup>iii</sup>         | 0.95        | 2.46     | 3.3448 (19)  | 154                   |
| С11—Н11С…ОЗії                       | 0.98        | 2.50     | 3.445 (3)    | 161                   |

Symmetry codes: (i) x+1/2, -y+3/2, -z+2; (ii) -x+1/2, -y+1, z+1/2; (iii) -x+3/2, -y+1, z-1/2.