Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

rac-(S,S)-Bis(1-ferrocenylbut-3-enyl) ether

Hao-Jun Xie, Chun-Zheng Zhao, Jun Sun, Si Chen and Jian-Jun Wang*

College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China Correspondence e-mail: wangjianjun1030@sohu.com

Received 13 November 2012; accepted 22 November 2012

Key indicators: single-crystal X-ray study: T = 150 K: mean σ (C–C) = 0.002 Å: R factor = 0.027; wR factor = 0.100; data-to-parameter ratio = 19.1.

The title complex, [Fe₂(C₅H₅)₂(C₁₈H₂₀O)], formed by dehydration of 1-ferrocenylbut-3-en-1-ol, crystallizes as a racemic compound. The central C-O-C fragment, in which the C atoms are the chiral centers, is characterized by an angle of 116.26 $(10)^{\circ}$ at the O atom. One ferrocene group shows a staggered conformation whereas the other shows an eclipsed conformation.

Related literature

For general information on ferrocenyl ethers, see: Ferguson et al. (1996): Matković-Čalogović et al. (1993): Gasser et al. (2007). For applications of dinuclear ferrocenyl derivatives, see: Gao et al. (2011); Locke et al. (2001).

Experimental

Crystal data

[Fe₂(C₅H₅)₂(C₁₈H₂₀O)] $\gamma = 101.657 \ (2)^{\circ}$ $M_r = 494.22$ V = 1123.3 (3) Å³ Triclinic, $P\overline{1}$ Z = 2a = 9.7865 (15) Åb = 9.8274 (15) Å c = 12.1816 (19) Å $\alpha = 99.405 \ (2)^{\circ}$ $\beta = 94.976 (2)^{\circ}$

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS: Bruker, 2007) $T_{\min} = 0.561, T_{\max} = 0.736$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.027$ $wR(F^2) = 0.100$ S = 0.815352 reflections

Mo $K\alpha$ radiation $\mu = 1.31 \text{ mm}^{-1}$ T = 150 K $0.50 \times 0.25 \times 0.25$ mm

7657 measured reflections 5352 independent reflections 4759 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.014$

280 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.36 \text{ e} \text{ Å}^ \Delta \rho_{\rm min} = -0.37 \text{ e} \text{ Å}^{-3}$

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008): program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the National Natural Science Foundation of China (No. 20874068), the Natural Science Foundation of Jiangsu Province (No. BK2009584) and the Undergraduate Innovating Experimentation Project of Soochow University (No. 5731510110).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2465).

References

- Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Ferguson, G., Trotter, J., Glidewell, C. & Zakaria, C. M. (1996). Acta Cryst. C52, 775-777.
- Gao, Y., Li, H.-D., Ke, C.-F., Xie, L.-L., Wei, B. & Yuan, Y.-F. (2011). Appl. Organomet. Chem. 25, 407-411.
- Gasser, G., Fischmann, A. J., Forsyth, C. M. & Spiccia, L. (2007). J. Organomet. Chem 692 3835-3840.
- Locke, A. J., Jones, C. & Richards, C. J. (2001). J. Organomet. Chem. 637-639, 669-676
- Matković-Čalogović, D., Rapić, V. & Kovač, S. (1993). Acta Cryst. C49, 226-228
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2013). E69, m16 [https://doi.org/10.1107/S1600536812048064]

rac-(S,S)-Bis(1-ferrocenylbut-3-enyl) ether

Hao-Jun Xie, Chun-Zheng Zhao, Jun Sun, Si Chen and Jian-Jun Wang

S1. Comment

Due to their high iron content, bisferrocenyl derivatives have a wider range of applications in high burning rate catalysts than mononuclear ferrocenyl ones (Gao *et al.*, 2011; Locke *et al.*, 2001). Most of bisferrocenyl ethers are synthesized from alcohols with H₂SO₄ or Al₂O₃ as catalysts in the environment of high temperature and vacuum (Ferguson *et al.*, 1996; Matković-Čalogović *et al.*, 1993). As part of our ongoing program, the title compound was prepared from 1ferrocenyl-3-buten-1-ol and dicyclohexylcarbodiimide (DCC), with 4-dimethylaminopyridine (DMAP) as catalyst, at room temperature, and studied by X-ray crystallography. The complex crystallizes with a triclinic unit cell in the $P\overline{1}$ space group. A view of the asymmetric unit is given in Fig. 1 and the crystal structure in Fig. 2. Structure solution and refinement showed that the racemic form was crystallized with both chiral centers having the same configuration.

The principal molecular features are the structure of the central C—O—C bridge and the conformations of the ferrocene fragments. The C—O bond lengths are 1.4399 (15) and 1.4430 (15) Å, and the C—O—C angle is 116.26 (10)°, while this angle is found between 113.7 (9) and 112.8 (9)° in the crystal structure of bis(ferrocenylmethyl)ether (Gasser *et al.*, 2007). The cyclopentadienyl rings are twisted from the eclipsed conformation: the mean torsion angles Cn—Cg1—Cg2—Cm and Cp—Cg3—Cg4—Cq (n = 1...5, m = n + 5; p = 11...15, q = p + 5; the Cg pseudoatoms are the centroids of the four rings), for the ferrocene groups defined by Fe1 and Fe2, are 29.3 (1) and 6.1 (1)°, respectively.

S2. Experimental

A solution of 1-ferrocenyl-3-buten-1-ol (5.862 g, 34.89 mmol), DCC (9.597 g, 46.52 mmol) and DMAP (2.842 g, 23.26 mmol) in CH₂Cl₂ (200 ml) was stirred at room temperature for 36 h. The solution was filtered off and the filtrate was washed with CH₂Cl₂. The organic phases were combined and dried to give a viscous yellow oil, which was chromatographed over a column of silica gel using petroleum ether as the eluent. Yellow crystals of the title compound were obtained by slow evaporation of a solution in dichloromethane/petroleum ether (60–90°C). ¹H NMR (400 MHz, CDCl₃) δ 6.17–5.79 (m, 2H, H23A and H27A), 5.26–4.96 (m, 4H, H24A–H24B and H28A–H28B), 4.37 (s, 2H, H21A and H25A), 4.46–3.90 (m, 18H, H2–H10 and H12–H20), 2.84–2.46 (m, 4H, H22A–H22B and H26A–H26B). HRMS (ESI): calcd for C₂₈H₃₀Fe₂O: 494.0990, found 494.0981.

S3. Refinement

H atoms were placed in calculated positions and thereafter treated as riding atoms, with C—H = 0.98 (Cp rings and methine CH), 0.93 (vinyl CH), and 0.97 Å (methylene CH₂). Isotropic displacement parameters for H atoms were calculated as $U_{iso}(H) = 1.2U_{eq}(\text{carrier C})$.

Figure 1

The molecular structure of the title complex, showing 30% probability displacement ellipsoids. All H atoms have been omitted for clarity.

Figure 2 The crystal structure of the title compound.

rac-(S,S)-Bis(1-ferrocenylbut-3-enyl) ether

Crystal data

 $[Fe_{2}(C_{5}H_{5})_{2}(C_{18}H_{20}O)]$ $M_{r} = 494.22$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 9.7865 (15) Å b = 9.8274 (15) Å c = 12.1816 (19) Å $a = 99.405 (2)^{\circ}$ $\beta = 94.976 (2)^{\circ}$ $\gamma = 101.657 (2)^{\circ}$ $V = 1123.3 (3) \text{ Å}^{3}$

Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2007) $T_{\min} = 0.561, T_{\max} = 0.736$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.027$ $wR(F^2) = 0.100$ S = 0.815352 reflections 280 parameters 0 restraints 0 constraints Primary atom site location: structure-invariant direct methods Z = 2 F(000) = 516 $D_x = 1.461 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4332 reflections $\theta = 3.0-28.3^{\circ}$ $\mu = 1.31 \text{ mm}^{-1}$ T = 150 KBlock, yellow $0.50 \times 0.25 \times 0.25 \text{ mm}$

7657 measured reflections 5352 independent reflections 4759 reflections with $I > 2\sigma(I)$ $R_{int} = 0.014$ $\theta_{max} = 28.2^{\circ}, \theta_{min} = 2.2^{\circ}$ $h = -9 \rightarrow 12$ $k = -13 \rightarrow 8$ $l = -16 \rightarrow 15$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.1P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.36$ e Å⁻³ $\Delta\rho_{min} = -0.37$ e Å⁻³

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	V	Ζ	$U_{\rm iso}^*/U_{\rm eq}$
Fe1	0.20476 (2)	0.792940 (19)	0.468598 (15)	0.01300 (8)
Fe2	-0.30704 (2)	0.791879 (19)	-0.022770 (16)	0.01411 (8)
01	-0.18694 (10)	0.57498 (10)	0.25064 (7)	0.0148 (2)
C1	0.04463 (15)	0.70792 (14)	0.33824 (10)	0.0142 (3)
C2	0.13856 (16)	0.82818 (16)	0.31344 (12)	0.0169 (3)
H2A	0.1124	0.9149	0.2978	0.020*
C3	0.27661 (16)	0.80081 (17)	0.31594 (12)	0.0196 (3)
H3A	0.3612	0.8648	0.3019	0.023*
C4	0.26917 (17)	0.66318 (18)	0.34216 (13)	0.0202 (3)
H4A	0.3479	0.6162	0.3497	0.024*
C5	0.12676 (15)	0.60656 (15)	0.35574 (11)	0.0172 (3)
H5A	0.0913	0.5141	0.3752	0.021*

C6	0.13881 (17)	0.91467 (17)	0.59802 (13)	0.0207 (3)
H6A	0.0536	0.9525	0.5942	0.025*
C7	0.27384 (17)	0.98277 (15)	0.57716 (12)	0.0217 (3)
H7A	0.2978	1.0758	0.5558	0.026*
C8	0.36802 (16)	0.89279 (16)	0.59166 (12)	0.0204 (3)
H8A	0.4681	0.9128	0.5822	0.024*
С9	0.29131 (17)	0.76805 (17)	0.62240 (12)	0.0201 (3)
H9A	0.3292	0.6871	0.6378	0.024*
C10	0.14978 (15)	0.78253 (15)	0.62714 (11)	0.0184 (3)
H10A	0.0730	0.7128	0.6460	0.022*
C11	-0.25795(15)	0.71814 (15)	0.12099 (11)	0.0158(3)
C12	-0.40690(15)	0 70386 (16)	0.09872(11)	0.0120(3)
H12A	-0.4777	0.6149	0.0860	0.022*
C13	-0.43463(17)	0.84011 (18)	0.09606 (12)	0.022 0.0236(3)
H13A	-0.5275	0.8613	0.0819	0.028*
C14	-0.30363(19)	0.94001(17)	0.11764 (13)	0.020
H144	-0.2905	1 0422	0.1209	0.0241 (3)
C15	-0.19508(16)	0.86556 (15)	0.1209 0.13278 (11)	0.029
U15A	-0.0041	0.80550 (15)	0.13278 (11)	0.0194(3) 0.023*
C16	-0.22515(10)	0.5075 (19)	-0.15448(12)	0.025°
	-0.22313(19) -0.1663	0.08933 (18)	-0.13446(13) -0.1501	0.0213 (3)
П10А С17	-0.1003	0.0204	-0.1301	0.020°
	-0.37401(17)	0.03922 (17)	-0.17401(12)	0.0214(3)
П1/А С19	-0.4307	0.3031	-0.1804	0.020°
	-0.41885 (18)	0.78905 (18)	-0.1/32/(12)	0.0231 (3)
HI8A G10	-0.5162	0.7998	-0.1849	0.028*
C19	-0.29629 (18)	0.89995 (16)	-0.15316 (12)	0.0231(3)
HI9A	-0.2945	1.0009	-0.1478	0.028*
C20	-0.17646 (17)	0.83925 (17)	-0.14101 (12)	0.0228 (3)
H20A	-0.0781	0.8911	-0.1258	0.027*
C21	-0.11241 (14)	0.68/41 (14)	0.33961 (11)	0.0143 (3)
H21A	-0.1412	0.7754	0.3311	0.017*
C22	-0.16178 (15)	0.64072 (15)	0.44594 (11)	0.0168 (3)
H22A	-0.1355	0.5520	0.4522	0.020*
H22B	-0.1133	0.7106	0.5104	0.020*
C23	-0.31686 (15)	0.62190 (15)	0.44919 (12)	0.0185 (3)
H23A	-0.3767	0.5692	0.3865	0.022*
C24	-0.37406 (17)	0.67602 (17)	0.53626 (13)	0.0242 (3)
H24A	-0.3169	0.7292	0.6001	0.029*
H24B	-0.4713	0.6608	0.5334	0.029*
C25	-0.18233 (14)	0.60277 (14)	0.13816 (10)	0.0139 (3)
H25A	-0.0842	0.6312	0.1248	0.017*
C26	-0.25030 (14)	0.46036 (14)	0.06301 (11)	0.0165 (3)
H26A	-0.3450	0.4296	0.0808	0.020*
H26B	-0.2571	0.4725	-0.0146	0.020*
C27	-0.17049 (16)	0.34783 (16)	0.07565 (12)	0.0203 (3)
H27A	-0.1437	0.3350	0.1477	0.024*
C28	-0.13596 (16)	0.26558 (16)	-0.00995 (13)	0.0235 (3)
H28A	-0.1614	0.2761	-0.0829	0.028*

supporting information

H28B	-0.0862	0.19	73	0.0029	0.028*	
Atomic displacement parameters (A^2)						
	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
Fe1	0.01460 (12)	0.01352 (13)	0.00977 (12)	0.00283 (9)	-0.00164 (8)	0.00097 (8)
Fe2	0.01641 (13)	0.01587 (13)	0.00999 (12)	0.00418 (9)	-0.00097 (8)	0.00283 (8)
01	0.0184 (5)	0.0151 (5)	0.0085 (4)	-0.0002(4)	-0.0016 (3)	0.0023 (3)
C1	0.0170 (6)	0.0169 (6)	0.0073 (6)	0.0030 (5)	-0.0012 (5)	0.0007 (5)
C2	0.0188 (7)	0.0196 (7)	0.0113 (6)	0.0021 (5)	-0.0004 (5)	0.0038 (5)
C3	0.0178 (7)	0.0272 (8)	0.0125 (6)	0.0031 (6)	0.0005 (5)	0.0033 (5)
C4	0.0193 (7)	0.0255 (8)	0.0147 (7)	0.0081 (6)	-0.0017 (5)	-0.0019 (6)
C5	0.0216 (7)	0.0160 (6)	0.0117 (6)	0.0036 (5)	-0.0030(5)	-0.0010 (5)
C6	0.0239 (8)	0.0221 (7)	0.0144 (7)	0.0071 (6)	-0.0004 (6)	-0.0021 (5)
C7	0.0311 (8)	0.0147 (6)	0.0159 (7)	0.0009 (6)	0.0007 (6)	-0.0011 (5)
C8	0.0187 (7)	0.0225 (7)	0.0151 (7)	-0.0005 (6)	-0.0028 (5)	-0.0013 (5)
C9	0.0223 (7)	0.0216 (7)	0.0143 (7)	0.0037 (6)	-0.0047 (5)	0.0027 (5)
C10	0.0200 (7)	0.0213 (7)	0.0107 (6)	0.0007 (6)	-0.0018 (5)	0.0007 (5)
C11	0.0185 (7)	0.0181 (7)	0.0100 (6)	0.0035 (5)	-0.0012 (5)	0.0029 (5)
C12	0.0180 (7)	0.0249 (7)	0.0136 (6)	0.0062 (6)	0.0020 (5)	0.0058 (5)
C13	0.0265 (8)	0.0340 (8)	0.0152 (7)	0.0168 (7)	0.0041 (6)	0.0052 (6)
C14	0.0396 (10)	0.0197 (7)	0.0140 (7)	0.0109 (7)	0.0003 (6)	0.0019 (5)
C15	0.0260 (8)	0.0175 (7)	0.0126 (6)	0.0026 (6)	-0.0034 (5)	0.0022 (5)
C16	0.0278 (8)	0.0242 (8)	0.0151 (7)	0.0087 (6)	0.0049 (6)	0.0062 (6)
C17	0.0267 (8)	0.0247 (7)	0.0108 (6)	0.0031 (6)	0.0007 (5)	0.0018 (5)
C18	0.0255 (8)	0.0321 (8)	0.0123 (7)	0.0083 (7)	-0.0022 (6)	0.0052 (6)
C19	0.0346 (9)	0.0215 (7)	0.0155 (7)	0.0089 (6)	0.0020 (6)	0.0072 (5)
C20	0.0243 (8)	0.0269 (8)	0.0168 (7)	0.0011 (6)	0.0029 (6)	0.0085 (6)
C21	0.0144 (6)	0.0159 (6)	0.0114 (6)	0.0024 (5)	-0.0012 (5)	0.0019 (5)
C22	0.0168 (6)	0.0204 (7)	0.0121 (6)	0.0027 (5)	-0.0001 (5)	0.0027 (5)
C23	0.0181 (7)	0.0189 (7)	0.0180 (7)	0.0016 (5)	0.0017 (5)	0.0053 (5)
C24	0.0234 (8)	0.0285 (8)	0.0210 (7)	0.0043 (6)	0.0057 (6)	0.0060 (6)
C25	0.0138 (6)	0.0176 (6)	0.0089 (6)	0.0009 (5)	-0.0012 (4)	0.0032 (5)
C26	0.0171 (6)	0.0174 (6)	0.0131 (6)	0.0019 (5)	-0.0009 (5)	0.0011 (5)
C27	0.0250 (7)	0.0190 (7)	0.0155 (7)	0.0038 (6)	-0.0025 (5)	0.0031 (5)
C28	0.0224 (7)	0.0225 (7)	0.0244 (8)	0.0066 (6)	0.0003 (6)	0.0003 (6)

Geometric parameters (Å, °)

Fe1—C2	2.0504 (14)	С9—Н9А	0.9800
Fe1—C6	2.0507 (15)	C10—H10A	0.9800
Fe1—C3	2.0519 (15)	C11—C12	1.433 (2)
Fe1—C7	2.0531 (14)	C11—C15	1.433 (2)
Fe1—C8	2.0574 (15)	C11—C25	1.5055 (19)
Fe1—C9	2.0605 (15)	C12—C13	1.424 (2)
Fe1—C4	2.0609 (15)	C12—H12A	0.9800
Fe1—C10	2.0622 (14)	C13—C14	1.423 (2)
Fe1—C5	2.0634 (14)	C13—H13A	0.9800

supporting information

Fel—Cl	2.0691 (13)	C14—C15	1.422 (2)
Fe2—C18	2.0450 (15)	C14—H14A	0.9800
Fe2—C15	2.0460 (14)	C15—H15A	0.9800
Fe2—C19	2.0486 (14)	C16—C17	1.423 (2)
Fe2—C14	2.0500 (15)	C16—C20	1.429 (2)
Fe2—C13	2.0513 (15)	C16—H16A	0.9800
Fe2—C17	2.0517 (15)	C17—C18	1.426 (2)
Fe2—C12	2.0546 (14)	C17—H17A	0.9800
Fe2—C20	2.0549 (15)	C18—C19	1.421 (2)
Fe2—C11	2.0572 (14)	C18—H18A	0.9800
Fe^2 —C16	2.0613 (16)	C19-C20	1426(2)
01-C21	1 4399 (15)	C19—H19A	0.9800
01 - C25	1.4399(15) 1.4430(15)	C20H20A	0.9800
C1 - C5	1.4306 (10)	C_{20} C_{21} C_{22}	1 5280 (18)
C1 - C2	1.4300(1)	C21 H21A	0.0800
C1 - C2	1.4349(19) 1.5111(19)	$\begin{array}{c} C21 \\ \hline C22 \hline \hline$	1,4062 (10)
C1 = C21	1.3111(10) 1.420(2)	C22 - C23	1.4902 (19)
$C_2 = C_3$	1.429 (2)	С22—П22А	0.9700
C_2 —H2A	0.9800	C22—H22B	0.9700
C3—C4	1.429 (2)	C_{23} — C_{24}	1.327 (2)
C3—H3A	0.9800	C23—H23A	0.9300
C4—C5	1.427 (2)	C24—H24A	0.9300
C4—H4A	0.9800	C24—H24B	0.9300
С5—Н5А	0.9800	C25—C26	1.5292 (18)
C6—C7	1.420 (2)	C25—H25A	0.9800
C6—C10	1.423 (2)	C26—C27	1.497 (2)
С6—Н6А	0.9800	C26—H26A	0.9700
C7—C8	1.420 (2)	C26—H26B	0.9700
С7—Н7А	0.9800	C27—C28	1.323 (2)
С8—С9	1.426 (2)	C27—H27A	0.9300
C8—H8A	0.9800	C28—H28A	0.9300
C9—C10	1.426 (2)	C28—H28B	0.9300
C2—Fe1—C6	113.59 (6)	С7—С6—Н6А	126.1
C2—Fe1—C3	40.76 (6)	С10—С6—Н6А	126.1
C6—Fe1—C3	141.86 (6)	Fe1—C6—H6A	126.1
C2—Fe1—C7	109.54 (6)	C8—C7—C6	108.42 (13)
C6—Fe1—C7	40.48 (6)	C8—C7—Fe1	69.96 (8)
C3—Fe1—C7	111.39 (6)	C6—C7—Fe1	69.67 (8)
C2—Fe1—C8	134.33 (6)	C8—C7—H7A	125.8
C6—Fe1—C8	68.19(6)	С6—С7—Н7А	125.8
C3—Fe1—C8	108 04 (6)	Fe1—C7—H7A	125.8
C7—Fe1—C8	40.41 (6)	C7-C8-C9	107 94 (14)
C^2 —Fe1—C9	174 21 (6)	C7 - C8 - Fe1	69 63 (8)
C6—Fe1—C9	68 28 (6)	C9-C8-Fe1	69 86 (8)
C_3 —Fe1— C_9	134 47 (6)	C7-C8-H8A	126.0
C7—Fe1—C9	68 03 (6)	C9-C8-H8A	126.0
C8—Fe1—C9	40.52 (6)	F_{e1} C_{e1} H_{e1}	126.0
C_2 —Fe1- C_4	68 33 (6)	C10 C9 C8	120.0
02-101-04	00.55 (0)	010 - 09 - 00	107.07(13)

C6—Fe1—C4	177.47 (6)	C10	69.83 (8)
C3—Fe1—C4	40.66 (6)	C8—C9—Fe1	69.62 (8)
C7—Fe1—C4	141.04 (7)	С10—С9—Н9А	126.2
C8—Fe1—C4	111.81 (6)	С8—С9—Н9А	126.2
C9—Fe1—C4	109.98 (6)	Fe1—C9—H9A	126.2
C2—Fe1—C10	144.29 (6)	C6—C10—C9	108.20 (13)
C6—Fe1—C10	40.47 (6)	C6—C10—Fe1	69.33 (8)
C3—Fe1—C10	174.93 (6)	C9—C10—Fe1	69.70 (8)
C7—Fe1—C10	67.82 (6)	C6—C10—H10A	125.9
C8—Fe1—C10	67.96 (6)	C9—C10—H10A	125.9
C9—Fe1—C10	40.47 (6)	Fe1—C10—H10A	125.9
C4—Fe1—C10	137.03 (6)	C12—C11—C15	106.83 (13)
C2—Fe1—C5	68.04 (6)	C12—C11—C25	126.74 (13)
C6—Fe1—C5	138.15 (6)	C15—C11—C25	126.26 (13)
C3—Fe1—C5	68.21 (6)	C12-C11-Fe2	69.50 (8)
C7—Fe1—C5	176.90 (6)	C15-C11-Fe2	69.13 (8)
C8—Fe1—C5	142.68 (6)	C25—C11—Fe2	129.98 (9)
C9—Fe1—C5	114 57 (6)	C_{13} $-C_{12}$ $-C_{11}$	108.61(14)
C4—Fe1—C5	40.49 (6)	C13— $C12$ — $Fe2$	69.58 (8)
C10—Fe1—C5	112.86(6)	C11—C12—Fe2	69 70 (8)
C2—Fe1—C1	40.77 (5)	C13 - C12 - H12A	125 7
C6—Fe1—C1	111 73 (6)	C11—C12—H12A	125.7
C3—Fe1—C1	68 73 (6)	Fe2—C12—H12A	125.7
C7—Fe1—C1	136 39 (6)	C_{14} C_{13} C_{12}	107.90 (13)
C8—Fe1—C1	174 97 (6)	$C14-C13-Fe^2$	69 65 (9)
C9—Fe1—C1	144 45 (6)	$C12 - C13 - Fe^2$	69.84 (8)
C4—Fe1—C1	68 51 (6)	C12 - C13 - H13A	126.1
C10—Fe1—C1	115 48 (6)	C12— $C13$ — $H13A$	126.1
C_{5} Fe1— C_{1}	40.51.(5)	Fe^2 C13 H13A	126.1
$C18 - Fe^2 - C15$	160.62(7)	$C_{15} - C_{14} - C_{13}$	108 08 (13)
$C18 - Fe^2 - C19$	40.63(7)	$C15 - C14 - Ee^2$	69 53 (8)
$C_{15} = F_{e2} = C_{19}$	124 65 (6)	$C13 - C14 - Fe^2$	69.74 (9)
$C18 - Fe^2 - C14$	122.03 (6)	C15 - C14 - H144	126.0
C_{15} F_{e2} C_{14}	40.63 (6)	C13 $C14$ $H14A$	126.0
$C19 - Fe^2 - C14$	105 68 (6)	F_{e2} C_{14} H_{14A}	126.0
$C_{12} = C_{14} = C_{14}$	105.00(0) 105.42(6)	$C_1 A = C_1 S = C_1 A$	120.0 108 58 (14)
$C_{15} = F_{e2} = C_{13}$	68 39 (6)	$C14$ $C15$ $E_{P}2$	60.84(8)
$C_{10} = F_{02} = C_{13}$	118 15 (6)	$C_{14} = C_{15} = 162$	60.07 (8)
$C14 = Fe^2 = C13$	118.15 (0)	C14 $C15$ $H15A$	125 7
$C_{14} = C_{12} = C_{13}$	40.01(7)	C_{14} C_{15} H_{15A}	125.7
$C_{10} = Fe_2 = C_{17}$	40.74 (0)	$E_{12} = C_{12} = H_{12} = H_{12}$	125.7
C_{13} F_{e2} C_{17}	137.00 (0) 68.10 (6)	$\begin{array}{cccc} \Gamma e_2 & - & \Gamma I_3 \\ \Gamma & \Gamma & \Gamma & \Gamma & \Gamma \\ \Gamma & \Gamma & \Gamma & \Gamma & \Gamma$	123.7
C19 - Fe2 - C17	160.82(7)	C17 = C16 = C20	107.30(14)
$C_{14} = \Gamma c_2 = C_{17}$	100.62(7) 124.70(7)	$C_1/-C_10-F_{e2}$	60.44 (0)
$C_{13} = Fe_2 = C_{12}$	124.79(7)	C_{20} C_{10} Fe_2	126.2
C_{10} Fe_2 C_{12}	119.73(0)	C1/-C10-HI0A	120.2
C10 = Fe2 = C12	08.30 (0)	C_{20} — C_{10} — H_{10A}	120.2
C19—Fe2—C12	155./1 (6)	Fe2—U10—H16A	126.2
C14—Fe2—C12	68.21 (6)	C16-C17-C18	108.52 (14)

C13—Fe2—C12	40.58 (6)	C16—C17—Fe2	70.12 (9)
C17—Fe2—C12	108.74 (6)	C18—C17—Fe2	69.38 (8)
C18—Fe2—C20	68.52 (6)	C16—C17—H17A	125.7
C15—Fe2—C20	108.43 (6)	C18—C17—H17A	125.7
C19—Fe2—C20	40.68 (6)	Fe2—C17—H17A	125.7
C14—Fe2—C20	119.83 (7)	C19—C18—C17	107.66 (14)
C13—Fe2—C20	153.74 (7)	C19—C18—Fe2	69.82 (9)
C17—Fe2—C20	68.18 (6)	C17—C18—Fe2	69.88 (8)
C12—Fe2—C20	164.60 (6)	C19—C18—H18A	126.2
C18—Fe2—C11	155.89 (7)	C17—C18—H18A	126.2
$C15 - Fe^2 - C11$	40.89(6)	Fe2—C18—H18A	126.2
C19 - Fe2 - C11	162.99 (7)	C18 - C19 - C20	108.30 (14)
C14—Fe2—C11	68 73 (6)	$C18 - C19 - Fe^2$	69 55 (9)
$C13 - Fe^2 - C11$	68 77 (6)	C_{20} C_{19} F_{e2}	69 90 (8)
$C17 - Fe^2 - C11$	122 23 (6)	C18 - C19 - H19A	125.9
$C12 - Fe^2 - C11$	40.80 (5)	C_{20} C_{19} H_{19A}	125.9
$C_{20} = F_{e2} = C_{11}$	126.96 (6)	$E_2 = C_1 = H_1 = A$	125.9
$C_{18} = F_{e2} = C_{16}$	68 56 (7)	C_{19} C_{20} C_{16}	123.9 107.04 (15)
$C_{10} = F_{02} = C_{10}$	122.45(7)	$C_{19} = C_{20} = C_{10}$	60 42 (0)
$C_{10} = C_{10} = C_{10}$	122.43(7)	$C_{19} = C_{20} = F_{02}$	69.42(9)
C13 - Fe2 - C16	156.05.(8)	$C_{10} = C_{20} = H_{20}$	126.0
$C_{14} = 162 = C_{10}$	162.05 (8)	$C_{19} = C_{20} = H_{20A}$	126.0
$C_{13} - F_{e2} - C_{10}$	102.93 (8)	$E_{10} = C_{20} = H_{20A}$	120.0
$C_{1}^{-1} = C_{1}^{-1} C_{1} C_{1}^{-1} C$	40.49(0) 127.24(6)	12 - 22 - 1120 A	120.0
C12— $Fe2$ — $C16$	127.34(0)	01 - 021 - 021	110.91(10)
C_{20} Fe2 C_{10}	40.03(0) 100.82(6)	01 - 021 - 022	103.90(10)
$C11 - Fe_2 - C10$	109.82(0)	C1 - C21 - C22	113.20 (11)
$C_{21} = 01 = C_{23}$	110.20(10) 106.98(12)	$OI = C_2 I = H_2 I A$	109.5
$C_{3} - C_{1} - C_{2}$	100.88(12) 126.00(12)	C1 = C21 = H21A	109.5
C_{2}	126.00 (13)	C_{22} — C_{21} — H_{21A}	109.5
$C_2 = C_1 = C_2 I$	127.05(12)	$C_{23} = C_{22} = C_{21}$	113.86 (11)
C5—CI—Fel	69.53 (8)	C23—C22—H22A	108.8
C2—C1—Fel	68.92 (8)	C21—C22—H22A	108.8
C21—C1—Fel	129.00 (9)	C23—C22—H22B	108.8
C3—C2—C1	108.67 (13)	С21—С22—Н22В	108.8
C3—C2—Fel	69.68 (8)	H22A—C22—H22B	107.7
Cl—C2—Fel	70.32 (8)	C24—C23—C22	123.85 (14)
C3—C2—H2A	125.7	С24—С23—Н23А	118.1
C1—C2—H2A	125.7	С22—С23—Н23А	118.1
Fe1—C2—H2A	125.7	C23—C24—H24A	120.0
C2—C3—C4	107.79 (13)	C23—C24—H24B	120.0
C2—C3—Fe1	69.56 (8)	H24A—C24—H24B	120.0
C4—C3—Fe1	70.00 (8)	O1—C25—C11	110.74 (10)
С2—С3—НЗА	126.1	O1—C25—C26	104.26 (10)
C4—C3—H3A	126.1	C11—C25—C26	113.26 (11)
Fe1—C3—H3A	126.1	O1—C25—H25A	109.5
C5—C4—C3	107.79 (13)	C11—C25—H25A	109.5
C5—C4—Fe1	69.85 (8)	C26—C25—H25A	109.5
C3-C4-Fe1	69.33 (8)	C27—C26—C25	113.16 (11)

C5—C4—H4A	126.1	C27—C26—H26A	108.9	
C3—C4—H4A	126.1	C25—C26—H26A	108.9	
Fe1—C4—H4A	126.1	C27—C26—H26B	108.9	
C4—C5—C1	108.87 (13)	C25—C26—H26B	108.9	
C4—C5—Fe1	69.66 (8)	H26A—C26—H26B	107.8	
C1	69.96 (8)	C28—C27—C26	123.68 (14)	
С4—С5—Н5А	125.6	C28—C27—H27A	118.2	
C1—C5—H5A	125.6	C26—C27—H27A	118.2	
Fe1—C5—H5A	125.6	C27—C28—H28A	120.0	
C7—C6—C10	107.77 (13)	C27—C28—H28B	120.0	
C7—C6—Fe1	69.85 (8)	H28A—C28—H28B	120.0	
C10-C6-Fe1	70.20 (8)			