

metal-organic compounds

 $\nu = 69.707 \ (3)^{\circ}$

Z = 2

V = 1546.43 (9) Å³

Mo $K\alpha$ radiation

 $0.40 \times 0.40 \times 0.20 \text{ mm}$

11578 measured reflections

6284 independent reflections

5601 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $\mu = 0.90 \text{ mm}^{-1}$

T = 193 K

 $R_{\rm int} = 0.011$

417 parameters

 $\Delta \rho_{\rm max} = 0.95 \ {\rm e} \ {\rm \AA}^-$

 $\Delta \rho_{\rm min} = -0.68 \text{ e } \text{\AA}^{-3}$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis[1-benzyl-2-(1,3-thiazol-4-yl)-1Hbenzimidazole- $\kappa^2 N^2$, N^3]dichloridocobalt(II)

Hicham Gueddar,^{a,b}* Rachid Bouhfid,^b El Mokhtar Essassi,^{a,b} Nabil El Brahmi^{c,d} and Lahcen El Ammari^e

^aLaboratoire de Chimie Organique Hétérocyclique, URAC 21, Pôle de Compétences Pharmacochimie, Université Mohammed V-Agdal, BP 1014 Avenue Ibn Batouta, Rabat, Morocco, ^bInstitute of Nanomaterials and Nanotechnology, MAScIR, Avenue de l'Armée Royale, Rabat, Morocco, ^cLaboratoire de Chimie Organique Hétérocyclique, URAC 21, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco, ^dLaboratoire de Chimie de Coordination, Équipe Dendrimères et Hétérochimie, Toulouse, France, and ^eLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco Correspondence e-mail: h_gueddar@yahoo.fr

Received 16 November 2012; accepted 27 November 2012

Key indicators: single-crystal X-ray study; T = 193 K; mean σ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.030; wR factor = 0.080; data-to-parameter ratio = 15.1.

In the title compound, $[CoCl_2(C_{17}H_{13}N_3S)_2]$, the Co^{II} atom exhibits a distorted octahedral coordination geometry involving two chloride ligands, one of which is split over two positions [refined site-occupancy ratio = 0.847 (18):0.153 (18)], and four N-atom donors from two 1-benzyl-2-(1,3-thiazol-4yl)-1H-benzimidazole ligands. The two chelate rings including the Co^{II} atom are essentially planar, the maximum deviations from the mean planes being 0.080(2) and 0.046(2) Å; the dihedral angle between them is 74.1 $(1)^{\circ}$. In both ligands, the thiazole and benzimidazole rings are nearly coplanar, as indicated by the dihedral angles between their planes of 1.16 (8) and 6.29 (7)°. Each pendant benzene ring is almost perpendicular to the benzimidazole molecule to which it is attached; the dihedral angles between their planes are 75.94 (9) and 75.55 $(10)^{\circ}$. The crystal structure is stabilized by non-classical $C-H \cdots Cl$ hydrogen bonding forming a three-dimensional network.

Related literature

For background of the biochemical properties of thiabendazole [2-(4'-thiazolyl)benzimidazole], see: Devereux et al. (2007); Kowala et al. (1971); Yan-Jua & Guang-Ganga (2009).

Experimental

Crvstal data

$[CoCl_2(C_{17}H_{13}N_3S)_2]$	
$M_r = 712.56$	
Triclinic, P1	
a = 10.1311 (3) Å	
b = 11.9582 (4) Å	
c = 14.2633 (5) Å	
$\alpha = 76.033 \ (3)^{\circ}$	
$\beta = 75.536 \ (3)^{\circ}$	

Data collection

Bruker Kappa APEXII Quazar area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2009) $T_{\min} = 0.682, \ T_{\max} = 0.840$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.030$ $wR(F^2) = 0.080$ S = 1.056284 reflections

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C11-H11A\cdots Cl2A^{i}$	0.99	2.77	3.693 (2)	155
$C14-H14\cdots Cl1^{ii}$	0.95	2.69	3.584 (2)	157

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) x + 1, y - 1, z.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT6860).

References

Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

- Devereux, M. O., Shea, D., Kellett, A., McCann, M., Walsh, M., Egan, D., Deegan, C., Kędziora, K., Rosair, G. & Müller-Bunz, H. (2007). J. Inorg. Biochem. 101, 881–892.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Kowala, C., Murray, K. S., Swan, J. M. & West, B. O. (1971). Aust. J. Chem. 24, 1369–1375.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Yan-Jua, C. U. & Guang-Ganga, L. I. (2009). Chin. J. Struct. Chem. 28, 434–438.

supporting information

Acta Cryst. (2013). E69, m5–m6 [https://doi.org/10.1107/S1600536812048751] Bis[1-benzyl-2-(1,3-thiazol-4-yl)-1*H*-benzimidazole- $\kappa^2 N^2$, N^3]dichloridocobalt(II)

Hicham Gueddar, Rachid Bouhfid, El Mokhtar Essassi, Nabil El Brahmi and Lahcen El Ammari

S1. Comment

The thiabendazole or (2-(4'-thiazolyl)benzimidazole), is an antimicrobial drug belonging to the benzimidazole derivatives which are ubiquitous in biology and biomedicine (Devereux *et al.* 2007), Beside its biological properties, thiabendazole is an effective ligand to coordinate transition metal ions (Kowala *et al.*, 1971; Yan-Jua and Guang-Ganga, 2009).

The crystal structure of the title compound, show that the Co^{II} ion adopts a distorted octahedral coordination arising from two bidentate ligands and a two Cl⁻ anion of which one (Cl2) is splited over two positions (Cl2a and Cl2b) and four nitrogen donors from the ligands. Indeed, the refined occupancy rate of Cl2a and Cl2b sites shows that the first is occupied at 95 (2) % and the remainder in the second site respectively (Fig.1). The two heterocyclic ligands (S1N1C1C2C3) and (N2N3C4 to C10); (S2N4C18C1920) and (N5N6C21 TO C27) are nearly coplanar with dihedral angles between them of 1.16 (8) ° and 6.26 (9)° respectively. The dihedral angle between the both thiabendazole molecules surrounding the cobalt atom is of 74.1 (1)°. Each benzene ring (C12 to C17 and C29 to C34) is virtually perpendicular to the benzimidazole molecule (N2N3C5 to C10 and N5N6C21 to C27) to which it is fixed and the dihedral angle between them is 75.94 (9) for the first system and 75.55 (10) for the second.

The crystal strucrure is further stabilized by an intermolecular C—H…Cl no classic hydrogen bonds (Table 2).

S2. Experimental

Thiabendazole (1.22 g, 6.02 mmol) was dissolved in 20 ml of ethanol, and $CoCl_2.6H_2O$ (0.48 g, 3.02 mmol) dissolved in 1 ml of water were added. After 3 days of stirring at room temperature, a single-crystal precipitated and was separated by filtration and dried at 333 K for 24 h.

S3. Refinement

The highest peak (2.04) and the deepest hole (-1.02) in the final Fourier map are at 0.92 Å and 0.65 Å from Cl2. The refinement of the structure in the space group P1 with a twinning model has not led to the desired result. The splitting of one chlorine position (Cl2) in the centrosymmetric group and the refinement of the occupancy rate of each position has led to a slight improvement of the refinement and there is no longer remains electronic density near the chlorine. Indeed, the refined occupancy rate of Cl2a and Cl2b sites shows that the first is occupied at 91.8 (2) % and the remainder in the second site respectively. Now, the highest peak (0.95) and the deepest hole (-0.68) in the final Fourier map are at 0.82 Å and 0.68 Å from Co1. H atoms were located in a difference map and treated as riding with N—H = 0.86 Å, C—H = 0.93 Å (aromatic), and C—H = 0.97 Å (methylene). with $U_{iso}(H) = 1.2 U_{eq}$ (aromatic, methylene).

Figure 1

Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.

Bis[1-benzyl-2-(1,3-thiazol-4-yl)-1*H*-benzimidazole- $\kappa^2 N^2$, N^3]dichloridocobalt(II)

Crystal data

$[\operatorname{CoCl}_2(\operatorname{C}_{17}\operatorname{H}_{13}\operatorname{N}_3\operatorname{S})_2]$	Z = 2
$M_r = 712.56$	F(000) = 730
Triclinic, P1	$D_{\rm x} = 1.530 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -p 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 10.1311 (3) Å	Cell parameters from 6245 reflections
b = 11.9582 (4) Å	$\theta = 5.1 - 26.4^{\circ}$
c = 14.2633 (5) Å	$\mu=0.90~\mathrm{mm^{-1}}$
$\alpha = 76.033 \ (3)^{\circ}$	T = 193 K
$\beta = 75.536 \ (3)^{\circ}$	Block, pink
$\gamma = 69.707 \ (3)^{\circ}$	$0.40 \times 0.40 \times 0.20 \text{ mm}$
$V = 1546.43 (9) \text{ Å}^3$	
Data collection	
Bruker Kappa APEXII Quazar area-detector	11578 measured reflections
diffractometer	6284 independent reflections
Radiation source: microfocus sealed tube	5601 reflections with $I > 2\sigma(I)$
Multilayer optics monochromator	$R_{\rm int} = 0.011$
φ and ω scans	$\theta_{\text{max}} = 26.4^{\circ}, \ \theta_{\text{min}} = 5.1^{\circ}$
Absorption correction: multi-scan	$h = -12 \rightarrow 11$
(SADABS; Bruker, 2009)	$k = -14 \rightarrow 14$
$T_{\min} = 0.682, T_{\max} = 0.840$	$l = -17 \rightarrow 16$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.030$	H-atom parameters constrained
$wR(F^2) = 0.080$	$w = 1/[\sigma^2(F_o^2) + (0.0362P)^2 + 1.3427P]$
S = 1.05	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
6284 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
417 parameters	$\Delta ho_{ m max} = 0.95 \ { m e} \ { m \AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.68 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier map	Extinction coefficient: 0.0040 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against all reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C1	0.6603 (2)	0.37010 (19)	0.43804 (14)	0.0281 (4)	
H1	0.6306	0.4540	0.4409	0.034*	
C2	0.7805 (2)	0.1569 (2)	0.44040 (15)	0.0327 (4)	
H2	0.8419	0.0759	0.4434	0.039*	
C3	0.64845 (19)	0.19650 (17)	0.41692 (13)	0.0223 (4)	
C4	0.56253 (19)	0.13517 (16)	0.39322 (13)	0.0214 (4)	
C5	0.3835 (2)	0.11633 (17)	0.35002 (13)	0.0236 (4)	
C6	0.2527 (2)	0.13165 (19)	0.32592 (14)	0.0289 (4)	
H6	0.1811	0.2082	0.3214	0.035*	
C7	0.2314 (3)	0.0305 (2)	0.30877 (15)	0.0366 (5)	
H7	0.1435	0.0381	0.2918	0.044*	
C8	0.3360 (3)	-0.0824 (2)	0.31586 (16)	0.0388 (5)	
H8	0.3176	-0.1493	0.3027	0.047*	
C9	0.4642 (3)	-0.09957 (19)	0.34126 (15)	0.0346 (5)	
Н9	0.5349	-0.1765	0.3467	0.041*	
C10	0.4850 (2)	0.00220 (17)	0.35870 (13)	0.0260 (4)	
C11	0.7263 (2)	-0.08140 (17)	0.40841 (15)	0.0301 (4)	
H11A	0.7035	-0.1588	0.4266	0.036*	
H11B	0.7546	-0.0691	0.4659	0.036*	
C12	0.8512 (2)	-0.09147 (16)	0.32447 (13)	0.0226 (4)	
C13	0.9687 (2)	-0.19429 (17)	0.33241 (15)	0.0292 (4)	
H13	0.9665	-0.2561	0.3884	0.035*	
C14	1.0883 (2)	-0.20696 (19)	0.25942 (18)	0.0364 (5)	
U14	1.0883 (2)	-0.20696 (19)	0.25942 (18)	0.0364 (5)	

H14	1.1685	-0.2774	0.2651	0.044*	
C15	1.0916 (2)	-0.11754 (19)	0.17831 (17)	0.0345 (5)	
H15	1.1748	-0.1259	0.1285	0.041*	
C16	0.9753 (2)	-0.01644 (18)	0.16905 (15)	0.0299 (4)	
H16	0.9776	0.0445	0.1124	0.036*	
C17	0.8548 (2)	-0.00304 (17)	0.24201 (14)	0.0256 (4)	
H17	0.7744	0.0671	0.2355	0.031*	
C18	0.0728 (2)	0.47264 (19)	0.31938 (17)	0.0328 (4)	
H18	0.0335	0.4909	0.3837	0.039*	
C19	0.1212 (2)	0.4361 (2)	0.15296 (17)	0.0370 (5)	
H19	0.1224	0.4249	0.0890	0.044*	
C20	0.2387(2)	0.41930 (17)	0.18986 (15)	0.0258 (4)	
C21	0.3907 (2)	0.38422 (16)	0.14785 (13)	0.0221 (4)	
C22	0.61612(19)	0.34029(15)	0.14499 (13)	0.0211(4)	
C23	0.7512(2)	0 31937 (16)	0 16493 (14)	0.0251(4)	
H23	0.7639	0 3202	0.2285	0.030*	
C24	0.8657(2)	0.29749 (18)	0.08846 (16)	0.030 0.0314(4)	
С24 Н24	0.0097 (2)	0.29749 (10)	0.00040 (10)	0.0314 (4)	
C25	0.9993 0.8473(2)	0.2021 0.29740 (19)	-0.00575(16)	0.0349(5)	
H25	0.0475 (2)	0.29740(19)	-0.0565	0.0349 (3)	
C26	0.7271 0.7144 (2)	0.2010	-0.02687(15)	0.042 0.0308 (4)	
С20 H26	0.7144(2) 0.7020	0.31922 (10)	-0.02007 (13)	0.0308 (4)	
C27	0.7020 0.5995 (2)	0.3200	0.05055(14)	0.037 0.0236 (4)	
C28	0.3993(2) 0.3882(2)	0.37805(18)	-0.02866(14)	0.0230(4) 0.0287(4)	
U20 H28A	0.3662 (2)	0.37655 (10)	-0.02000 (14)	0.0207 (4)	
1120A 1120A	0.4548	0.3932	-0.0273	0.034*	
C20	0.3003	0.4492 0.26816 (18)	-0.0275	0.034°	
C29	0.3300(2) 0.3025(3)	0.20810(18) 0.2664(2)	-0.11220(17)	0.0208(4) 0.0370(5)	
U20	0.3025 (3)	0.2004(2)	-0.1658	0.0370(3)	
П30 С21	0.2987 0.2607 (2)	0.5517 0.1600 (2)	-0.1038 -0.11672(18)	0.044°	
U21	0.2007 (3)	0.1099(2)	-0.1728	0.0454 (0)	
ПЭТ С22	0.2200	0.1099	-0.1/20	0.033°	
U22	0.2092 (5)	0.0738 (2)	-0.04002(18)	0.0402 (0)	
П32 С22	0.2412	0.0071	-0.0442	0.053°	
C33	0.3181(3)	0.0742 (2)	0.04040 (19)	0.0331(7)	
ПЭЭ С24	0.3247	0.0073	0.0929	0.004°	
C34	0.3380 (3)	0.1720 (2)	0.04607 (17)	0.0441 (0)	
H34	0.3912	0.1/21	0.1027	0.053*	
NI N2	0.58202(16)	0.31923(14)	0.41412(11) 0.27221(11)	0.0224(3)	
NZ N2	0.43504 (16)	0.19849 (13)	0.37231(11)	0.0208(3)	
N3	0.59824 (17)	0.01613 (14)	0.38752 (12)	0.0253 (3)	
N4	0.20969 (16)	0.43936 (14)	0.28531(12)	0.0253 (3)	
N5	0.48317 (16)	0.36/95 (13)	0.20426 (11)	0.0208 (3)	
N6	0.45439 (17)	0.36890 (14)	0.05423 (11)	0.0240(3)	
51	0.82050 (6)	0.27380 (6)	0.46385 (4)	0.03746 (14)	
82 611	-0.02965 (6)	0.48051 (6)	0.23841 (5)	0.04537 (16)	
CII	0.42867 (5)	0.58768 (4)	0.30588 (4)	0.03220 (12)	
CI2A	0.23855 (17)	0.40676 (12)	0.5152 (2)	0.0232 (5)	0.847 (18)
Cl2B	0.215 (2)	0.444 (4)	0.485 (2)	0.060 (6)	0.153 (18)

supporting information

1	۲	-1
	^o	۱I.
•		

0.39016 (2)

0.39444 (2)

0.355093 (18)

0.02006 (8)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0262 (9)	0.0369 (11)	0.0278 (10)	-0.0143 (8)	-0.0031 (8)	-0.0125 (8)
C2	0.0277 (10)	0.0361 (11)	0.0330 (11)	-0.0096 (8)	-0.0084 (8)	-0.0009 (9)
C3	0.0231 (9)	0.0251 (9)	0.0182 (8)	-0.0092 (7)	-0.0003 (7)	-0.0038 (7)
C4	0.0232 (9)	0.0223 (9)	0.0179 (8)	-0.0088 (7)	0.0017 (7)	-0.0049 (7)
C5	0.0313 (10)	0.0254 (9)	0.0181 (8)	-0.0162 (8)	0.0022 (7)	-0.0066 (7)
C6	0.0363 (11)	0.0312 (10)	0.0258 (9)	-0.0186 (9)	-0.0055 (8)	-0.0046 (8)
C7	0.0499 (13)	0.0449 (13)	0.0290 (10)	-0.0316 (11)	-0.0084 (9)	-0.0051 (9)
C8	0.0610 (15)	0.0334 (11)	0.0332 (11)	-0.0302 (11)	-0.0008 (10)	-0.0107 (9)
C9	0.0485 (13)	0.0253 (10)	0.0311 (10)	-0.0185 (9)	0.0061 (9)	-0.0100 (8)
C10	0.0327 (10)	0.0243 (9)	0.0213 (9)	-0.0140 (8)	0.0049 (7)	-0.0070 (7)
C11	0.0350 (11)	0.0207 (9)	0.0263 (10)	-0.0045 (8)	-0.0004 (8)	0.0001 (7)
C12	0.0255 (9)	0.0199 (9)	0.0240 (9)	-0.0066 (7)	-0.0052 (7)	-0.0066 (7)
C13	0.0319 (10)	0.0217 (9)	0.0356 (11)	-0.0061 (8)	-0.0129 (8)	-0.0041 (8)
C14	0.0229 (10)	0.0282 (10)	0.0582 (14)	-0.0025 (8)	-0.0070(9)	-0.0161 (10)
C15	0.0291 (10)	0.0311 (11)	0.0464 (12)	-0.0140 (9)	0.0067 (9)	-0.0197 (9)
C16	0.0362 (11)	0.0258 (10)	0.0290 (10)	-0.0139 (8)	0.0027 (8)	-0.0092 (8)
C17	0.0286 (10)	0.0204 (9)	0.0255 (9)	-0.0053 (7)	-0.0027 (8)	-0.0051 (7)
C18	0.0215 (9)	0.0289 (10)	0.0474 (12)	-0.0078 (8)	-0.0027 (9)	-0.0087 (9)
C19	0.0327 (11)	0.0465 (13)	0.0368 (11)	-0.0206 (10)	-0.0141 (9)	0.0044 (10)
C20	0.0253 (9)	0.0224 (9)	0.0333 (10)	-0.0118 (7)	-0.0085 (8)	-0.0014 (8)
C21	0.0259 (9)	0.0180 (8)	0.0262 (9)	-0.0109 (7)	-0.0057 (7)	-0.0034 (7)
C22	0.0242 (9)	0.0151 (8)	0.0238 (9)	-0.0072 (7)	-0.0014 (7)	-0.0040 (7)
C23	0.0246 (9)	0.0215 (9)	0.0281 (9)	-0.0078 (7)	-0.0034 (7)	-0.0029 (7)
C24	0.0247 (10)	0.0253 (10)	0.0404 (11)	-0.0075 (8)	-0.0003 (8)	-0.0047 (8)
C25	0.0350 (11)	0.0267 (10)	0.0353 (11)	-0.0078 (8)	0.0089 (9)	-0.0097 (8)
C26	0.0409 (11)	0.0238 (9)	0.0269 (10)	-0.0107 (8)	0.0016 (8)	-0.0093 (8)
C27	0.0319 (10)	0.0150 (8)	0.0249 (9)	-0.0093 (7)	-0.0033 (7)	-0.0037 (7)
C28	0.0415 (11)	0.0254 (10)	0.0246 (9)	-0.0142 (8)	-0.0125 (8)	-0.0015 (7)
C29	0.0308 (10)	0.0275 (10)	0.0268 (9)	-0.0125 (8)	-0.0048 (8)	-0.0080(8)
C30	0.0461 (13)	0.0391 (12)	0.0344 (11)	-0.0170 (10)	-0.0156 (10)	-0.0072 (9)
C31	0.0549 (15)	0.0564 (15)	0.0425 (13)	-0.0287 (12)	-0.0153 (11)	-0.0164 (11)
C32	0.0615 (16)	0.0519 (15)	0.0437 (13)	-0.0398 (13)	0.0016 (11)	-0.0201 (11)
C33	0.094 (2)	0.0456 (14)	0.0383 (13)	-0.0476 (15)	-0.0124 (13)	-0.0008 (11)
C34	0.0774 (18)	0.0400 (13)	0.0310 (11)	-0.0352 (13)	-0.0170 (11)	-0.0023 (9)
N1	0.0217 (7)	0.0267 (8)	0.0225 (7)	-0.0105 (6)	-0.0014 (6)	-0.0094 (6)
N2	0.0241 (8)	0.0209 (7)	0.0199 (7)	-0.0105 (6)	-0.0005 (6)	-0.0064 (6)
N3	0.0273 (8)	0.0198 (8)	0.0264 (8)	-0.0089 (6)	0.0030 (6)	-0.0050 (6)
N4	0.0198 (7)	0.0219 (8)	0.0358 (9)	-0.0076 (6)	-0.0030 (6)	-0.0085 (7)
N5	0.0223 (7)	0.0189 (7)	0.0233 (7)	-0.0089 (6)	-0.0036 (6)	-0.0042 (6)
N6	0.0313 (8)	0.0212 (7)	0.0246 (8)	-0.0126 (6)	-0.0072 (6)	-0.0042 (6)
S 1	0.0308 (3)	0.0532 (3)	0.0371 (3)	-0.0197 (2)	-0.0136 (2)	-0.0056 (2)
S2	0.0221 (3)	0.0555 (4)	0.0574 (4)	-0.0146 (2)	-0.0140 (2)	0.0036 (3)
Cl1	0.0315 (2)	0.0200 (2)	0.0489 (3)	-0.00923 (18)	-0.0090 (2)	-0.0089 (2)

supporting information

CI2A	0 0228 (4)	0 0248 (8)	0 0240 (7)	-0.0103(4)	0 0029 (3)	-0.0110(4)
Cl2B	0.039 (4)	0.108 (13)	0.050 (8)	-0.038(7)	0.011 (5)	-0.041 (10)
Co1	0.01664 (13)	0.02009 (13)	0.02660 (14)	-0.00703 (9)	-0.00087 (9)	-0.01077 (10)

Geometric	parameters	(Å,	°)	
-----------	------------	-----	----	--

C1—N1	1.298 (2)	C19—S2	1.710 (2)
C1—S1	1.701 (2)	С19—Н19	0.9500
C1—H1	0.9500	C20—N4	1.381 (3)
C2—C3	1.354 (3)	C20—C21	1.456 (3)
C2—S1	1.708 (2)	C21—N5	1.318 (2)
C2—H2	0.9500	C21—N6	1.356 (2)
C3—N1	1.382 (2)	C22—N5	1.377 (2)
C3—C4	1.456 (3)	C22—C23	1.392 (3)
C4—N2	1.317 (2)	C22—C27	1.400 (3)
C4—N3	1.359 (2)	C23—C24	1.378 (3)
C5—N2	1.389 (2)	С23—Н23	0.9500
C5—C6	1.392 (3)	C24—C25	1.402 (3)
C5—C10	1.394 (3)	C24—H24	0.9500
C6—C7	1.385 (3)	C25—C26	1.376 (3)
С6—Н6	0.9500	С25—Н25	0.9500
C7—C8	1.397 (3)	C26—C27	1.388 (3)
С7—Н7	0.9500	C26—H26	0.9500
C8—C9	1.369 (3)	C27—N6	1.379 (2)
C8—H8	0.9500	C28—N6	1.460 (2)
C9—C10	1.392 (3)	C28—C29	1.508 (3)
С9—Н9	0.9500	C28—H28A	0.9900
C10—N3	1.383 (3)	C28—H28B	0.9900
C11—N3	1.452 (2)	C29—C34	1.370 (3)
C11—C12	1.502 (3)	C29—C30	1.386 (3)
C11—H11A	0.9900	C30—C31	1.380 (3)
C11—H11B	0.9900	С30—Н30	0.9500
C12—C17	1.381 (3)	C31—C32	1.372 (4)
C12—C13	1.388 (3)	C31—H31	0.9500
C13—C14	1.376 (3)	C32—C33	1.368 (3)
С13—Н13	0.9500	C32—H32	0.9500
C14—C15	1.375 (3)	C33—C34	1.388 (3)
C14—H14	0.9500	С33—Н33	0.9500
C15—C16	1.371 (3)	C34—H34	0.9500
С15—Н15	0.9500	N1—Co1	2.1297 (15)
C16—C17	1.382 (3)	N2—Co1	2.1901 (15)
C16—H16	0.9500	N4—Co1	2.1429 (16)
С17—Н17	0.9500	N5—Co1	2.1739 (15)
C18—N4	1.300 (3)	Cl1—Co1	2.3855 (5)
C18—S2	1.703 (2)	Cl2A—Cl2B	0.57 (5)
C18—H18	0.9500	Cl2A—Co1	2.4181 (19)
C19—C20	1.352 (3)	Cl2B—Co1	2.261 (9)

N1—C1—S1	114.29 (16)	C26—C25—H25	119.0
N1—C1—H1	122.9	С24—С25—Н25	119.0
S1—C1—H1	122.9	C25—C26—C27	116.32 (19)
$C_{3}-C_{2}-S_{1}$	110.12 (16)	C25—C26—H26	121.8
C3—C2—H2	124.9	C27—C26—H26	121.8
S1-C2-H2	124.9	N6-C27-C26	131 34 (18)
$C_2 - C_3 - N_1$	114 08 (17)	N6-C27-C22	106 17 (16)
$C_2 - C_3 - C_4$	132.60(18)	C_{26} C_{27} C_{22}	100.17(10) 122.42(18)
N1 - C3 - C4	113 32 (16)	N6-C28-C29	114 23 (16)
$N_2 - C_4 - N_3$	113.06 (16)	N6-C28-H284	108 7
$N_2 = C_4 = R_3$	119.16 (16)	$C_{20} C_{20} H_{28A}$	108.7
$N_2 = C_4 = C_3$	117.10(10) 127.76(17)	N6 C28 H28B	108.7
$N_{2} = C_{2} = C_{3}$	127.70(17) 120.57(18)	C_{20} C_{28} H_{28B}	108.7
$N_2 = C_5 = C_10$	100.37(10)	U28A C28 U28D	108.7
$N_2 = C_3 = C_{10}$	109.20(17) 120.10(17)	1128A - C20 - 1128B	107.0
$C_{0} - C_{3} - C_{10}$	120.10(17)	$C_{24} = C_{29} = C_{30}$	119.20(19) 122.75(19)
C/-CO-CS	117.1(2)	$C_{24} = C_{29} = C_{28}$	125.75(18)
C/-CO-HO	121.4	$C_{30} = C_{29} = C_{28}$	110.99 (18)
C5—C6—H6	121.4	$C_{31} = C_{30} = C_{29}$	120.2 (2)
C6-C/-C8	121.7 (2)	C31—C30—H30	119.9
С6—С/—Н/	119.1	C29—C30—H30	119.9
С8—С7—Н7	119.1	C32—C31—C30	120.3 (2)
C9—C8—C7	121.93 (19)	C32—C31—H31	119.9
С9—С8—Н8	119.0	С30—С31—Н31	119.9
С7—С8—Н8	119.0	C33—C32—C31	119.8 (2)
C8—C9—C10	116.2 (2)	С33—С32—Н32	120.1
С8—С9—Н9	121.9	C31—C32—H32	120.1
С10—С9—Н9	121.9	C32—C33—C34	120.2 (2)
N3—C10—C9	131.1 (2)	С32—С33—Н33	119.9
N3—C10—C5	105.95 (16)	С34—С33—Н33	119.9
C9—C10—C5	122.9 (2)	C29—C34—C33	120.3 (2)
N3—C11—C12	114.20 (15)	С29—С34—Н34	119.9
N3—C11—H11A	108.7	С33—С34—Н34	119.9
C12—C11—H11A	108.7	C1—N1—C3	111.49 (16)
N3—C11—H11B	108.7	C1—N1—Co1	131.34 (14)
C12—C11—H11B	108.7	C3—N1—Co1	116.57 (12)
H11A—C11—H11B	107.6	C4—N2—C5	105.28 (15)
C17—C12—C13	119.35 (18)	C4—N2—Co1	113.82 (12)
C17—C12—C11	123.18 (17)	C5—N2—Co1	139.41 (13)
C13—C12—C11	117.45 (17)	C4—N3—C10	106.42 (16)
C14—C13—C12	120.21 (19)	C4—N3—C11	128.90 (17)
C14—C13—H13	119.9	C10—N3—C11	124.67 (16)
C12—C13—H13	119.9	C18—N4—C20	111.57 (17)
C15—C14—C13	119.97 (19)	C18—N4—Co1	131.45 (15)
C15—C14—H14	120.0	C20—N4—Co1	116.63 (12)
C13—C14—H14	120.0	C21—N5—C22	105.84(15)
C16—C15—C14	120.30 (19)	$C_{21} = N_{5} = C_{01}$	115.38 (12)
C16—C15—H15	119.9	$C_{22} = N_5 = C_{01}$	13875(12)
C14—C15—H15	119.9	$C_{21} = N_{6} = C_{27}$	106 33 (15)
	/-/	021 110 027	

C15—C16—C17	120.08 (19)	C21—N6—C28	128.80 (17)
C15—C16—H16	120.0	C27—N6—C28	124.88 (16)
C17—C16—H16	120.0	C1—S1—C2	89.98 (10)
C12—C17—C16	120.09 (18)	C18—S2—C19	90.14 (10)
С12—С17—Н17	120.0	Cl2B—Cl2A—Co1	67.3 (11)
C16—C17—H17	120.0	Cl2A—Cl2B—Co1	99 (2)
N4—C18—S2	114.02 (17)	N1—Co1—N4	169.37 (6)
N4—C18—H18	123.0	N1—Co1—N5	98.02 (6)
S2—C18—H18	123.0	N4—Co1—N5	75.45 (6)
C20—C19—S2	109.95 (17)	N1—Co1—N2	75.58 (6)
С20—С19—Н19	125.0	N4—Co1—N2	94.82 (6)
S2—C19—H19	125.0	N5—Co1—N2	79.86 (5)
C19—C20—N4	114.31 (18)	N1—Co1—Cl2B	104.7 (9)
C19—C20—C21	132.2 (2)	N4—Co1—Cl2B	81.7 (8)
N4—C20—C21	113.53 (16)	N5—Co1—Cl2B	157.1 (8)
N5-C21-N6	112.85 (16)	N2—Co1—Cl2B	102.9 (11)
N5-C21-C20	118.58 (17)	N1—Co1—Cl1	91.26 (4)
N6-C21-C20	128.53 (17)	N4—Co1—Cl1	96.61 (4)
N5—C22—C23	130.57 (17)	N5—Co1—Cl1	86.27 (4)
N5—C22—C27	108.81 (16)	N2—Co1—Cl1	159.21 (4)
C23—C22—C27	120.57 (17)	Cl2B—Co1—Cl1	95.9 (9)
C24—C23—C22	117.13 (18)	N1—Co1—Cl2A	93.31 (8)
С24—С23—Н23	121.4	N4—Co1—Cl2A	91.82 (8)
С22—С23—Н23	121.4	N5—Co1—Cl2A	164.99 (7)
C23—C24—C25	121.7 (2)	N2—Co1—Cl2A	93.56 (5)
C23—C24—H24	119.2	Cl2B—Co1—Cl2A	13.4 (12)
C25—C24—H24	119.2	Cl1—Co1—Cl2A	103.35 (3)
C26—C25—C24	121.90 (19)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
C11—H11 A ···Cl2 A^{i}	0.99	2.77	3.693 (2)	155
C14—H14···Cl1 ⁱⁱ	0.95	2.69	3.584 (2)	157

Symmetry codes: (i) -*x*+1, -*y*, -*z*+1; (ii) *x*+1, *y*-1, *z*.