Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Dichlorophosphinic bis(2-chloroethyl)amide

Erqun Song and Yang Song*

Key Laboratory of Luminescence and Real-Time Analysis, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chong Qing 400716, People's Republic of China
Correspondence e-mail: ysong@swu.edu.cn
Received 29 October 2012; accepted 3 December 2012
Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.029 ; w R$ factor $=0.090$; data-to-parameter ratio $=32.2$.

In the title compound, $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{Cl}_{4} \mathrm{NOP}$, the two chloroethyl groups are not related by crystallographic symmetry. The difference in the conformation of the two groups is shown by their $\mathrm{N}-\mathrm{C}-\mathrm{C}-\mathrm{Cl}$ torsion angles of 64.57 (15) and 175.62 (10) ${ }^{\circ}$.

Related literature

The title compound is a precursor used in the synthesis of the antitumor drug cyclophosphamide and its analogues. For information on organophosphorus heterocyclic compounds, see: Surendra Babu et al. (2009); Srinivasulu et al. (2008); Krishna et al. (2006). For the crystal structures of cyclophosphamide analogues, see: Camerman \& Camerman (1973); Jones et al. (1996); Himes et al. (1982); Camerman et al. (1983); Perales \& García-Blanco (1977a,b); Gałdecki \& Głowka (1981); Boyd et al. (1980); Shih et al. (1986). For the pharmacological activity of cyclophosphamide analogues, see: Lin et al. (1980); Borch \& Canute (1991).

Experimental

[^0]\[

$$
\begin{aligned}
& b=8.4810(14) \AA \\
& c=13.135(2) \AA \\
& \beta=101.221(2)^{\circ} \AA^{\circ} \\
& V=991.4(3) \AA^{3} \\
& Z=4
\end{aligned}
$$
\]

Mo $K \alpha$ radiation
$\mu=1.30 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
$0.16 \times 0.12 \times 0.10 \mathrm{~mm}$

9480 measured reflections 3255 independent reflections 2725 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.020$

101 parameters H -atom parameters constrained $\Delta \rho_{\text {max }}=0.57 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.46 \mathrm{e}^{\AA^{-3}}$

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and local procedures.

This work was supported by the Program for New Century Excellent Talents in Universities (NCET-10-0660), the National Scientific \& Technological Special Project - Major Creation of New Drugs (Nos. 2010ZX09401-306-1-4 and 2010ZX09401-306-2-19) and the 211 Project of Southwest University (the Third Term).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FY2076).

References

Borch, R. F. \& Canute, G. W. (1991). J. Med. Chem. 34, 3044-3052.
Boyd, V. L., Zon, G. \& Himes, V. L. (1980). J. Med. Chem. 23, 372-375.
Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Camerman, N. \& Camerman, A. (1973). J. Am. Chem. Soc. 95, 5038-5041.
Camerman, A., Smith, H. W. \& Camerman, N. (1983). J. Med. Chem. 26, 679683.

Gałdecki, Z. \& Głowka, M. L. (1981). Acta Cryst. B37, 1136-1138.
Himes, V. L., Mighell, A. D., Stalick, J. K. \& Zon, G. (1982). Acta Cryst. B38, 1009-1012.
Jones, P. G., Thönnessen, H., Fischer, A., Neda, I., Schmutzler, R., Engel, J., Kutscher, B. \& Niemeyer, U. (1996). Acta Cryst. C52, 2359-2363.
Krishna, J. R., Krishnaiah, M., Stephen Babu, M., Suresh Reddy, C. \& Puranik, V. G. (2006). Acta Cryst. E62, o249-o250.

Lin, T. S., Fischer, P. H. \& Prusoff, W. H. (1980). J. Med. Chem. 23, 1235-1237.
Perales, A. \& García-Blanco, S. (1977a). Acta Cryst. B33, 1935-1939.
Perales, A. \& García-Blanco, S. (1977b). Acta Cryst. B33, 1939-1943.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Shih, Y. E. \& Wang, J. S. (1986). Heterocycles, 24, 1599-1603.
Srinivasulu, K., Babu, B. H., Kumar, K. S., Reddy, C. B., Raju, C. N. \& Rooba, D. (2008). J. Heterocycl. Chem. 45, 751-757.

Surendra Babu, V. H. H., Krishnaiah, M., Srinivasulu, K., Raju, C. N. \& Sreedhar, B. (2009). Acta Cryst. E65, o2700-o2701.

supporting information

Acta Cryst. (2013). E69, o33 [https://doi.org/10.1107/S1600536812049586]

Dichlorophosphinic bis(2-chloroethyl)amide

Erqun Song and Yang Song

S1. Comment

Cyclophosphamide, a nitrogen mustard alkylating agent, is widely used as an anti-cancer agent. It is converted in the liver to its active form, which is dependent on cytochrome P450 metabolism for its therapeutic effectiveness. During the process of metabolism, a toxic byproduct, acrolein is generated and induces hemorrhagic cystitis. Many cyclophosphamide analogues were developed to reduce this side effect and to find more potent anti-cancer drugs. The title compound is used as an important precursor for the synthesis of cyclophosphamide and its analogues.
In the title molecule (I) (Fig. 1), all bond lengths and angles are within normal ranges and correspond to those observed in related compounds. Atoms C3, N1, P1 and O1 are nearly coplanar, with a dihedral angel of $175.23(10)^{\circ}$ between the $\mathrm{C} 3-\mathrm{N} 1-\mathrm{P} 1$ and $\mathrm{N} 1-\mathrm{P} 1-\mathrm{O} 1$ planes. Angles for $\mathrm{C} 3-\mathrm{N}-\mathrm{P}, \mathrm{P}-\mathrm{N}-\mathrm{C} 1$ and $\mathrm{C} 1-\mathrm{N}-\mathrm{C} 3$ are $120.57(9)^{\circ}, 121.02(9)^{\circ}$ and $118.04(11)^{\circ}$, respectively. It is interesting to notice that two 2-chloroethyls are not symmetry-related, the torsion angle of $\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 13$ is $64.57(15)^{\circ}$, but the torsion angle of $\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 4-\mathrm{Cl} 4$ is $175.62(10)^{\circ}$. Although the current compound is conformationally flexible, twist conformation isomers form on closing the phospho-heterocycle, as, for example, in cyclophosphamide (Borch et al., 1991).

S2. Experimental

$\operatorname{Bis}(2$-chloroethyl)amine hydrochloride ($20.0 \mathrm{~g}, 0.112 \mathrm{~mol}$) was added dropwise into a 250 ml round bottom bottle containing $\mathrm{POCl}_{3}(52 \mathrm{ml}, 0.6 \mathrm{~mol})$. Then the mixture was refluxed for 20 h at $110{ }^{\circ} \mathrm{C}$. The disappearance of solid bis $(2-$ chloroethyl)amine hydrochloride indicated completion of the reaction. To remove excess POCl_{3}, reduced vacuum was used. The crude were dissolved into ethyl acetate and the precipitate was filtered off. The filtrate was concentrated in vacuo and the resulting residue was recrystallized with acetone and hexane ($v / v=1: 5$), giving white crystals (18.0 g) in a yield of 61%. Single crystals for X-ray diffraction were grown at room temperature by slow evaporation from the solution of the title compound in ethanol.

S3. Refinement

The H -atoms bonded to C -atoms were positioned geometrically and refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.93 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Figure 1
View of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2
Crystal packing of title compound, viewed approximately down the a axis, illustrating the stacking of the molecules along the a axis.

Dichlorophosphinic bis(2-chloroethyl)amide

Crystal data
$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{Cl}_{4} \mathrm{NOP}$
$M_{r}=258.88$
Monoclinic, $P 2{ }_{1} / c$
$a=9.0723$ (15) \AA
$b=8.4810(14) \AA$
$c=13.135$ (2) \AA
$\beta=101.221(2)^{\circ}$
$V=991.4$ (3) \AA^{3}
$Z=4$

Data collection

Bruker APEXII CCD

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
$F(000)=520$
$D_{\mathrm{x}}=1.735 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 4728 reflections
$\theta=2.3-31.1^{\circ}$
$\mu=1.30 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Block, colourless
$0.16 \times 0.12 \times 0.10 \mathrm{~mm}$
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
$T_{\min }=0.819, T_{\text {max }}=0.881$

9480 measured reflections
3255 independent reflections
2725 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.020$

$$
\begin{aligned}
& \theta_{\max }=32.2^{\circ}, \theta_{\min }=2.3^{\circ} \\
& h=-13 \rightarrow 13 \\
& k=-12 \rightarrow 12 \\
& l=-19 \rightarrow 13
\end{aligned}
$$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.090$
$S=1.05$
3255 reflections
101 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

> Hydrogen site location: inferred from \quad neighbouring sites
> H -atom parameters constrained
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0482 P)^{2}+0.1876 P\right]$
> \quad where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }=0.002$
> $\Delta \rho_{\max }=0.57 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\min }=-0.46 \mathrm{e} \AA^{-3}$
> Extinction correction: $S H E L X L 97($ Sheldrick, $\quad 2008), \mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
> Extinction coefficient: $0.0064(13)$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C1	$0.38633(16)$	$0.82538(16)$	$0.87493(12)$	$0.0381(3)$
H1A	0.4301	0.7845	0.8186	0.046^{*}
H1B	0.4682	0.8544	0.9310	0.046^{*}
C2	$0.2970(2)$	$0.97152(18)$	$0.83776(13)$	$0.0467(3)$
H2A	0.2125	0.9432	0.7834	0.056^{*}
H2B	0.3599	1.0447	0.8087	0.056^{*}
C3	$0.19521(15)$	$0.60676(16)$	$0.83359(10)$	$0.0353(3)$
H3A	0.1429	0.6769	0.7802	0.042^{*}
H3B	0.1208	0.5556	0.8662	0.042^{*}
C4	$0.27918(18)$	$0.48303(19)$	$0.78420(13)$	$0.0448(3)$
H4A	0.3374	0.4169	0.8376	0.054^{*}
H4B	0.3479	0.5337	0.7463	0.054^{*}
C11	$0.31341(5)$	$0.44237(4)$	$1.05878(3)$	$0.05244(12)$
C13	$0.22968(5)$	$1.06456(5)$	$0.94101(4)$	$0.05789(13)$
C12	$0.08981(4)$	$0.71564(5)$	$1.05773(3)$	$0.05103(12)$
C14	$0.14781(6)$	$0.36563(5)$	$0.69800(4)$	$0.06145(14)$
N1	$0.29789(12)$	$0.69934(13)$	$0.91169(9)$	$0.0328(2)$
O1	$0.41231(13)$	$0.76345(14)$	$1.10623(8)$	$0.0474(3)$
P1	$0.29887(4)$	$0.67627(4)$	$1.03420(3)$	$0.03356(10)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	$U^{\beta 3}$	U^{12}	U^{13}	U^{23}
C1	$0.0403(6)$	$0.0353(6)$	$0.0409(7)$	$-0.0035(5)$	$0.0131(5)$	$-0.0024(5)$
C2	$0.0600(9)$	$0.0347(6)$	$0.0451(8)$	$-0.0025(6)$	$0.0094(7)$	$0.0020(6)$
C3	$0.0376(6)$	$0.0343(6)$	$0.0330(6)$	$0.0004(5)$	$0.0042(5)$	$-0.0035(5)$
C4	$0.0481(8)$	$0.0409(7)$	$0.0444(8)$	$-0.0001(6)$	$0.0067(6)$	$-0.0131(6)$
C11	$0.0676(3)$	$0.03754(19)$	$0.0523(2)$	$0.00726(15)$	$0.01214(19)$	$0.01047(15)$
C13	$0.0608(3)$	$0.0414(2)$	$0.0733(3)$	$0.00801(16)$	$0.0174(2)$	$-0.01022(18)$
C12	$0.04327(19)$	$0.0641(3)$	$0.0497(2)$	$0.00731(16)$	$0.01884(16)$	$-0.00236(17)$
C14	$0.0777(3)$	$0.0514(2)$	$0.0521(3)$	$-0.0121(2)$	$0.0049(2)$	$-0.01980(19)$
N1	$0.0376(5)$	$0.0315(5)$	$0.0292(5)$	$-0.0022(4)$	$0.0062(4)$	$-0.0026(4)$
O1	$0.0479(6)$	$0.0540(6)$	$0.0369(5)$	$-0.0032(5)$	$-0.0006(4)$	$-0.0072(5)$
P1	$0.03567(17)$	$0.03484(17)$	$0.02971(16)$	$0.00247(12)$	$0.00520(12)$	$-0.00150(12)$

Geometric parameters $\left({ }^{A},{ }^{\circ}\right)$

C1-N1	1.4732 (18)	C3-H3A	0.9700
$\mathrm{C} 1-\mathrm{C} 2$	1.509 (2)	C3-H3B	0.9700
C1-H1A	0.9700	C4-Cl4	1.7800 (16)
C1-H1B	0.9700	C4-H4A	0.9700
$\mathrm{C} 2-\mathrm{Cl} 3$	1.7767 (17)	C4-H4B	0.9700
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9700	$\mathrm{Cl} 1-\mathrm{P} 1$	2.0100 (6)
C 2 - H 2 B	0.9700	$\mathrm{Cl} 2-\mathrm{P} 1$	2.0081 (6)
C3-N1	1.4713 (16)	N1-P1	1.6195 (12)
C3-C4	1.515 (2)	O1-P1	1.4567 (11)
N1-C1-C2	114.16 (12)	H3A-C3-H3B	108.0
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	108.7	C3-C4-Cl4	109.25 (11)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	108.7	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	109.8
N1-C1-H1B	108.7	$\mathrm{Cl} 4-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	109.8
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	108.7	C3-C4-H4B	109.8
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	107.6	$\mathrm{Cl} 4-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	109.8
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{Cl} 3$	111.13 (11)	$\mathrm{H} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	108.3
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.4	C3-N1-C1	118.04 (11)
$\mathrm{Cl} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.4	C3-N1-P1	120.57 (9)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.4	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{P} 1$	121.02 (9)
$\mathrm{C} 13-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.4	O1-P1-N1	116.78 (7)
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.0	$\mathrm{O} 1-\mathrm{P} 1-\mathrm{Cl} 2$	112.63 (5)
N1-C3-C4	111.43 (11)	N1-P1-Cl2	108.07 (5)
N1-C3-H3A	109.3	O1-P1-Cl1	112.37 (5)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.3	N1-P1-Cl1	105.45 (4)
N1-C3-H3B	109.3	$\mathrm{Cl} 2-\mathrm{P} 1-\mathrm{Cl} 1$	100.01 (2)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.3		
N1-C1-C2-Cl3	64.57 (15)	$\mathrm{C} 3-\mathrm{N} 1-\mathrm{P} 1-\mathrm{O} 1$	175.23 (10)
N1-C3-C4-Cl4	175.62 (10)	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{P} 1-\mathrm{O} 1$	-11.87 (13)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 1$	78.71 (15)	$\mathrm{C} 3-\mathrm{N} 1-\mathrm{P} 1-\mathrm{Cl} 2$	-56.60 (10)

$\mathrm{C} 4-\mathrm{C} 3-\mathrm{N} 1-\mathrm{P} 1$	$-108.18(13)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 3$	$75.10(16)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{P} 1$	$-97.97(14)$

$\mathrm{C} 1-\mathrm{N} 1-\mathrm{P} 1-\mathrm{Cl} 2$	$116.30(10)$
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{P} 1-\mathrm{Cl} 1$	$49.65(10)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{P} 1-\mathrm{Cl} 1$	$-137.45(10)$

[^0]: Crystal data
 $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{Cl}_{4} \mathrm{NOP}$
 $M_{r}=258.88$

 > Monoclinic, $P 2_{1} / c$
 > $a=9.0723(15) \AA$

