

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-(2,4-Dichlorophenyl)-N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1*H*-pyrazol-4-yl)acetamide

Ray J. Butcher,^a* Aneeka Mahan,^b P. S. Navak,^c B. Narayana^c and H. S. Yathirajan^d

^aDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, ^bLake Braddock Secondary School, 9200 Burke Lake Road, Burke, VA 22015, USA, ^cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and ^dDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India Correspondence e-mail: rbutcher99@yahoo.com

Received 2 December 2012; accepted 3 December 2012

Key indicators: single-crystal X-ray study; T = 123 K; mean σ (C–C) = 0.002 Å; R factor = 0.035; wR factor = 0.095; data-to-parameter ratio = 16.2.

In the crystal structure of the title compound, $C_{19}H_{17}Cl_2N_3O_2$, the molecules form dimers of the $R_2^2(10)$ type through N- $H \cdots O$ hydrogen bonding. As a result of steric repulsion, the amide group is rotated with respect to both the dichlorophenyl and 2,3-dihydro-1H-pyrazol-4-yl rings, making dihedral angles of 80.70 (13) and 64.82 $(12)^{\circ}$, respectively. The dihedral angle between the dichlorophenyl and 2,3-dihydro-1*H*-pyrazol-4-yl rings is $48.45(5)^{\circ}$ while that between the 2,3-dihydro-1*H*pyrazol-4-yl and phenyl rings is $56.33 (6)^{\circ}$.

Related literature

For a description of the Cambridge Structural Database, see: Allen (2002). For hydrogen-bond motifs, see: Bernstein et al. (1995). For N-substituted 2-arylacetamides and amides, see: Mijin & Marinkovic (2006); Mijin et al. (2008); Fun et al. (2011a,b); Fun, Shahani et al. (2012); Fun, Quah et al. (2012); Wu et al. (2008, 2010).

Crystal data C19H17Cl2N3O2

 $M_r = 390.26$

Z = 8

Cu $K\alpha$ radiation

 $0.59 \times 0.22 \times 0.08 \text{ mm}$

with $I > 2\sigma(I)$

 $\mu = 3.25 \text{ mm}^{-1}$

T = 123 K

Monoclinic, $C2/c$	
a = 25.1853 (5) Å	
b = 8.18108 (9) Å	
c = 21.0978 (4) Å	
$\beta = 119.772 \ (3)^{\circ}$	
$V = 3773.26(16) Å^3$	

Data collection

Mo

Agilent Xcalibur (Ruby, Gemini)	Clark & Reid (1995)]
diffractometer	$T_{\min} = 0.429, \ T_{\max} = 0.804$
Absorption correction: analytical	12628 measured reflections
[CrysAlis PRO (Agilent, 2011),	3849 independent reflections
based on expressions derived by	3663 reflections with $I > 2\sigma($
	$R_{\rm int} = 0.027$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.035$	237 parameters
$wR(F^2) = 0.095$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.57 \text{ e } \text{\AA}^{-3}$
3849 reflections	$\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$		
$N1-H1A\cdots O2^{i}$	0.88	1.92	2.7938 (15)	171		
Symmetry code: (i) $-x + 1, y, -z + \frac{3}{2}$.						

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

RJB acknowledges the NSF-MRI program (grant No. CHE-0619278) for funds to purchase the diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT6879).

References

- Agilent (2011). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.
- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.
- Fun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011a). Acta Cryst. E67, 02926-02927.
- Fun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011b). Acta Cryst. E67, o2941-o2942.
- Fun, H.-K., Quah, C. K., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o2677
- Fun, H.-K., Shahani, T., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o519.
- Mijin, D. & Marinkovic, A. (2006). Synth. Commun. 36, 193-198.
- Mijin, D. Z., Prascevic, M. & Petrovic, S. D. (2008). J. Serb. Chem. Soc. 73, 945-950
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wu, W.-N., Cheng, F.-X., Yan, L. & Tang, N. (2008). J. Coord. Chem. 61, 2207-2215.
- Wu, W.-N., Wang, Y., Zhang, A.-Y., Zhao, R.-Q. & Wang, Q.-F. (2010). Acta Cryst. E66, m288.

supporting information

Acta Cryst. (2013). E69, o39 [https://doi.org/10.1107/S1600536812049628]

2-(2,4-Dichlorophenyl)-*N*-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1*H*-pyrazol-4-yl)acetamide

Ray J. Butcher, Aneeka Mahan, P. S. Nayak, B. Narayana and H. S. Yathirajan

S1. Comment

N-Substituted 2-arylacetamides are very interesting compounds because of their structural similarity to the lateral chain of natural benzylpenicillin (Mijin *et al.*, 2006, 2008). Amides are also used as ligands due to their excellent coordination abilities (Wu *et al.*, 2008, 2010). Crystal structures of some acetamide derivatives *viz.*, (2E)-1-(2,5-dimethoxy-phenyl)-3-(3-nitrophenyl)prop-2-en-1-one, *N*-(4-bromophenyl)-2-(naphthalen-1-yl)acetamide, *N*-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1*H*-pyrazol-4-yl)-2-\[4-(methylsulfanyl)phenyl]acetamide, *N*-(4-bromophenyl)-2-(4-chlorophenyl)-acetamide (Fun *et al.*, 2011*a*; Fun *et al.*, 2011*b*; Fun, Shahani *et al.*, 2012; Fun, Quah *et al.*, 2012) have been reported. In view of the importance of amides we report herein the crystal structure of the title compound (I).

In the title compound, I, $C_{19}H_{17}Cl_2N_3O_2$ the amide group is planar and through N—H…O hydrogen bonding to an adjoining molecule forms dimers of the $R_2^2(10)$ type (Bernstein *et al.*, 1995). Due to steric repulsion the amide group is rotated with respect to both the dichlorophenyl and 2,3-dihydro-1*H*-pyrazol-4-yl rings with dihedral angles of 80.70 (13)° and 64.82 (12)° respectively. The dihedral angles between the three rings are 48.45 (5)° for the dichlorophenyl and 2,3-dihydro-1*H*-pyrazol-4-yl rings, respectively. All other metrical parameters are in the normal ranges (Allen, 2002).

S2. Experimental

2,4-Dichlorophenylacetic acid (0.240 g, 1 mmol) and 4-aminoantipyrine (0.203 g, 1 mmol), 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (1.0 g, 0.01 mol) and were dissolved in dichloromethane (20 ml). The mixture was stirred in presence of triethylamine at 273 K for about 3 h. The contents were poured into 100 ml of ice-cold aqueous hydrochloric acid with stirring, which was extracted thrice with dichloromethane. Organic layer was washed with saturated NaHCO₃ solution and brine solution, dried and concentrated under reduced pressure to give the title compound (I). Single crystals were grown from methylene chloride by the slow evaporation method (m.p.: 473–475 K).

S3. Refinement

The H atoms were placed in calculated positions and refined in the riding mode: N—H = 0.88 Å, C—H = 0.95–0.99 Å with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms and = $1.2U_{eq}(O,C)$ for other H atoms.

Figure 1

View of the molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level for non-hydrogen atoms.

Figure 2

The packing view viewed along the a axis. Dashed lines indicate intermolecular N—H…O hydrogen bonds (see Table 1 for details).

2-(2,4-Dichlorophenyl)-N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)acetamide

$C_{19}H_{17}Cl_2N_3O_2$	
$M_r = 390.26$	
Monoclinic, $C2/c$	
a = 25.1853 (5) Å	
b = 8.18108 (9) Å	
c = 21.0978 (4) Å	
$\beta = 119.772 \ (3)^{\circ}$	
$V = 3773.26 (16) Å^3$	
Z = 8	

F(000) = 1616 $D_x = 1.374 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 9236 reflections $\theta = 3.5-75.5^{\circ}$ $\mu = 3.25 \text{ mm}^{-1}$ T = 123 KPlate, colorless $0.59 \times 0.22 \times 0.08 \text{ mm}$ Data collection

Agilent Xcalibur (Ruby, Gemini) diffractometer	$T_{\min} = 0.429, T_{\max} = 0.804$ 12628 measured reflections
Radiation source: Enhance (Cu) X-ray Source	3849 independent reflections
Graphite monochromator	3663 reflections with $I > 2\sigma(I)$
Detector resolution: 10.5081 pixels mm ⁻¹	$R_{\rm int} = 0.027$
ω scans	$\theta_{\rm max} = 75.7^{\circ}, \theta_{\rm min} = 4.0^{\circ}$
Absorption correction: analytical	$h = -31 \rightarrow 31$
[CrysAlis PRO (Agilent, 2011), based on	$k = -5 \rightarrow 10$
expressions derived by Clark & Reid (1995)]	$l = -24 \rightarrow 26$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.035$	Hydrogen site location: inferred from
$wR(F^2) = 0.095$	neighbouring sites
<i>S</i> = 1.05	H-atom parameters constrained
3849 reflections	$w = 1/[\sigma^2(F_o^2) + (0.053P)^2 + 3.0975P]$
237 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.57 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. CrysAlisPro (Agilent Technologies, 2011) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid (1995).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cl1	0.322039 (15)	0.55288 (4)	0.50139 (2)	0.03074 (11)
Cl2	0.26743 (2)	1.17963 (5)	0.42432 (2)	0.04088 (13)
01	0.48051 (5)	0.65179 (13)	0.60154 (6)	0.0275 (2)
O2	0.58614 (5)	0.26875 (13)	0.77321 (5)	0.0281 (2)
N1	0.46909 (5)	0.42833 (14)	0.65739 (6)	0.0225 (2)
H1A	0.4505	0.3881	0.6799	0.027*
N2	0.54781 (5)	0.15657 (15)	0.59681 (6)	0.0229 (2)
N3	0.58823 (5)	0.16033 (15)	0.67299 (6)	0.0230 (2)
C1	0.37725 (6)	0.80141 (17)	0.59726 (8)	0.0237 (3)
C2	0.33397 (6)	0.75827 (17)	0.52636 (8)	0.0230 (3)
C3	0.29970 (6)	0.87188 (18)	0.47298 (8)	0.0255 (3)
H3A	0.2701	0.8385	0.4251	0.031*
C4	0.30983 (7)	1.03615 (18)	0.49149 (8)	0.0263 (3)
C5	0.35183 (7)	1.08602 (19)	0.56138 (9)	0.0299 (3)

supporting information

H5A	0.3579	1.1989	0.5735	0.036*
C6	0.38487 (7)	0.96809 (19)	0.61340 (8)	0.0288 (3)
H6A	0.4136	1.0018	0.6616	0.035*
C7	0.41457 (7)	0.67467 (18)	0.65363 (8)	0.0276 (3)
H7A	0.3868	0.5946	0.6574	0.033*
H7B	0.4387	0.7282	0.7018	0.033*
C8	0.45797 (6)	0.58490 (17)	0.63435 (7)	0.0217 (3)
C9	0.50922 (6)	0.32646 (16)	0.64690 (7)	0.0212 (3)
C10	0.50219 (6)	0.26811 (17)	0.58283 (7)	0.0220 (3)
C11	0.45465 (7)	0.30761 (19)	0.50647 (8)	0.0278 (3)
H11A	0.4249	0.3838	0.5071	0.042*
H11B	0.4337	0.2070	0.4811	0.042*
H11C	0.4741	0.3580	0.4809	0.042*
C12	0.57913 (8)	0.1578 (2)	0.55384 (8)	0.0307 (3)
H12A	0.5490	0.1455	0.5019	0.046*
H12B	0.6084	0.0671	0.5694	0.046*
H12C	0.6010	0.2615	0.5615	0.046*
C13	0.56376 (6)	0.25707 (17)	0.70619 (7)	0.0219 (3)
C14	0.62640 (6)	0.02126 (18)	0.70612 (7)	0.0236 (3)
C15	0.60320 (8)	-0.13441 (19)	0.68234 (8)	0.0305 (3)
H15A	0.5620	-0.1488	0.6446	0.037*
C16	0.64078 (10)	-0.2690 (2)	0.71423 (10)	0.0428 (4)
H16A	0.6256	-0.3760	0.6978	0.051*
C17	0.70029 (10)	-0.2473 (3)	0.76984 (10)	0.0494 (5)
H17A	0.7259	-0.3395	0.7917	0.059*
C18	0.72255 (9)	-0.0917 (3)	0.79377 (10)	0.0491 (5)
H18A	0.7634	-0.0777	0.8323	0.059*
C19	0.68580 (7)	0.0448 (2)	0.76203 (9)	0.0352 (4)
H19A	0.7012	0.1518	0.7784	0.042*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.02802 (19)	0.01940 (18)	0.0432 (2)	-0.00059 (12)	0.01644 (16)	-0.00417 (13)
Cl2	0.0505 (2)	0.0273 (2)	0.0381 (2)	0.01167 (16)	0.01682 (19)	0.00933 (15)
01	0.0318 (5)	0.0260 (5)	0.0317 (5)	0.0038 (4)	0.0210 (4)	0.0068 (4)
O2	0.0340 (5)	0.0323 (6)	0.0187 (5)	0.0082 (4)	0.0136 (4)	0.0003 (4)
N1	0.0281 (6)	0.0239 (6)	0.0229 (5)	0.0047 (5)	0.0182 (5)	0.0043 (4)
N2	0.0277 (6)	0.0261 (6)	0.0175 (5)	0.0045 (5)	0.0131 (5)	0.0010 (4)
N3	0.0270 (6)	0.0255 (6)	0.0182 (5)	0.0053 (5)	0.0126 (5)	0.0010 (4)
C1	0.0260 (6)	0.0233 (7)	0.0274 (7)	0.0042 (5)	0.0175 (6)	0.0007 (5)
C2	0.0237 (6)	0.0177 (6)	0.0317 (7)	0.0002 (5)	0.0169 (6)	-0.0022 (5)
C3	0.0228 (6)	0.0252 (7)	0.0283 (7)	0.0023 (5)	0.0125 (6)	-0.0013 (6)
C4	0.0279 (7)	0.0219 (7)	0.0313 (7)	0.0060 (5)	0.0163 (6)	0.0047 (5)
C5	0.0329 (7)	0.0199 (7)	0.0375 (8)	0.0013 (6)	0.0178 (6)	-0.0024 (6)
C6	0.0306 (7)	0.0265 (7)	0.0279 (7)	0.0021 (6)	0.0134 (6)	-0.0042 (6)
C7	0.0343 (7)	0.0284 (7)	0.0265 (7)	0.0083 (6)	0.0201 (6)	0.0035 (6)
C8	0.0239 (6)	0.0239 (7)	0.0182 (6)	0.0027 (5)	0.0112 (5)	0.0012 (5)

supporting information

C9	0.0257 (6)	0.0212 (6)	0.0210 (6)	0.0022 (5)	0.0149 (5)	0.0028 (5)
C10	0.0259 (6)	0.0212 (6)	0.0222 (6)	0.0017 (5)	0.0143 (5)	0.0023 (5)
C11	0.0311 (7)	0.0315 (8)	0.0200 (6)	0.0054 (6)	0.0122 (6)	0.0016 (5)
C12	0.0407 (8)	0.0339 (8)	0.0276 (7)	0.0103 (6)	0.0247 (7)	0.0049 (6)
C13	0.0265 (6)	0.0215 (6)	0.0219 (6)	0.0011 (5)	0.0152 (5)	0.0005 (5)
C14	0.0269 (7)	0.0276 (7)	0.0212 (6)	0.0067 (5)	0.0157 (6)	0.0029 (5)
C15	0.0384 (8)	0.0285 (8)	0.0274 (7)	0.0029 (6)	0.0184 (6)	0.0018 (6)
C16	0.0682 (12)	0.0297 (8)	0.0372 (9)	0.0139 (8)	0.0312 (9)	0.0059 (7)
C17	0.0635 (12)	0.0501 (11)	0.0374 (9)	0.0336 (10)	0.0273 (9)	0.0158 (8)
C18	0.0354 (9)	0.0679 (13)	0.0355 (9)	0.0211 (9)	0.0112 (7)	0.0108 (9)
C19	0.0299 (7)	0.0423 (9)	0.0295 (7)	0.0038 (7)	0.0119 (6)	0.0006 (7)

Geometric parameters (Å, °)

Cl1—C2	1.7419 (14)	С7—Н7А	0.9900
Cl2—C4	1.7388 (15)	С7—Н7В	0.9900
O1—C8	1.2210 (17)	C9—C10	1.3597 (19)
O2—C13	1.2390 (17)	C9—C13	1.4378 (19)
N1—C8	1.3492 (18)	C10—C11	1.4892 (19)
N1—C9	1.4097 (17)	C11—H11A	0.9800
N1—H1A	0.8800	C11—H11B	0.9800
N2—C10	1.3796 (18)	C11—H11C	0.9800
N2—N3	1.4128 (15)	C12—H12A	0.9800
N2—C12	1.4678 (17)	C12—H12B	0.9800
N3—C13	1.3874 (17)	C12—H12C	0.9800
N3—C14	1.4282 (18)	C14—C19	1.383 (2)
C1—C2	1.390 (2)	C14—C15	1.387 (2)
C1—C6	1.395 (2)	C15—C16	1.388 (2)
C1—C7	1.504 (2)	C15—H15A	0.9500
C2—C3	1.383 (2)	C16—C17	1.381 (3)
C3—C4	1.387 (2)	C16—H16A	0.9500
С3—НЗА	0.9500	C17—C18	1.382 (3)
C4—C5	1.382 (2)	C17—H17A	0.9500
C5—C6	1.386 (2)	C18—C19	1.392 (3)
C5—H5A	0.9500	C18—H18A	0.9500
С6—Н6А	0.9500	C19—H19A	0.9500
С7—С8	1.5302 (18)		
C8—N1—C9	122.77 (11)	N1—C9—C13	123.13 (12)
C8—N1—H1A	118.6	C9—C10—N2	109.64 (12)
C9—N1—H1A	118.6	C9—C10—C11	129.58 (13)
C10—N2—N3	106.37 (10)	N2-C10-C11	120.77 (12)
C10—N2—C12	120.64 (11)	C10-C11-H11A	109.5
N3—N2—C12	113.45 (11)	C10-C11-H11B	109.5
C13—N3—N2	109.70 (11)	H11A—C11—H11B	109.5
C13—N3—C14	124.55 (11)	C10—C11—H11C	109.5
N2—N3—C14	117.97 (11)	H11A—C11—H11C	109.5
C2—C1—C6	116.75 (13)	H11B—C11—H11C	109.5

C2—C1—C7	121.62 (13)	N2—C12—H12A	109.5
C6—C1—C7	121.63 (13)	N2—C12—H12B	109.5
C3—C2—C1	123.01 (13)	H12A—C12—H12B	109.5
C3—C2—Cl1	117.25 (11)	N2—C12—H12C	109.5
C1—C2—Cl1	119.73 (11)	H12A—C12—H12C	109.5
C2—C3—C4	117.95 (13)	H12B—C12—H12C	109.5
С2—С3—Н3А	121.0	O2—C13—N3	123.76 (13)
С4—С3—Н3А	121.0	O2—C13—C9	131.24 (13)
C5—C4—C3	121.51 (14)	N3—C13—C9	104.95 (11)
C5—C4—Cl2	120.34 (12)	C19—C14—C15	121.28 (14)
$C_3 - C_4 - C_{12}$	118.15 (12)	C19—C14—N3	119.11 (14)
C4-C5-C6	118.67 (14)	C15 - C14 - N3	119.61 (13)
C4—C5—H5A	120.7	C14-C15-C16	119 30 (16)
C6-C5-H5A	120.7	C14—C15—H15A	120.4
$C_{5}-C_{6}-C_{1}$	122.10(14)	C16—C15—H15A	120.4
C5-C6-H6A	119.0	C17 - C16 - C15	120.1 120.07(18)
C1 - C6 - H6A	119.0	C17 - C16 - H16A	120.07 (10)
C1 - C7 - C8	111.65 (11)	C_{15} C_{16} H_{16A}	120.0
C1 - C7 - H7A	109.3	C_{16} C_{17} C_{18}	120.0 120.05(17)
C8 - C7 - H7A	109.3	C_{16} C_{17} H_{17A}	120.05 (17)
C1 - C7 - H7B	109.3	C18 - C17 - H17A	120.0
C_{1} C_{7} H_{7} H_{7	109.5	$C_{17} = C_{17} = M_{17} M_{17}$	120.0
H_{1}^{-1}	109.5	C17 C18 H18A	120.70 (18)
$\begin{array}{c} \mathbf{n} \mathbf{A} = \mathbf{C} \mathbf{A} = \mathbf{n} \mathbf{B} \\ \mathbf{O} 1 \mathbf{C} \mathbf{S} \mathbf{N} 1 \end{array}$	100.0 123.02(12)	$C_{10} = C_{18} = H_{18A}$	119.0
$O1 = C_0 = O1$	123.92(12) 122.02(12)	C14 - C10 - C18	119.0 119.54(17)
$V_1 = C_8 = C_7$	122.02(13) 114.06(12)	C14 - C19 - C18	110.34(17) 120.7
$N1 = C_0 = C_1$	114.00(12) 127.88(12)	C18 $C10$ $H10A$	120.7
C10 - C9 - N1	127.00(13) 108.82(12)	Ста—Ст9—нт9А	120.7
010-09-015	108.85 (12)		
C10—N2—N3—C13	7.36 (15)	N1-C9-C10-C11	7.1 (2)
C12—N2—N3—C13	142.30 (12)	C13—C9—C10—C11	-177.35 (14)
C10—N2—N3—C14	158.08 (12)	N3—N2—C10—C9	-6.32 (15)
C12—N2—N3—C14	-66.98 (16)	C12—N2—C10—C9	-137.32 (14)
C6—C1—C2—C3	0.5 (2)	N3—N2—C10—C11	174.04 (12)
C7—C1—C2—C3	-178.87 (13)	C12—N2—C10—C11	43.0 (2)
C6-C1-C2-Cl1	179.45 (10)	N2—N3—C13—O2	172.17 (13)
C7—C1—C2—C11	0.12 (18)	C14—N3—C13—O2	23.8 (2)
C1—C2—C3—C4	0.7 (2)	N2—N3—C13—C9	-5.45 (15)
Cl1—C2—C3—C4	-178.31 (10)	C14—N3—C13—C9	-153.82 (13)
C2—C3—C4—C5	-1.4 (2)	C10—C9—C13—O2	-175.84 (15)
C2—C3—C4—Cl2	179.34 (10)	N1-C9-C13-O2	0.0 (2)
C3—C4—C5—C6	0.9 (2)	C10—C9—C13—N3	1.53 (15)
Cl2—C4—C5—C6	-179.86 (11)	N1-C9-C13-N3	177.34 (12)
C4—C5—C6—C1	0.4 (2)	C13—N3—C14—C19	-72.00 (19)
C2-C1-C6-C5	-1.0 (2)	N2—N3—C14—C19	142.00 (13)
C7—C1—C6—C5	178.33 (14)	C13—N3—C14—C15	107.33 (16)
C2C1C7C8	66.19 (18)	N2—N3—C14—C15	-38.67 (17)
C6—C1—C7—C8	-113.11 (15)	C19—C14—C15—C16	-1.4 (2)

C9—N1—C8—O1	1.2 (2)	N3—C14—C15—C16	179.28 (14)	
C9—N1—C8—C7	-178.10 (13)	C14—C15—C16—C17	1.1 (2)	
C1C7C8O1	31.9 (2)	C15—C16—C17—C18	-0.1 (3)	
C1C7C8N1	-148.72 (13)	C16—C17—C18—C19	-0.5 (3)	
C8—N1—C9—C10	-67.1 (2)	C15—C14—C19—C18	0.8 (2)	
C8—N1—C9—C13	117.97 (15)	N3-C14-C19-C18	-179.91 (15)	
N1-C9-C10-N2	-172.50 (13)	C17—C18—C19—C14	0.2 (3)	
C13—C9—C10—N2	3.05 (16)			

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1A····O2 ⁱ	0.88	1.92	2.7938 (15)	171

Symmetry code: (i) -x+1, y, -z+3/2.