Structure Reports

Online
ISSN 1600-5368

4-(5-Chlorothiophen-2-yl)-1,2,3-selenadiazole

Paramasivam Sugumar, ${ }^{\text {a }}$ Subramaniyan Sankari, ${ }^{\text {b }}$ Paramasivam Manisankar ${ }^{\text {c }}$ and Mondikalipudur Nanjappa Gounder Ponnuswamy ${ }^{\text {a }}$

${ }^{\text {a }}$ Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, ${ }^{\text {b }}$ Department of Chemistry, Sri Sarada College for Women (Autonomus), Fairlands, Salem 636 016, India, and ${ }^{\text {c }}$ Department of Industrial Chemistry, Alagappa University, Karaikudi 630 003, India
Correspondence e-mail: mnpsy2004@yahoo.com

Received 10 November 2012; accepted 3 December 2012

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; R factor $=0.039 ; w R$ factor $=0.121$; data-to-parameter ratio $=19.8$.

In the title compound, $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{ClN}_{2} \mathrm{SSe}$, the selenadiazole and chlorothiophene rings are almost coplanar [dihedral angle $=$ $\left.5.24(15)^{\circ}\right]$. In the crystal, $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interactions link the molecules into chains extending along the b-axis direction. $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions also occur.

Related literature

For the biological activity of selenadiazole derivatives, see: ElBahaie et al. (1990); El-Kashef et al. (1986); Padmavathi et al. (2002); Plano et al. (2010); Stadtman (1991); Velusamy et al. (2005). For bond-length data, see: Allen et al. (1987).

Experimental

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{ClN}_{2} \mathrm{SSe}$
$c=7.2010$ (4) \AA
$M_{r}=249.57$
$\beta=110.257$ (3) ${ }^{\circ}$
Monoclinic, $P 2_{1} / c$
$a=6.0412$ (3) A
$V=799.38(7) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation

$\mu=5.22 \mathrm{~mm}^{-1}$	$0.22 \times 0.20 \times 0.18 \mathrm{~mm}$
$T=293 \mathrm{~K}$	
Data collection	
Bruker SMART APEX CCD	7064 measured reflections
\quad detector diffractometer	1978 independent reflections
Absorption correction: multi-scan	1558 reflections with $I>2 \sigma(I)$
$\quad(S A D A B S ;$ Bruker, 2008)	$R_{\text {int }}=0.044$
$\quad T_{\text {min }}=0.330, T_{\max }=0.391$	
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$	100 parameters
$w R\left(F^{2}\right)=0.121$	H -atom parameters constrained
$S=1.01$	$\Delta \rho_{\max }=0.44 \mathrm{e} \AA^{-3}$
1978 reflections	$\Delta \rho_{\min }=-0.52 \mathrm{e} \AA^{-3}$

Table 1
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{~N} 1^{\mathrm{i}}$	0.93	2.62	$3.545(5)$	171

Symmetry code: (i) $x+1, y, z$.

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

The authors thank the TBI Consultancy, University of Madras, India, for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT6854).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. 1-19.

Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
El-Bahaie, S., Assy, M. G. \& Hassanien, M. M. (1990). Pharmazie, 45, 791-793.
El-Kashef, H. S., E-Bayoumy, B. \& Aly, T. I. (1986). Egypt. J. Pharm. Sci. 27, 27-30.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Padmavathi, V., Sumathi, R. P. \& Padmaja, A. (2002). J. Ecobiol. 14, 9-12.
Plano, D., Moreno, E., Font, M., Encio, I., Palop, J. A. \& Sanmartin, C. (2010). Arch. Pharm. Chem. Life Sci. 10, 680-691
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Stadtman, T. C. (1991). J. Biol. Chem. 266, 16257-16260.
Velusamy, M., Justin Thomas, K. R., Lin, J. T. \& Wen, Y. S. (2005). Tetrahedron Lett. 46, 7647-7651.

supporting information

Acta Cryst. (2013). E69, o65 [https://doi.org/10.1107/S1600536812049549]
4-(5-Chlorothiophen-2-yl)-1,2,3-selenadiazole

Paramasivam Sugumar, Subramaniyan Sankari, Paramasivam Manisankar and Mondikalipudur Nanjappa Gounder Ponnuswamy

S1. Comment

Selenium containing compounds, like 1,2,3-selenadiazoles are of increasing interest because of their chemical properties and biological applications such as anti-bacterial (El-Kashef et al., 1986), anti-microbial (El-Bahaie et al., 1990), anticancer (Plano et al., 2010) and insecticidal (Padmavathi et al., 2002) activities. It has been found that the introduction of $1,2,3$-selenadiazole ring system increase the biological activity. Selenium atom has a much larger size and less electronegativity than the sulfur atom, selenium containig compounds influence the electro-optical properties of the small molecules (Velusamy et al., 2005).
Glutathione peroxidases(GPx) are the antioxidant selenoenzymes protecting various organisms from oxidative stress by catalyzing the reduction of hydroperoxides at the expense of glutathione(GSH) (Stadtman, 1991). In view of the growing importance of selenium containing compounds, the crystal structure of the title compound has been carried out.
The ORTEP plot of the molecule is shown in Fig. 1. The bond lengths [Se1—N1] 1.870 (3) \AA and [Se1—C1] 1.825 (4) \AA are comparable with the values reported in the literature (Allen et al., 1987). The selenadiazole ring is planar [with the maximum deviation for atom C 2 of $\left.0.004(3)^{\circ}\right]$. Both the selenadiazole ring and chlorothiophene ring are lie in a common plane, the corresponding torsion angle is [C4-C3-C2-N2] 175.5 (3).
The packing of the molecules is shown in Fig. 2. The crystal packing is stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ intermolecular interactions, linking the molecules to chains extending along the b axis.

S2. Experimental

A mixture of 2-acetyl-5-chlorothiophene (1 mmol), semicarbazide hydrochloride (2 mmol) and sodium acetate (3 mmol) in ethanol (10 ml) was refluxed for 4 hrs . After completion of the reaction as monitored by TLC, the mixture was poured into ice cold water and the resulting semicarbazone was filtered off. Then, a mixture of semicarbazone (1 mmol) and $\mathrm{SeO}_{2}(2 \mathrm{mmol})$ in tetrahydrofuran $(10 \mathrm{ml})$ were refluxed on a water bath for 1 h . The selenium deposited on cooling was removed by filtration, and the filtrate was poured into crushed ice, extracted with dichloromethane, and purified by column chromatography using silica gel (60-120 mesh) with 97:3 petroleum ether: ethyl acetate as eluent to give 4-(5-chloro-2,5-dihydrothiophen-2-yl)-1,2,3-selenadiazole.

S3. Refinement

H atoms were positioned geometrically $(\mathrm{C}-\mathrm{H}=0.93-0.97 \AA)$ and allowed to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})$ set to $1.2 U_{\mathrm{eq}}(\mathrm{C})$.

Figure 1
The molecular structure of the title compound, showing the atomic numbering and displacement ellipsoids drawn at 30% probability level.

Figure 2
The crystal packing.

4-(5-Chlorothiophen-2-yl)-1,2,3-selenadiazole

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{ClN}_{2} \mathrm{SSe}$
$M_{r}=249.57$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=6.0412$ (3) \AA
$b=19.5870(11) \AA$
$c=7.2010(4) \AA$
$\beta=110.257(3)^{\circ}$
$V=799.38(7) \AA^{3}$
$Z=4$
$F(000)=480$
$D_{\mathrm{x}}=2.074 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1558 reflections
$\theta=2.1-28.3^{\circ}$
$\mu=5.22 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Black, white crystalline
$0.22 \times 0.20 \times 0.18 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD detector
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
$T_{\min }=0.330, T_{\text {max }}=0.391$

> 7064 measured reflections
> 1978 independent reflections
> 1558 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.044$
> $\theta_{\max }=28.3^{\circ}, \theta_{\min }=2.1^{\circ}$
> $h=-8 \rightarrow 6$
> $k=-25 \rightarrow 26$
> $l=-9 \rightarrow 9$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.121$
$S=1.01$
1978 reflections
100 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\mathrm{eq}}$
C1	$0.3771(6)$	$0.60797(19)$	$0.2132(5)$	$0.0397(7)$
H1	0.5288	0.6078	0.2081	0.048^{*}
C2	$0.2578(6)$	$0.55180(18)$	$0.2343(4)$	$0.0333(7)$
C3	$0.3344(6)$	$0.48114(17)$	$0.2494(5)$	$0.0328(7)$
C4	$0.5358(6)$	$0.45391(19)$	$0.2353(5)$	$0.0412(8)$
H4	0.6532	0.4799	0.2134	0.049^{*}
C5	$0.5478(6)$	$0.38256(19)$	$0.2573(5)$	$0.0413(8)$
H5	0.6726	0.3562	0.2502	0.050^{*}
C6	$0.3579(6)$	$0.35688(18)$	$0.2896(5)$	$0.0376(7)$
C11	$0.29911(17)$	$0.27326(5)$	$0.32523(15)$	$0.0529(3)$
N1	$-0.0347(5)$	$0.62617(17)$	$0.2239(5)$	$0.0482(8)$
N2	$0.0334(5)$	$0.56419(16)$	$0.2406(4)$	$0.0428(7)$
S1	$0.15880(15)$	$0.41890(5)$	$0.29606(14)$	$0.0408(2)$
Se1	$0.19762(7)$	$0.684213(19)$	$0.19625(6)$	$0.04757(18)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0304(16)$	$0.0409(19)$	$0.0469(18)$	$0.0004(14)$	$0.0120(14)$	$-0.0018(15)$
C2	$0.0271(15)$	$0.0379(18)$	$0.0349(15)$	$-0.0008(12)$	$0.0107(12)$	$-0.0014(13)$
C3	$0.0286(15)$	$0.0333(16)$	$0.0368(15)$	$-0.0044(13)$	$0.0120(13)$	$-0.0002(13)$
C4	$0.0325(17)$	$0.0404(19)$	$0.056(2)$	$-0.0015(14)$	$0.0216(15)$	$0.0038(16)$
C5	$0.0336(17)$	$0.042(2)$	$0.055(2)$	$0.0011(14)$	$0.0232(16)$	$-0.0024(16)$
C6	$0.0353(17)$	$0.0351(18)$	$0.0427(17)$	$-0.0030(14)$	$0.0138(14)$	$-0.0027(14)$
C11	$0.0501(6)$	$0.0375(5)$	$0.0727(6)$	$-0.0066(4)$	$0.0234(5)$	$0.0031(4)$
N1	$0.0335(15)$	$0.0461(19)$	$0.068(2)$	$0.0029(13)$	$0.0221(15)$	$0.0005(15)$
N2	$0.0308(14)$	$0.0443(18)$	$0.0577(18)$	$-0.0008(13)$	$0.0208(13)$	$-0.0007(14)$
S1	$0.0289(4)$	$0.0409(5)$	$0.0559(5)$	$-0.0041(3)$	$0.0190(4)$	$0.0004(4)$
Se1	$0.0375(2)$	$0.0371(3)$	$0.0659(3)$	$0.00047(14)$	$0.01514(19)$	$0.00089(16)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

C1-C2	1.352 (5)	C4-H4	0.9300
C1—Se1	1.825 (4)	C5-C6	1.345 (5)
$\mathrm{C} 1-\mathrm{H} 1$	0.9300	C5-H5	0.9300
C2-N2	1.394 (4)	C6-Cl1	1.714 (4)
C2-C3	1.451 (5)	C6-S1	1.721 (4)
C3-C4	1.364 (5)	$\mathrm{N} 1-\mathrm{N} 2$	1.274 (4)
C3-S1	1.724 (3)	N1—Se1	1.870 (3)
C4-C5	1.406 (5)		
C2-C1—Se1	110.2 (3)	C5-C4-H4	123.4
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$	124.9	C6-C5-C4	112.2 (3)
$\mathrm{Se} 1-\mathrm{C} 1-\mathrm{H} 1$	124.9	C6-C5-H5	123.9
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 2$	115.1 (3)	C4-C5-H5	123.9
C1-C2-C3	128.0 (3)	C5-C6-Cl1	128.1 (3)
N2-C2-C3	116.9 (3)	C5-C6-S1	112.7 (3)
C4-C3-C2	129.5 (3)	C11-C6-S1	119.2 (2)
C4-C3-S1	111.3 (3)	N2-N1-Se1	111.1 (2)
C2-C3-S1	119.2 (2)	N1-N2-C2	116.7 (3)
C3-C4-C5	113.1 (3)	C3-S1-C6	90.63 (17)
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	123.4	C1-Se1-N1	86.89 (15)
Se1-C1-C2-N2	-0.7 (4)	C4-C5-C6-S1	-0.4 (4)
$\mathrm{Se} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	178.8 (3)	Se1-N1-N2-C2	-0.3 (4)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-4.0 (6)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 2-\mathrm{N} 1$	0.7 (5)
N2-C2-C3-C4	175.4 (3)	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{N} 2-\mathrm{N} 1$	-178.8 (3)
C1-C2-C3-S1	174.7 (3)	C4-C3-S1-C6	-1.4 (3)
N2-C2-C3-S1	-5.8 (4)	C2-C3-S1-C6	179.7 (3)
C2-C3-C4-C5	-179.7 (3)	C5-C6-S1-C3	1.0 (3)
S1-C3-C4-C5	1.4 (4)	C11-C6-S1-C3	-179.5 (2)
C3-C4-C5-C6	-0.7 (5)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{Se} 1-\mathrm{N} 1$	0.4 (3)
C4-C5-C6- Cl 1	-179.8 (3)	N2—N1—Se1-C1	-0.1 (3)

supporting information

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1 — \mathrm{H} 1 \cdots \mathrm{~N} 1^{\mathrm{i}}$	0.93	2.62	$3.545(5)$	171

Symmetry code: (i) $x+1, y, z$.

