organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

[2-(1,3-Benzothiazol-2-ylmethoxy)-5-bromophenyl](4-chlorophenyl)methanone

Susanta K. Nayak,^a* K. N. Venugopala,^b* Thavendran Govender,^b Hendrik G. Kruger^c and Glenn E. M. Maguire^c

^aCenter for Nano Science and Technology@Polimi, Istituto Italiano di Tecnologia, Via Pascoli 70/3-20133 Milan, Italy, ^bSchool of Pharmacy and Pharmacology, University of Kwazulu-Natal, Durban 4000, South Africa, and ^cSchool of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000, South Africa Correspondence e-mail: nksusa@gmail.com, venugopala@ukzn.ac.za

Received 21 November 2012; accepted 4 December 2012

Key indicators: single-crystal X-ray study; T = 292 K; mean σ (C–C) = 0.004 Å; R factor = 0.044; wR factor = 0.096; data-to-parameter ratio = 14.9.

In the title compound, $C_{21}H_{13}BrClNO_2S$, the dihedral angle between the planes of the benzothiazole and chlorophenylmethanone groups is 71.34 (6)°. In the crystal, weak C– H···N hydrogen bonds lead to dimer formation, whereas Br···Cl short contacts [3.4966 (11) Å] form infinite chains along the *a*-axis direction. Further, the C–H···O, C–H··· π and π - π [centroid–centroid distance = 3.865 (2) Å] interactions stabilize the three-dimensional network.

Related literature

For background to the applications of benzothiazole derivatives, see: Rana *et al.* (2007); Saeed *et al.* (2010); Telvekar *et al.* (2012); Venugopala *et al.* (2012). For their biological activity, see: Kelarev *et al.* (2003). For types of interactions involving halogens, see: Nayak *et al.* (2011).

Experimental

Crystal data $C_{21}H_{13}BrCINO_2S$ $M_r = 458.74$ Monoclinic, $P2_1/n$ a = 13.7746 (3) Å b = 7.4918 (2) Å

c = 18.7016 (7) Å $\beta = 106.013 (3)^{\circ}$ $V = 1855.05 (10) \text{ Å}^3$ Z = 4Mo $K\alpha$ radiation $\mu = 2.49 \text{ mm}^{-1}$ T = 292 K

Data collection

Oxford Diffraction Xcalibur (Eos,	19324 measured reflections
Nova) diffractometer	3645 independent reflections
Absorption correction: multi-scan	2451 reflections with $I > 2\sigma(I)$
(CrysAlis PRO; Oxford	$R_{\rm int} = 0.054$
Diffraction, 2009)	
$T_{\rm min} = 0.623, T_{\rm max} = 0.865$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.044$ 244 parameters $wR(F^2) = 0.096$ H-atom parameters constrainedS = 1.07 $\Delta \rho_{max} = 0.45$ e Å $^{-3}$ 3645 reflections $\Delta \rho_{min} = -0.43$ e Å $^{-3}$

 $0.21 \times 0.19 \times 0.06 \text{ mm}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the thiazole ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
$C5-H5\cdots O2^{i}$	0.93	2.58	3.446 (4)	156
$C17 - H17 \cdot \cdot \cdot N1^{ii}$	0.93	2.61	3.434 (4)	147
$C18-H18\cdots Cg1^{iii}$	0.93	2.82	3.666 (3)	151
	1 1	1		

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) -x + 1, -y, -z; (iii) x, y - 1, z.

Data collection: *CrysAlis PRO* (Oxford Diffraction, 2009); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *PLATON* (Spek, 2009) and *PARST* (Nardelli, 1995).

We are thankful to the SSCU, IISc, for the Oxford Diffraction facility funded under DST-FIST (Level II) and the University of KwaZulu-Natal, South Africa, for facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GO2078).

References

- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Kelarev, V. I., Kobrakov, K. I. & Rybina, I. I. (2003). Chem. Heterocycl. Compd, 39, 1267–1306.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.

- Nayak, S. K., Reddy, M. K., Guru Row, T. N. & Chopra, D. (2011). Cryst. Growth Des. 11, 1578–1596.
- Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
- Rana, A., Siddiqui, N. & Khan, S. A. (2007). J. Pharm. Sci. 69, 10-17.
- Saeed, S., Rashid, N., Jones, P. G., Ali, M. & Hussain, R. (2010). Eur. J. Med. Chem. 45, 1323–1331.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Telvekar, V. N., Bairwa, V. K., Satardekar, K. & Bellubi, A. (2012). Bioorg. Med. Chem. Lett. 22, 148–155.
- Venugopala, K. N., Nayak, S. K., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2012). Acta Cryst. E68, 03125.

supporting information

Acta Cryst. (2013). E69, o70 [https://doi.org/10.1107/S1600536812049756]

[2-(1,3-Benzothiazol-2-ylmethoxy)-5-bromophenyl](4-chlorophenyl)methanone

Susanta K. Nayak, K. N. Venugopala, Thavendran Govender, Hendrik G. Kruger and Glenn E. M. Maguire

S1. Comment

Substituted benzothiazole derivatives have been reported to exhibit various pharmacological properties such as analgesic, antibacterial, antifungal, antidepressant, antitumor, antihypertensive, anthelmintic, and herbicidal activity (Kelarev *et al.*, 2003). However, the variety of biological features of new benzothiazole derivatives is of great scientific interest (Telvekar *et al.*, 2012; Saeed *et al.*, 2010). In continuation of our interest in synthesis and single-crystal analysis of benzothiazole molecule (Venugopala *et al.*, 2012), here we report the structure of the title compound.

The title compound prefers a conformation where the dihedral angle between the plane of the benzothiazole and the chlorophenyl methanone group is 71.34 (6)° (Fig. 2). The weak C17–H17···N1 hydrogen bonds (Table 1, Fig. 2) link the molecules to form a dimer. The C5–H5···O2, weak hydrogen bond, and the C18–H18···Cg1, C–H··· π interaction, (Table 1), link the molecules into sheets which lie in the (101) plane and which run parallel to the *b*-axis, *Cg1* is the centroid of the five membered thiazole ring. This is stabilized by the π – π interaction, *Cg2*···*Cg3*, (-*x*+1, -*y*, -*z*), in which the centroid to centroid distance is 3.865 (2) Å, the dihedral angle between the planes is 9.49 (15)° and the perpendicular distance between *Cg2* on to the plane of the ring with centroid *Cg3* is 3.3415 (14)Å, *Cg2* is the centroid of the six membered ring containing atoms C1 to C6 and *Cg3* is the centroid of six membered ring containing atoms C9 to C14. A Br···Cl short contact links these sheets along the *a* axis to give a three-dimensional network (Fig. 3). The Br1···Cl1(*x* + 1, *y*, *z*) and Cl1···.Br1(*x* - 1, *y*, *z*); angle at Br1, C12–Br1···Cl1(*x* + 1, *y*, *z*) = 173.56 (13)°; angle at C11, C19–Cl1···Br1(*x* - 1, *y*, *z*) = 138.2 (2)°: Type II; Nayak *et al.*, 2011].

S2. Experimental

To a solution of (5-bromo-2-hydroxyphenyl)(4-chlorophenyl) methanone (1 mmol) and (2-chloromethyl)benzo[*d*]thiazole (1 mmol) in dry THF, dry potassium carbonate (1 mmol) was added and stirred at room temperature for 8 h. The reaction mixture was concentrated to remove the solvent, diluted with ethyl acetate, washed with water, brine solution and dried over anhydrous sodium sulfate. The organic layer was concentrated to yield a residue which was purified by column chromatography using ethyl acetate and n-hexane as eluent (7:3, Rf = 3/4) to afford the product in 64% as a brown solid (m. p. 450 K). Suitable crystals for single-crystal X-ray study were obtained from ethanol solvent using slow evaporation technique at room temperature.

S3. Refinement

All H atoms were positioned geometrically and refined using a riding model with $U_{iso}(H)=1.2 U_{eq}(C)$.

Figure 1

Molecular structure shows the atom labelling scheme with displacement ellipsoids for non-H atoms at 50% probability level, hydrogen atoms are arbitrary circle.

The C—H…N hydrogen bond dimers and Br…Cl short contacts of infinite chains along *a* axis.

Figure 3

Sheets of three-dimensional network structure.

[2-(1,3-Benzothiazol-2-ylmethoxy)-5-bromophenyl](4-chlorophenyl)methanone

Crystal data

C₂₁H₁₃BrClNO₂S $M_r = 458.74$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 13.7746 (3) Å b = 7.4918 (2) Å c = 18.7016 (7) Å $\beta = 106.013$ (3)° V = 1855.05 (10) Å³ Z = 4

Data collection

Oxford Diffraction Xcalibur (Eos, Nova) diffractometer Radiation source: Mova (Mo) X-ray Source Mirror monochromator Detector resolution: 16.0839 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*CrysAlis PRO*; Oxford Diffraction, 2009) $T_{min} = 0.623, T_{max} = 0.865$ F(000) = 920 $D_x = 1.643 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.7107 \text{ Å}$ Cell parameters from 450 reflections $\theta = 1.0-28.0^{\circ}$ $\mu = 2.49 \text{ mm}^{-1}$ T = 292 KPlate, colourless $0.21 \times 0.19 \times 0.06 \text{ mm}$

19324 measured reflections 3645 independent reflections 2451 reflections with $I > 2\sigma(I)$ $R_{int} = 0.054$ $\theta_{max} = 26.0^\circ, \theta_{min} = 3.0^\circ$ $h = -16 \rightarrow 16$ $k = -9 \rightarrow 9$ $l = -23 \rightarrow 23$ Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix. Tun	map
$R[F^2 > 2\sigma(F^2)] = 0.044$	Hydrogen site location: inferred from
$wR(F^2) = 0.096$	neighbouring sites
S = 1.07	H-atom parameters constrained
3645 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0325P)^2 + 0.1234P]$
244 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.45 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta ho_{\min} = -0.43 \text{ e} \text{\AA}^{-3}$

Special details

Experimental. CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.33.34d Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Br1	1.04455 (3)	-0.14743 (5)	0.15995 (3)	0.06540 (18)
S1	0.41791 (7)	0.14738 (11)	0.12108 (5)	0.0461 (2)
Cl1	0.28248 (7)	-0.33938 (14)	0.18242 (7)	0.0736 (3)
01	0.61465 (16)	0.0996 (3)	0.11015 (12)	0.0437 (6)
N1	0.39940 (19)	0.3398 (3)	0.00334 (14)	0.0356 (6)
O2	0.75803 (17)	-0.0576 (3)	0.30851 (13)	0.0563 (7)
C14	0.7576 (2)	-0.0504 (4)	0.18309 (18)	0.0351 (8)
C6	0.3056 (2)	0.3399 (4)	0.01745 (17)	0.0337 (7)
C9	0.7118 (2)	0.0447 (4)	0.11796 (18)	0.0359 (8)
C17	0.5611 (2)	-0.2566 (4)	0.16701 (16)	0.0363 (8)
H17	0.5988	-0.2865	0.1345	0.044*
C16	0.6032 (2)	-0.1492 (4)	0.22765 (17)	0.0320 (7)
C1	0.3006 (2)	0.2404 (4)	0.07985 (17)	0.0393 (8)
C20	0.4476 (2)	-0.1627 (4)	0.26215 (18)	0.0427 (8)
H20	0.4088	-0.1295	0.2935	0.051*
C7	0.4624 (2)	0.2449 (4)	0.05198 (16)	0.0341 (7)
C10	0.7655 (2)	0.0818 (4)	0.06722 (19)	0.0432 (8)
H10	0.7350	0.1464	0.0244	0.052*
C8	0.5692 (2)	0.2169 (4)	0.05054 (18)	0.0416 (8)
H8A	0.5711	0.1649	0.0035	0.050*
H8B	0.6050	0.3298	0.0567	0.050*
C15	0.7089 (2)	-0.0826 (4)	0.24430 (19)	0.0366 (8)
C18	0.4637 (2)	-0.3200 (4)	0.15417 (19)	0.0414 (8)

supporting information

H18	0.4363	-0.3952	0.1141	0.050*
C5	0.2192 (2)	0.4269 (4)	-0.02485 (18)	0.0432 (8)
Н5	0.2210	0.4945	-0.0662	0.052*
C19	0.4081 (2)	-0.2704 (4)	0.20142 (19)	0.0409 (8)
C11	0.8638 (2)	0.0239 (4)	0.0796 (2)	0.0447 (9)
H11	0.8993	0.0471	0.0448	0.054*
C2	0.2111 (3)	0.2240 (5)	0.09968 (19)	0.0507 (9)
H2	0.2083	0.1569	0.1409	0.061*
C21	0.5458 (2)	-0.1054 (4)	0.27540 (18)	0.0409 (8)
H21	0.5743	-0.0360	0.3172	0.049*
C4	0.1317 (3)	0.4104 (5)	-0.0041 (2)	0.0542 (10)
H4	0.0739	0.4687	-0.0317	0.065*
C13	0.8576 (2)	-0.1043 (4)	0.19534 (19)	0.0394 (8)
H13	0.8898	-0.1650	0.2388	0.047*
C12	0.9090 (2)	-0.0684(4)	0.1436 (2)	0.0454 (9)
C3	0.1270 (3)	0.3092 (5)	0.0570 (2)	0.0572 (10)
Н3	0.0661	0.2991	0.0691	0.069*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
Br1	0.0341 (2)	0.0652 (3)	0.0997 (4)	0.00450 (18)	0.0232 (2)	-0.0024 (2)
S1	0.0439 (5)	0.0521 (6)	0.0458 (6)	0.0111 (4)	0.0182 (5)	0.0180 (4)
Cl1	0.0384 (5)	0.0839 (8)	0.0968 (9)	-0.0133 (5)	0.0160 (6)	-0.0076 (6)
01	0.0339 (12)	0.0514 (14)	0.0502 (15)	0.0117 (10)	0.0188 (12)	0.0197 (11)
N1	0.0365 (15)	0.0345 (15)	0.0351 (16)	0.0021 (12)	0.0087 (13)	0.0025 (12)
O2	0.0474 (15)	0.0796 (18)	0.0373 (15)	-0.0139 (13)	0.0040 (13)	-0.0010 (13)
C14	0.0302 (17)	0.0320 (18)	0.044 (2)	0.0009 (14)	0.0111 (16)	-0.0017 (16)
C6	0.0363 (18)	0.0317 (17)	0.0325 (18)	0.0029 (14)	0.0087 (15)	-0.0003 (15)
C9	0.0304 (17)	0.0326 (18)	0.047 (2)	0.0010 (14)	0.0139 (16)	-0.0020 (15)
C17	0.040 (2)	0.0357 (19)	0.0344 (19)	0.0064 (15)	0.0124 (16)	0.0029 (15)
C16	0.0329 (17)	0.0315 (17)	0.0323 (18)	0.0029 (14)	0.0100 (15)	0.0021 (15)
C1	0.0385 (19)	0.0397 (19)	0.040 (2)	0.0061 (15)	0.0115 (17)	0.0021 (16)
C20	0.039 (2)	0.051 (2)	0.042 (2)	0.0012 (16)	0.0183 (18)	0.0030 (17)
C7	0.0379 (18)	0.0327 (18)	0.0324 (18)	0.0016 (15)	0.0106 (16)	0.0007 (15)
C10	0.041 (2)	0.0414 (19)	0.050 (2)	0.0049 (16)	0.0178 (18)	0.0057 (16)
C8	0.0389 (19)	0.043 (2)	0.044 (2)	0.0073 (16)	0.0132 (17)	0.0108 (17)
C15	0.0364 (18)	0.0324 (17)	0.039 (2)	0.0002 (14)	0.0068 (17)	-0.0007 (15)
C18	0.043 (2)	0.037 (2)	0.042 (2)	-0.0027 (15)	0.0072 (18)	-0.0031 (16)
C5	0.0387 (19)	0.049 (2)	0.039 (2)	0.0038 (17)	0.0068 (17)	0.0043 (16)
C19	0.0290 (18)	0.043 (2)	0.049 (2)	-0.0034 (15)	0.0074 (17)	0.0082 (17)
C11	0.041 (2)	0.044 (2)	0.056 (2)	-0.0013 (16)	0.0252 (19)	-0.0015 (18)
C2	0.048 (2)	0.060 (2)	0.049 (2)	0.0020 (19)	0.021 (2)	0.0089 (19)
C21	0.044 (2)	0.045 (2)	0.0316 (19)	-0.0023 (16)	0.0077 (17)	-0.0041 (15)
C4	0.038 (2)	0.070 (3)	0.050 (2)	0.0113 (19)	0.0049 (19)	-0.003 (2)
C13	0.0322 (18)	0.0383 (19)	0.044 (2)	-0.0004 (14)	0.0048 (17)	0.0014 (15)
C12	0.0314 (18)	0.0378 (19)	0.068 (3)	-0.0006 (15)	0.0156 (19)	-0.0073 (19)
C3	0.038 (2)	0.075 (3)	0.063 (3)	0.004 (2)	0.020 (2)	-0.001 (2)

Geometric parameters (Å, °)

Br1—C12	1.902 (3)	C20—C19	1.377 (4)
S1—C1	1.733 (3)	C20—H20	0.9300
S1—C7	1.737 (3)	C7—C8	1.493 (4)
Cl1—C19	1.746 (3)	C10—C11	1.380 (4)
O1—C9	1.368 (3)	C10—H10	0.9300
O1—C8	1.422 (3)	C8—H8A	0.9700
N1—C7	1.285 (4)	C8—H8B	0.9700
N1—C6	1.389 (4)	C18—C19	1.371 (4)
O2—C15	1.219 (3)	C18—H18	0.9300
C14—C13	1.392 (4)	C5—C4	1.370 (5)
C14—C9	1.402 (4)	С5—Н5	0.9300
C14—C15	1.498 (4)	C11—C12	1.374 (4)
C6—C5	1.395 (4)	C11—H11	0.9300
C6—C1	1.402 (4)	C2—C3	1.370 (5)
C9—C10	1.383 (4)	C2—H2	0.9300
C17—C18	1.380 (4)	C21—H21	0.9300
C17—C16	1.381 (4)	C4—C3	1.388 (5)
С17—Н17	0.9300	C4—H4	0.9300
C16—C21	1.385 (4)	C13—C12	1.373 (4)
C16—C15	1.489 (4)	C13—H13	0.9300
C1—C2	1.387 (4)	С3—Н3	0.9300
C20—C21	1.375 (4)		
C1—S1—C7	88.70 (15)	H8A—C8—H8B	108.5
C9—O1—C8	118.4 (2)	O2-C15-C16	120.2 (3)
C7—N1—C6	110.4 (3)	O2-C15-C14	118.9 (3)
C13—C14—C9	118.6 (3)	C16-C15-C14	120.9 (3)
C13—C14—C15	117.3 (3)	C19—C18—C17	118.9 (3)
C9—C14—C15	123.8 (3)	C19—C18—H18	120.5
N1—C6—C5	125.8 (3)	C17—C18—H18	120.5
N1—C6—C1	114.8 (3)	C4—C5—C6	118.5 (3)
C5—C6—C1	119.4 (3)	C4—C5—H5	120.8
O1—C9—C10	124.0 (3)	С6—С5—Н5	120.8
O1—C9—C14	116.0 (3)	C18—C19—C20	121.8 (3)
C10—C9—C14	120.0 (3)	C18—C19—C11	119.2 (3)
C18—C17—C16	120.7 (3)	C20—C19—Cl1	119.0 (3)
С18—С17—Н17	119.6	C12-C11-C10	119.4 (3)
С16—С17—Н17	119.6	C12—C11—H11	120.3
C17—C16—C21	118.9 (3)	C10-C11-H11	120.3
C17—C16—C15	122.1 (3)	C3—C2—C1	118.3 (3)
C21—C16—C15	119.0 (3)	С3—С2—Н2	120.8
C2—C1—C6	121.4 (3)	С1—С2—Н2	120.8
C2—C1—S1	129.3 (3)	C20—C21—C16	121.2 (3)
C6—C1—S1	109.3 (2)	C20—C21—H21	119.4
C21—C20—C19	118.5 (3)	C16—C21—H21	119.4
C21—C20—H20	120.8	C5—C4—C3	121.8 (3)

C19—C20—H20	120.8	С5—С4—Н4	119.1
N1—C7—C8	122.8 (3)	C3—C4—H4	119.1
N1—C7—S1	116.8 (2)	C12—C13—C14	120.4 (3)
C8—C7—S1	120.4 (2)	C12—C13—H13	119.8
C11—C10—C9	120.6 (3)	C14—C13—H13	119.8
C11—C10—H10	119.7	C13—C12—C11	121.0 (3)
С9—С10—Н10	119.7	C13—C12—Br1	120.0 (3)
O1—C8—C7	107.2 (2)	C11—C12—Br1	119.0 (3)
O1—C8—H8A	110.3	C2—C3—C4	120.6 (4)
С7—С8—Н8А	110.3	С2—С3—Н3	119.7
O1—C8—H8B	110.3	С4—С3—Н3	119.7
С7—С8—Н8В	110.3		
C7—N1—C6—C5	-179.0 (3)	C21—C16—C15—C14	-151.8 (3)
C7—N1—C6—C1	0.3 (4)	C13—C14—C15—O2	40.1 (4)
C8—O1—C9—C10	-6.7 (4)	C9—C14—C15—O2	-133.8 (3)
C8-01-C9-C14	171.5 (3)	C13-C14-C15-C16	-138.1 (3)
C13—C14—C9—O1	-177.8 (3)	C9—C14—C15—C16	48.0 (4)
C15—C14—C9—O1	-4.0 (4)	C16—C17—C18—C19	1.9 (5)
C13—C14—C9—C10	0.5 (4)	N1-C6-C5-C4	178.6 (3)
C15—C14—C9—C10	174.3 (3)	C1—C6—C5—C4	-0.6 (5)
C18—C17—C16—C21	-0.2 (4)	C17—C18—C19—C20	-1.5 (5)
C18—C17—C16—C15	178.3 (3)	C17—C18—C19—Cl1	176.3 (2)
N1-C6-C1-C2	-178.2 (3)	C21—C20—C19—C18	-0.5 (5)
C5-C6-C1-C2	1.1 (5)	C21—C20—C19—Cl1	-178.3 (2)
N1-C6-C1-S1	0.5 (3)	C9-C10-C11-C12	-1.3 (5)
C5—C6—C1—S1	179.8 (2)	C6—C1—C2—C3	-0.5 (5)
C7—S1—C1—C2	177.7 (3)	S1—C1—C2—C3	-178.9 (3)
C7—S1—C1—C6	-0.8 (2)	C19—C20—C21—C16	2.2 (5)
C6—N1—C7—C8	178.9 (3)	C17—C16—C21—C20	-1.8 (5)
C6—N1—C7—S1	-1.0(3)	C15-C16-C21-C20	179.6 (3)
C1—S1—C7—N1	1.1 (3)	C6—C5—C4—C3	-0.5(5)
C1—S1—C7—C8	-178.8 (3)	C9—C14—C13—C12	-1.5(5)
O1—C9—C10—C11	179.0 (3)	C15-C14-C13-C12	-175.7 (3)
C14—C9—C10—C11	0.9 (5)	C14—C13—C12—C11	1.2 (5)
C9—O1—C8—C7	176.2 (2)	C14—C13—C12—Br1	-178.6 (2)
N1—C7—C8—O1	-177.4 (3)	C10-C11-C12-C13	0.3 (5)
S1—C7—C8—O1	2.4 (4)	C10-C11-C12-Br1	180.0 (2)
C17—C16—C15—O2	-148.5 (3)	C1—C2—C3—C4	-0.5 (5)
C21—C16—C15—O2	30.0 (4)	C5—C4—C3—C2	1.1 (6)
C17—C16—C15—C14	29.7 (4)		

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the thiazole ring.

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C5—H5····O2 ⁱ	0.93	2.58	3.446 (4)	156

			supportin	g information
C17—H17…N1 ⁱⁱ	0.93	2.61	3.434 (4)	147
C18—H18…Cg1 ⁱⁱⁱ	0.93	2.82	3.666 (3)	151

Symmetry codes: (i) *x*-1/2, -*y*+1/2, *z*-1/2; (ii) -*x*+1, -*y*, -*z*; (iii) *x*, *y*-1, *z*.