Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

17β -Hydroxy- 17α -methylandrosta-1,4dien-3-one

Jolanta Karpinska, Andrea Erxleben and Patrick McArdle*

School of Chemistry, National University of Ireland, Galway, University Road, Galway, Ireland Correspondence e-mail: patrick.mcardle@nuigalway.ie

Received 6 November 2012; accepted 5 December 2012

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.009 Å; R factor = 0.072; wR factor = 0.199; data-to-parameter ratio = 11.6.

The title compound, C₂₀H₂₈O₂, is a steroid with strong anabolic properties. The present solvent-free form crystallizes with two molecules per asymmetric unit. In the crystal, both molecules are involved in the formation of O-H···O hydrogen-bonded chains which extend along the *b*-axis direction.

Related literature

For examples of other compounds with unused hydrogenbonding capacity, see: Bhatt et al. (2006); Lewis et al. (2005); Desiraju et al. (2002). For related structures of other anabolic steroids, see: Verma et al. (2006). For related structures of steroid compounds with non-hydrogen-bonded OH or C=O motifs, see: Karpinska et al. (2011); Danaci et al. (1988); Chakrabarti et al. (1981); McPhail et al. (1977); Delettré et al. (1975). For applications of methandrostenolone, see: Druzhinina et al. (2008). For a previously reported mono hydrate (with no unused hydrogen-bonding capacity), see: Duax et al. (1982).

Experimental

Crystal data C20H28O2 $M_r = 300.42$

Monoclinic, C2 a = 28.317 (2) Å

b = 9.4539(5) A	
c = 13.7684 (10) Å	
$\beta = 111.017 \ (9)^{\circ}$	
V = 3440.7 (4) Å ³	
Z = 8	

Data collection

Oxford Diffraction Xcalibur	7321 measured reflections
Sapphire3 diffractometer	4697 independent reflections
Absorption correction: multi-scan	2893 reflections with $I > 2\sigma(I)$
(CrysAlis171; Oxford Diffraction,	$R_{\rm int} = 0.034$
2010)	
$T_{\rm min} = 0.985, T_{\rm max} = 1.000$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.072$	1 restraint
$wR(F^2) = 0.199$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.65 \text{ e } \text{\AA}^{-3}$
4697 reflections	$\Delta \rho_{\rm min} = -0.26 \text{ e} \text{ Å}^{-3}$
404 parameters	,

Mo $K\alpha$ radiation $\mu = 0.07 \text{ mm}^{-1}$

 $0.50 \times 0.40 \times 0.20 \text{ mm}$

T = 298 K

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} O2 - H2O2 \cdots O4^{i} \\ O4 - H4O4 \cdots O3^{ii} \end{array}$	0.82	2.00	2.808 (7)	167
	0.82	2.09	2.858 (7)	156

Symmetry codes: (i) $x + \frac{1}{2}$, $y - \frac{1}{2}$, z; (ii) -x + 1, y + 1, -z + 2.

Data collection: CrysAlis171 (Oxford Diffraction, 2010); cell refinement: CrysAlis171; data reduction: CrysAlis171; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: CIFTAB (Sheldrick, 2008).

The authors thank the Science Foundation Ireland (SFI) for funding for the Solid State Pharmaceuticals Cluster (SSPC).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2491).

References

Bhatt, P. M. & Desiraju, G. R. (2006). Acta Cryst. C62, 0362-0363.

- Chakrabarti, P., Banerjee, D. K. & Venkatesan, K. (1981). Steroids, 37, 269-279
- Danaci, S., Kendi, E., Moers, F. G., Behm, H. & Beurskens, P. T. (1988). Acta Cryst. C44, 1677-1679.
- Delettré, J., Mornon, J.-P. & Lepicard, G. (1975). Acta Cryst. B31, 450-453.
- Desiraju, G. R. (2002). CrystEngComm, 4, 499-499.
- Druzhinina, A., Andryushina, V., Stytsenko, T. & Voishvillo, N. (2008). Appl. Biochem. Microbiol. 44, 580-584.

Duax, W. L., Rohrer, D. C. & Segaloff, A. (1982). Acta Cryst. B38, 531-534.

Karpinska, J., Erxleben, A. & McArdle, P. (2011). Cryst. Growth Des. 11, 2829-2838

Lewis, T. C., Tocher, D. A. & Price, S. L. (2005). Cryst. Growth Des. 5, 983-993. McArdle, P. (1995). J. Appl. Cryst. 28, 65.

McPhail, A. T., Luhan, P. A., Tschang, P.-S. W. & Onan, K. D. (1977). J. Chem. Soc. Perkin Trans. 2, pp. 379-383.

Oxford Diffraction (2010). CrysAlis171. Oxford Diffraction Ltd, Yarnton, England.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Verma, R., Jasrotia, D. & Bhat, M. (2006). J. Chem. Crystallogr. 36, 283-287.

supporting information

Acta Cryst. (2013). E69, o60 [https://doi.org/10.1107/S1600536812049860]

 17β -Hydroxy- 17α -methylandrosta-1,4-dien-3-one

Jolanta Karpinska, Andrea Erxleben and Patrick McArdle

S1. Comment

Methandrostenolone, commonly known as dianabol, is an anabolic steroid which is widely applied in medicine, particularly in surgery, endocrinology, therapeutics and paediatrics (Druzhinina *et al.*, 2008)). As a part of our studies on unused hydrogen bonding capacity in steroid compounds the crystal structure of the solvent free form has been determined using crystals grown by sublimation.

Methandrostenolone is another example of a steroid type compound which does not use all of its good proton donors and acceptors in hydrogen bonding formation. The previously reported mono hydrate has no unused hydrogen bonding capacity (Duax *et al.*, 1982). The OH and C=O groups occupy opposite ends of the molecule and both are used in the formation of one dimensional hydrogen bonded chains. The O4-H4O3..O3 (2.878 Å) interactions of one molecule form chains (blue molecules in Fig. 2), with the O2 of the hydroxyl groups of the other molecule acting only as donors to the basic chain in O2-H2O2..O4 (2.808 Å) interactions (red molecules in Fig. 2). The O1 atom of the carbonyl group of this second molecule is not involved in any hydrogen bonding interaction.

S2. Experimental

The title compound of high purity (>98.8%) was obtained from TCI Europe. Colourless crystals were grown by low temperature gradient sublimation in the vacuum.

S3. Refinement

All H atoms were included in the refinement in calculated positions [N—O = 0.82 Å, C—H(aromatic) = 0.93 Å, C—H(methylene) = 0.97 Å or C—H(methyl) = 0.96 Å] and allowed to ride on their parent atoms, with $U_{iso}(\text{H}) = 1.2U_{eq}$. The rather low "observed-to-unique" reflection ratio was due to extremly poor data quality.

Figure 1

One-dimensional hydrogen bonded chains in the crystal structure of methandrostenolone.

Figure 2

Packing diagram showing the 1D motifs along b with molecules coloured by symmetry equivalence.

 17β -Hydroxy- 17α -methylandrosta-1,4-dien-3-one

Crystal data

 $C_{20}H_{28}O_2$ $M_r = 300.42$ Monoclinic, C2 a = 28.317 (2) Å b = 9.4539 (5) Å c = 13.7684 (10) Å $\beta = 111.017$ (9)° V = 3440.7 (4) Å³ Z = 8

Data collection

Oxford Diffraction Xcalibur Sapphire3
diffractometer
Radiation source: Enhance (Mo) X-ray Source
Graphite monochromator
Detector resolution: 16.1048 pixels mm ⁻¹
ω scans
Absorption correction: multi-scan
(CrysAlis171; Oxford Diffraction, 2010)
$T_{\min} = 0.985, T_{\max} = 1.000$

Refinement

Refinement on F^2 Hydrogen site location: inferred from Least-squares matrix: full neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.072$ H-atom parameters constrained $wR(F^2) = 0.199$ $w = 1/[\sigma^2(F_o^2) + (0.0874P)^2 + 2.2675P]$ S = 1.03where $P = (F_0^2 + 2F_c^2)/3$ 4697 reflections $(\Delta/\sigma)_{\rm max} < 0.001$ 404 parameters $\Delta \rho_{\rm max} = 0.65 \ {\rm e} \ {\rm \AA}^{-3}$ 1 restraint $\Delta \rho_{\rm min} = -0.26 \text{ e} \text{ Å}^{-3}$ Primary atom site location: structure-invariant Extinction correction: SHELXL97 (Sheldrick, direct methods 2008), Fc^{*}=kFc[1+0.001xFc² $\lambda^{3}/sin(2\theta)$]^{-1/4} Secondary atom site location: difference Fourier Extinction coefficient: 0.0068 (9) map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

F(000) = 1312

 $\theta = 2.9 - 29.2^{\circ}$

 $\mu = 0.07 \text{ mm}^{-1}$

T = 298 K

 $R_{\rm int} = 0.034$

 $h = -34 \rightarrow 21$ $k = -8 \rightarrow 11$ $l = -16 \rightarrow 18$

 $D_{\rm x} = 1.160 {\rm Mg} {\rm m}^{-3}$

Mo Ka radiation, $\lambda = 0.7107$ Å

Parallelepiped, colourless

7321 measured reflections 4697 independent reflections 2893 reflections with $I > 2\sigma(I)$

 $\theta_{\text{max}} = 25.4^{\circ}, \ \theta_{\text{min}} = 2.9^{\circ}$

 $0.50 \times 0.40 \times 0.20$ mm

Cell parameters from 1944 reflections

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.7034 (2)	1.0649 (8)	-0.1279 (3)	0.147 (3)	
O2	0.91191 (19)	0.6512 (8)	0.5818 (3)	0.138 (2)	
H2O2	0.9258	0.5758	0.6046	0.180*	
C1	0.7739 (2)	1.1398 (7)	0.1374 (5)	0.0760 (17)	
H1	0.8022	1.1918	0.1767	0.099*	
C2	0.7592 (3)	1.1452 (7)	0.0348 (6)	0.088 (2)	

H2A	0.7769	1.2022	0.0046	0.115*
C3	0.7155 (3)	1.0635 (9)	-0.0328 (5)	0.091 (2)
C4	0.6873 (2)	0.9890 (7)	0.0178 (4)	0.0770 (18)
H4	0.6583	0.9413	-0.0231	0.100*
C5	0.70045 (18)	0.9839 (6)	0.1216 (4)	0.0621 (14)
C6	0.6729 (2)	0.8922 (8)	0.1723 (5)	0.090 (2)
H6A	0.6440	0.8490	0.1194	0.117*
H6B	0.6606	0.9495	0.2167	0.117*
C7	0.7077 (2)	0.7781 (8)	0.2364 (4)	0.0793 (18)
H7A	0 7147	0 7114	0.1898	0.103*
H7B	0.6904	0.7272	0.2751	0.103*
C8	0.75730 (19)	0.8347 (6)	0.2751 0.3120 (4)	0.103
U8	0.7501	0.8347 (0)	0.3655	0.0017 (15)
118 C0	0.7301 0.7037 (2)	0.8890 0.7170 (7)	0.3033	0.061°
	0.7937 (2)	0.7179(7)	0.3033 (4)	0.0083 (13)
П9 С10	0.8012	0.0080	0.3100	0.089°
	0.7765 (5)	0.6027 (8)	0.4256 (5)	0.101 (2)
HIOA	0.7585	0.6440	0.4667	0.132*
HI0B	0.7550	0.5330	0.3786	0.132*
C11	0.8267 (3)	0.5370 (9)	0.4953 (5)	0.116 (3)
H11A	0.8290	0.4401	0.4744	0.151*
H11B	0.8288	0.5369	0.5671	0.151*
C12	0.8709 (3)	0.6272 (9)	0.4841 (5)	0.101 (3)
C13	0.8448 (2)	0.7699 (8)	0.4417 (4)	0.0765 (18)
C14	0.8693 (2)	0.8604 (8)	0.3831 (4)	0.0811 (19)
H14A	0.8769	0.8029	0.3322	0.105*
H14B	0.9010	0.8981	0.4312	0.105*
C15	0.8344 (2)	0.9834 (7)	0.3275 (4)	0.0780 (18)
H15A	0.8303	1.0470	0.3792	0.101*
H15B	0.8502	1.0361	0.2868	0.101*
C16	0.78270 (17)	0.9333 (6)	0.2564 (4)	0.0521 (13)
H16	0.7892	0.8740	0.2041	0.068*
C17	0.74705 (19)	1.0534 (6)	0.1933 (4)	0.0609 (14)
C18	0.7340 (2)	1.1561 (8)	0.2678 (5)	0.093 (2)
H18A	0.7112	1.2276	0.2279	0.121*
H18B	0.7645	1.1998	0.3136	0.121*
H18C	0 7183	1 1044	0.3081	0.121*
C19	0.8392 (3)	0.8526 (9)	0.5324(4)	0.098(2)
H194	0.8719	0.8843	0.5778	0.128*
HIOR	0.8246	0.7026	0.5704	0.128*
	0.8176	0.7520	0.5764	0.128*
C20	0.0170	0.5518 (0)	0.3000	0.120
	0.8930 (3)	0.5518 (9)	0.4139 (3)	0.120 (3)
H20A	0.9214	0.0002	0.4095	0.150*
H20B	0.8683	0.5415	0.3457	0.156*
H20C	0.9055	0.4601	0.4421	0.156*
04	0.47262 (19)	0.9195 (5)	0.6785 (4)	0.1069 (16)
H4O4	0.4754	0.9614	0.7324	0.139*
03	0.5497 (3)	0.0511 (7)	1.1560 (6)	0.172 (3)
C21	0.6004 (2)	0.3797 (9)	1.1075 (5)	0.093 (2)

H21	0.6120	0.4643	1.1423	0.121*
C22	0.5869 (3)	0.2739 (10)	1.1603 (5)	0.097 (2)
H22	0.5911	0.2871	1.2299	0.126*
C23	0.5658 (3)	0.1402 (9)	1.1088 (7)	0.116 (3)
C24	0.5673 (3)	0.1263 (8)	1.0132 (6)	0.105 (3)
H24	0.5577	0.0385	0.9819	0.137*
C25	0.5807 (2)	0.2215 (6)	0.9574 (5)	0.0689 (16)
C26	0.5755 (3)	0.1940 (7)	0.8476 (5)	0.0845 (18)
H26A	0.5643	0.0975	0.8289	0.110*
H26B	0.6081	0.2057	0.8401	0.110*
C27	0.5373 (2)	0.2967 (6)	0.7756 (4)	0.0678 (15)
H27A	0.5039	0.2745	0.7756	0.088*
H27B	0.5367	0.2843	0.7052	0.088*
C28	0.54964 (18)	0.4516 (5)	0.8080 (3)	0.0475 (12)
H28	0.5808	0.4785	0.7971	0.062*
C29	0.50704 (18)	0.5476 (5)	0.7438 (3)	0.0482 (11)
H29	0.4773	0.5200	0.7601	0.063*
C30	0.4902(2)	0.5470 (7)	0 6264 (4)	0.0693 (15)
H30A	0.4680	0.4676	0.5971	0.090*
H30B	0 5191	0.5415	0.6045	0.090*
C31	0.3191 0.4621 (2)	0.6876 (7)	0.5924(4)	0.0781 (18)
H31A	0.4267	0.6705	0.5520	0.101*
H31R	0.4767	0.7410	0.5499	0.101*
C32	0.4675(2)	0.7705 (6)	0.6926 (4)	0.0695 (15)
C33	0.4673(2)	0.7703(6)	0.0720(4) 0.7731(4)	0.0093(13)
C34	0.51055(17) 0.5242(3)	0.7034(5)	0.7751(4) 0.8868(4)	0.0302(13)
H3/A	0.5242 (5)	0.7212 (0)	0.8080 (4)	0.0702 (17)
H34R	0.4955	0.8194	0.8980	0.099
C35	0.5519	0.6194	0.9005	0.033
U35 A	0.5070 (2)	0.0281 (0)	1.0268	0.0728 (10)
1135A 1125D	0.5705	0.0393	0.0476	0.095*
ПЭЭВ С26	0.5905	0.0370	0.9470	0.093°
C30	0.53/1/(19)	0.4723(3)	0.9237 (4)	0.0317(12)
П30 С27	0.5249	0.4481	0.9307	0.007°
C37	0.59779(19)	0.3078(7)	0.9965(4)	0.0630(15)
	0.6512(2)	0.3981 (7)	0.9955 (5)	0.0871 (19)
H38A	0.6607	0.4935	1.01/8	0.113*
H38B	0.6512	0.3857	0.9263	0.113*
H38C	0.6/50	0.3338	1.0418	0.113*
C39	0.5624 (2)	0.7593(7)	0.7519(5)	0.0883 (19)
H39A	0.56/1	0.8576	0.7701	0.115*
H39B	0.5570	0.7481	0.6794	0.115*
H39C	0.5919	0.7071	0.7928	0.115*
C40	0.4201 (2)	0.7533 (8)	0.7211 (5)	0.094 (2)
H40A	0.4236	0.8097	0.7813	0.122*
H40B	0.4163	0.6557	0.7361	0.122*
H40C	0.3909	0./83/	0.6639	0.122*

supporting information

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	<i>U</i> ²³
01	0.161 (5)	0.225 (7)	0.065 (3)	0.046 (5)	0.054 (3)	0.040 (4)
O2	0.128 (4)	0.197 (6)	0.066 (3)	0.054 (4)	0.007 (3)	0.033 (4)
C1	0.073 (4)	0.074 (4)	0.086 (4)	0.007 (3)	0.035 (3)	0.022 (4)
C2	0.089 (4)	0.086 (5)	0.104 (5)	0.026 (4)	0.052 (4)	0.046 (4)
C3	0.104 (5)	0.117 (6)	0.066 (4)	0.044 (5)	0.047 (4)	0.035 (4)
C4	0.058 (3)	0.106 (5)	0.059 (3)	0.016 (3)	0.011 (3)	0.004 (4)
C5	0.049 (3)	0.082 (4)	0.056 (3)	0.012 (3)	0.020 (3)	0.008 (3)
C6	0.058 (3)	0.134 (6)	0.083 (4)	-0.003 (4)	0.030 (3)	0.013 (5)
C7	0.060 (3)	0.110 (5)	0.072 (4)	-0.008 (4)	0.028 (3)	0.017 (4)
C8	0.056 (3)	0.089 (4)	0.045 (3)	0.007 (3)	0.024 (3)	0.006 (3)
C9	0.074 (4)	0.088 (4)	0.052 (3)	0.015 (3)	0.034 (3)	0.014 (3)
C10	0.114 (5)	0.103 (5)	0.097 (5)	0.008 (5)	0.050 (4)	0.035 (5)
C11	0.168 (8)	0.113 (6)	0.088 (5)	0.049 (6)	0.069 (6)	0.039 (5)
C12	0.116 (5)	0.133 (7)	0.055 (4)	0.057 (5)	0.032 (4)	0.029 (4)
C13	0.077 (4)	0.113 (5)	0.039 (3)	0.029 (4)	0.020 (3)	0.009 (3)
C14	0.053 (3)	0.124 (6)	0.060 (3)	0.006 (4)	0.011 (3)	0.011 (4)
C15	0.062 (3)	0.100 (5)	0.068 (4)	0.002 (3)	0.019 (3)	0.014 (4)
C16	0.043 (2)	0.068 (3)	0.046 (3)	0.005 (2)	0.018 (2)	0.007 (3)
C17	0.057 (3)	0.074 (4)	0.057 (3)	0.010 (3)	0.027 (3)	0.009 (3)
C18	0.095 (4)	0.096 (5)	0.090 (4)	0.027 (4)	0.036 (4)	-0.001 (4)
C19	0.109 (5)	0.123 (6)	0.061 (4)	0.027 (5)	0.027 (4)	-0.003 (4)
C20	0.141 (6)	0.145 (7)	0.080 (4)	0.064 (6)	0.048 (5)	0.020 (5)
O4	0.157 (4)	0.062 (3)	0.095 (3)	0.024 (3)	0.037 (3)	0.025 (3)
03	0.244 (7)	0.123 (5)	0.217 (7)	0.044 (5)	0.166 (6)	0.085 (5)
C21	0.087 (4)	0.109 (6)	0.085 (4)	0.040 (4)	0.033 (4)	0.008 (5)
C22	0.098 (5)	0.144 (7)	0.058 (4)	0.040 (5)	0.040 (4)	0.036 (5)
C23	0.156 (7)	0.089 (6)	0.141 (7)	0.056 (6)	0.100(7)	0.053 (6)
C24	0.132 (6)	0.077 (5)	0.146 (7)	0.040 (5)	0.096 (6)	0.049 (5)
C25	0.077 (4)	0.051 (3)	0.096 (4)	0.017 (3)	0.052 (4)	0.024 (3)
C26	0.114 (5)	0.047 (3)	0.100 (5)	0.007 (4)	0.049 (4)	0.003 (4)
C27	0.087 (4)	0.057 (4)	0.069 (4)	0.005 (3)	0.040 (3)	-0.008 (3)
C28	0.058 (3)	0.044 (3)	0.049 (3)	0.002 (2)	0.029 (2)	-0.002 (2)
C29	0.061 (3)	0.045 (3)	0.043 (2)	0.001 (3)	0.023 (2)	-0.002 (2)
C30	0.078 (4)	0.084 (4)	0.044 (3)	0.013 (3)	0.020 (3)	0.003 (3)
C31	0.090 (4)	0.104 (5)	0.040 (3)	0.033 (4)	0.024 (3)	0.013 (3)
C32	0.092 (4)	0.056 (3)	0.061 (3)	0.021 (3)	0.028 (3)	0.015 (3)
C33	0.070 (3)	0.049 (3)	0.053 (3)	0.008 (3)	0.025 (3)	0.010 (3)
C34	0.112 (5)	0.044 (3)	0.066 (4)	0.017 (3)	0.024 (4)	-0.007 (3)
C35	0.089 (4)	0.067 (4)	0.055 (3)	0.007 (4)	0.017 (3)	-0.012 (3)
C36	0.060 (3)	0.052 (3)	0.047 (3)	0.007 (2)	0.024 (2)	-0.004 (2)
C37	0.060 (3)	0.081 (4)	0.054 (3)	0.021 (3)	0.027 (3)	0.013 (3)
C38	0.080 (4)	0.086 (5)	0.101 (5)	0.011 (4)	0.039 (4)	0.007 (4)
C39	0.100 (5)	0.058 (4)	0.107 (5)	-0.014 (4)	0.037 (4)	0.015 (4)
C40	0.095 (4)	0.111 (5)	0.085 (4)	0.047 (4)	0.042 (4)	0.014 (4)

Geometric parameters (Å, °)

01—C3	1.228 (7)	O4—C32	1.436 (7)
O2—C12	1.445 (8)	O4—H4O4	0.8200
O2—H2O2	0.8200	O3—C23	1.246 (8)
C1—C2	1.322 (9)	C21—C22	1.370 (10)
C1—C17	1.504 (7)	C21—C37	1.507 (7)
C1—H1	0.9300	C21—H21	0.9300
C2—C3	1.472 (9)	C22—C23	1.468 (12)
C2—H2A	0.9300	С22—Н22	0.9300
C3—C4	1.420 (9)	C23—C24	1.339 (10)
C4—C5	1.343 (7)	C24—C25	1.325 (8)
C4—H4	0.9300	C24—H24	0.9300
C5—C17	1.488 (7)	C25—C26	1.488 (8)
C5—C6	1.495 (8)	C25—C37	1.499 (9)
C6—C7	1.513 (9)	C26—C27	1.526 (8)
С6—Н6А	0.9700	C26—H26A	0.9700
С6—Н6В	0.9700	C26—H26B	0.9700
C7—C8	1.515 (8)	C27—C28	1.534 (7)
С7—Н7А	0.9700	С27—Н27А	0.9700
С7—Н7В	0.9700	С27—Н27В	0.9700
C8—C9	1.510(7)	C28—C29	1.515 (6)
C8—C16	1.539 (6)	C28—C36	1.542 (6)
С8—Н8	0.9800	C28—H28	0.9800
C9—C13	1.532 (8)	C29—C30	1.513 (6)
C9—C10	1.551 (8)	C29—C33	1.525 (7)
С9—Н9	0.9800	С29—Н29	0.9800
C10-C11	1.531 (9)	C30—C31	1.534 (8)
C10—H10A	0.9700	C30—H30A	0.9700
C10—H10B	0.9700	C30—H30B	0.9700
C11—C12	1.568 (11)	C31—C32	1.545 (7)
C11—H11A	0.9700	C31—H31A	0.9700
C11—H11B	0.9700	C31—H31B	0.9700
C12—C20	1.516 (9)	C32—C40	1.537 (8)
C12—C13	1.549 (10)	C32—C33	1.564 (7)
C13—C14	1.507 (8)	C33—C34	1.509 (7)
C13—C19	1.529 (8)	C33—C39	1.530 (7)
C14—C15	1.541 (9)	C34—C35	1.518 (7)
C14—H14A	0.9700	C34—H34A	0.9700
C14—H14B	0.9700	C34—H34B	0.9700
C15—C16	1.516 (7)	C35—C36	1.529 (7)
C15—H15A	0.9700	С35—Н35А	0.9700
C15—H15B	0.9700	С35—Н35В	0.9700
C16—C17	1.560 (7)	C36—C37	1.575 (7)
C16—H16	0.9800	С36—Н36	0.9800
C17—C18	1.550 (8)	C37—C38	1.545 (8)
C18—H18A	0.9600	C38—H38A	0.9600
C18—H18B	0.9600	C38—H38B	0.9600

supporting information

C18—H18C	0.9600	C38—H38C	0.9600
C19—H19A	0.9600	С39—Н39А	0.9600
C19—H19B	0.9600	С39—Н39В	0.9600
С19—Н19С	0.9600	С39—Н39С	0.9600
C20—H20A	0.9600	C40—H40A	0.9600
C20—H20B	0.9600	C40—H40B	0.9600
C20—H20C	0.9600	C40—H40C	0.9600
C12—O2—H2O2	109.5	C32—O4—H4O4	109.5
C2—C1—C17	123.0 (6)	C22—C21—C37	124.2 (7)
C2—C1—H1	118.5	C22—C21—H21	117.9
С17—С1—Н1	118.5	C37—C21—H21	117.9
C1—C2—C3	121.8 (6)	C21—C22—C23	121.1 (6)
C1—C2—H2A	119.1	C21—C22—H22	119.5
C3—C2—H2A	119.1	C23—C22—H22	119.5
O1—C3—C4	122.5 (8)	O3—C23—C24	126.4 (10)
O1—C3—C2	121.2 (7)	O3—C23—C22	119.5 (8)
C4—C3—C2	116.2 (5)	C24—C23—C22	114.1 (7)
C5—C4—C3	123.4 (6)	C25—C24—C23	128.4 (8)
С5—С4—Н4	118.3	C25—C24—H24	115.8
C3—C4—H4	118.3	C23—C24—H24	115.8
C4—C5—C17	122.1 (5)	C24—C25—C26	121.7 (6)
C4—C5—C6	121.7 (6)	C24—C25—C37	122.8 (6)
C17—C5—C6	115.7 (4)	C26—C25—C37	115.3 (5)
C5—C6—C7	110.3 (4)	C25—C26—C27	109.8 (5)
С5—С6—Н6А	109.6	C25—C26—H26A	109.7
С7—С6—Н6А	109.6	C27—C26—H26A	109.7
С5—С6—Н6В	109.6	C25—C26—H26B	109.7
С7—С6—Н6В	109.6	C27—C26—H26B	109.7
H6A—C6—H6B	108.1	H26A—C26—H26B	108.2
C6—C7—C8	113.5 (6)	C26—C27—C28	112.5 (5)
С6—С7—Н7А	108.9	С26—С27—Н27А	109.1
С8—С7—Н7А	108.9	C28—C27—H27A	109.1
С6—С7—Н7В	108.9	С26—С27—Н27В	109.1
С8—С7—Н7В	108.9	С28—С27—Н27В	109.1
H7A—C7—H7B	107.7	H27A—C27—H27B	107.8
C9—C8—C7	112.3 (5)	C29—C28—C27	110.5 (4)
C9—C8—C16	108.9 (4)	C29—C28—C36	108.2 (3)
C7—C8—C16	110.8 (4)	C27—C28—C36	110.9 (4)
С9—С8—Н8	108.2	C29—C28—H28	109.1
С7—С8—Н8	108.2	C27—C28—H28	109.1
С16—С8—Н8	108.2	C36—C28—H28	109.1
C8—C9—C13	114.3 (5)	C30—C29—C28	120.1 (4)
C8—C9—C10	118.8 (4)	C30—C29—C33	104.1 (4)
C13—C9—C10	105.0 (5)	C28—C29—C33	113.5 (4)
С8—С9—Н9	105.9	С30—С29—Н29	106.1
С13—С9—Н9	105.9	С28—С29—Н29	106.1
С10—С9—Н9	105.9	С33—С29—Н29	106.1

C11—C10—C9	102.8 (5)	C29—C30—C31	104.7 (4)
C11—C10—H10A	111.2	С29—С30—Н30А	110.8
C9—C10—H10A	111.2	С31—С30—Н30А	110.8
C11—C10—H10B	111.2	С29—С30—Н30В	110.8
C9-C10-H10B	111.2	С31—С30—Н30В	110.8
H10A—C10—H10B	109.1	H30A—C30—H30B	108.9
C10-C11-C12	108.2 (6)	C30—C31—C32	107.0 (4)
C10-C11-H11A	110.1	C30—C31—H31A	110.3
C12—C11—H11A	110.1	С32—С31—Н31А	110.3
C10-C11-H11B	110.1	C30—C31—H31B	110.3
C12—C11—H11B	110.1	C32—C31—H31B	110.3
H11A—C11—H11B	108.4	H31A—C31—H31B	108.6
O2—C12—C20	106.6 (6)	O4—C32—C40	106.2 (5)
O2—C12—C13	109.3 (7)	O4—C32—C31	111.1 (5)
C20—C12—C13	115.0 (5)	C40—C32—C31	111.0 (5)
O2—C12—C11	113.4 (5)	O4—C32—C33	112.8 (5)
C20—C12—C11	110.1 (7)	C40—C32—C33	114.0 (4)
C13—C12—C11	102.7 (5)	C31—C32—C33	101.9 (4)
C14—C13—C19	110.5 (6)	C34—C33—C29	109.3 (4)
C14—C13—C9	108.5 (4)	C34—C33—C39	110.0 (5)
С19—С13—С9	112.1 (5)	C29—C33—C39	111.2 (4)
C14—C13—C12	116.5 (5)	C34—C33—C32	117.0 (4)
C19—C13—C12	108.2 (5)	C29—C33—C32	100.3 (4)
C9—C13—C12	100.7 (6)	C39—C33—C32	108.8 (4)
C13—C14—C15	110.9 (4)	C33—C34—C35	111.1 (4)
C13—C14—H14A	109.5	С33—С34—Н34А	109.4
C15—C14—H14A	109.5	С35—С34—Н34А	109.4
C13—C14—H14B	109.5	C33—C34—H34B	109.4
C15—C14—H14B	109.5	C35—C34—H34B	109.4
H14A—C14—H14B	108.0	H34A—C34—H34B	108.0
C16—C15—C14	112.6 (5)	C34—C35—C36	111.2 (4)
C16—C15—H15A	109.1	С34—С35—Н35А	109.4
C14—C15—H15A	109.1	С36—С35—Н35А	109.4
C16—C15—H15B	109.1	С34—С35—Н35В	109.4
C14—C15—H15B	109.1	С36—С35—Н35В	109.4
H15A—C15—H15B	107.8	H35A—C35—H35B	108.0
C15—C16—C8	112.6 (4)	C35—C36—C28	110.8 (4)
C15—C16—C17	114.5 (5)	C35—C36—C37	114.1 (4)
C8—C16—C17	113.2 (4)	C28—C36—C37	112.1 (4)
C15—C16—H16	105.2	С35—С36—Н36	106.4
C8—C16—H16	105.2	С28—С36—Н36	106.4
C17—C16—H16	105.2	С37—С36—Н36	106.4
C5—C17—C1	113.0 (4)	C25—C37—C21	109.0 (5)
C5—C17—C18	110.6 (4)	C25—C37—C38	111.0 (5)
C1—C17—C18	106.4 (5)	C21—C37—C38	107.6 (5)
C5—C17—C16	106.9 (4)	C25—C37—C36	106.5 (4)
C1—C17—C16	109.6 (4)	C21—C37—C36	111.0 (4)
C18—C17—C16	110.3 (4)	C38—C37—C36	111.8 (4)

C17—C18—H18A	109.5	C37—C38—H38A	109.5
C17—C18—H18B	109.5	С37—С38—Н38В	109.5
H18A—C18—H18B	109.5	H38A—C38—H38B	109.5
C17—C18—H18C	109.5	С37—С38—Н38С	109.5
H18A—C18—H18C	109.5	H38A—C38—H38C	109.5
H18B—C18—H18C	109.5	H38B—C38—H38C	109.5
С13—С19—Н19А	109.5	С33—С39—Н39А	109.5
С13—С19—Н19В	109.5	С33—С39—Н39В	109.5
H19A—C19—H19B	109.5	H39A—C39—H39B	109.5
C13—C19—H19C	109.5	C33—C39—H39C	109.5
H19A - C19 - H19C	109.5	H39A—C39—H39C	109.5
H19B—C19—H19C	109.5	H39B-C39-H39C	109.5
C12— $C20$ — $H20A$	109.5	C_{32} C_{40} H_{40A}	109.5
C12 - C20 - H20R	109.5	C_{32} C_{40} H_{40B}	109.5
$H_{20A} - C_{20} - H_{20B}$	109.5	H40A - C40 - H40B	109.5
C_{12} C_{20} H_{20} H_{20}	109.5	C_{32} C_{40} $H_{40}C$	109.5
$H_{20A} = C_{20} = H_{20C}$	109.5	$H_{40A} = C_{40} = H_{40C}$	109.5
H20R C20 H20C	109.5	H40R C40 H40C	109.5
1120B—C20—1120C	109.3	1140B-C40-1140C	109.5
C17—C1—C2—C3	-1.4(9)	C37—C21—C22—C23	-3.2(10)
C1—C2—C3—O1	-177.0 (7)	C21—C22—C23—O3	-173.6 (7)
C1—C2—C3—C4	5.6 (9)	C21—C22—C23—C24	7.9 (10)
O1—C3—C4—C5	178.6 (7)	O3—C23—C24—C25	174.8 (7)
C2-C3-C4-C5	-4.0 (9)	C22—C23—C24—C25	-6.9(12)
$C_{3}-C_{4}-C_{5}-C_{17}$	-1.8(9)	C_{23} C_{24} C_{25} C_{26}	-173.8(7)
C3—C4—C5—C6	-173.5(6)	C_{23} C_{24} C_{25} C_{37}	0.7 (11)
C4—C5—C6—C7	115.1 (6)	C_{24} C_{25} C_{26} C_{27}	115.7 (6)
C17—C5—C6—C7	-57.1 (7)	C37—C25—C26—C27	-59.2 (6)
C5—C6—C7—C8	51.8 (7)	C25—C26—C27—C28	53.1 (6)
C6-C7-C8-C9	-172.9(4)	C26—C27—C28—C29	-172.1(4)
C6-C7-C8-C16	-50.8 (6)	C26—C27—C28—C36	-52.2 (6)
C7—C8—C9—C13	179.3 (4)	C_{27} C_{28} C_{29} C_{30}	-56.9(6)
$C_{16} - C_{8} - C_{9} - C_{13}$	56.1 (5)	C_{36} C_{28} C_{29} C_{30}	-178.5(4)
C7 - C8 - C9 - C10	-55.8(6)	C_{27} C_{28} C_{29} C_{33}	179 0 (4)
$C_{16} - C_{8} - C_{9} - C_{10}$	-1790(5)	$C_{36} - C_{28} - C_{29} - C_{33}$	57 5 (5)
C8-C9-C10-C11	-1621(5)	C_{28} C_{29} C_{30} C_{31}	-160.2(5)
C13 - C9 - C10 - C11	-32.8(6)	C_{33} C_{29} C_{30} C_{31}	-318(5)
C9-C10-C11-C12	71(7)	C_{29} C_{30} C_{31} C_{32}	46(6)
C10-C11-C12-O2	138.2 (6)	C_{30} C_{31} C_{32} C_{4}	1.0(0) 143 7(5)
C10-C11-C12-C20	-1025(6)	C_{30} C_{31} C_{32} C_{40}	-98.4(6)
C10-C11-C12-C13	20.5(7)	C_{30} C_{31} C_{32} C_{40} C_{33}	234(6)
C8-C9-C13-C14	-594(6)	C_{30} C_{29} C_{33} C_{34}	169.8(4)
$C_{10} = C_{10} = C_{13} = C_{14}$	168 6 (5)	$C_{20} = C_{20} = C_{33} = C_{34}$	-57.9(5)
C_{8} C_{9} C_{13} C_{14}	62 9 (6)	$C_{20} - C_{20} - C_{30} - C$	-68.7(5)
$C_{10} = C_{10} = C_{13} = C_{10}$	-690(7)	$C_{20} = C_{20} = C_{30} = C$	63.6(5)
$C_{10} - C_{2} - C_{13} - C_{13}$	1777(4)	$C_{20} - C_{29} - C_{33} - C_{39}$	46.2(4)
$C_{0} = C_{1} = C_{12}$	1/(./(+))	$C_{20} = C_{27} = C_{33} = C_{32}$	+0.2(4)
$C_{10} - C_{9} - C_{13} - C_{12}$	+3.0(3)	04 022 022 024	1/0.3 (4)
02-012-013-014	02.0(0)	04-032-033-034	ou.9 (b)

C20-C12-C13-C14	-37.2 (9)	C40—C32—C33—C34	-40.3 (7)
C11—C12—C13—C14	-156.7 (5)	C31—C32—C33—C34	-160.0 (5)
O2—C12—C13—C19	-42.6 (7)	O4—C32—C33—C29	-161.1 (4)
C20-C12-C13-C19	-162.4 (7)	C40—C32—C33—C29	77.7 (6)
C11—C12—C13—C19	78.1 (6)	C31—C32—C33—C29	-42.0 (5)
O2—C12—C13—C9	-160.3 (5)	O4—C32—C33—C39	-44.4 (6)
C20—C12—C13—C9	79.9 (7)	C40—C32—C33—C39	-165.6 (5)
C11—C12—C13—C9	-39.7 (6)	C31—C32—C33—C39	74.7 (5)
C19—C13—C14—C15	-67.1 (6)	C29—C33—C34—C35	56.0 (6)
C9—C13—C14—C15	56.3 (7)	C39—C33—C34—C35	-66.2 (6)
C12—C13—C14—C15	168.9 (6)	C32—C33—C34—C35	169.1 (5)
C13—C14—C15—C16	-55.1 (6)	C33—C34—C35—C36	-57.3 (7)
C14—C15—C16—C8	52.4 (6)	C34—C35—C36—C28	57.2 (6)
C14—C15—C16—C17	-176.5 (4)	C34—C35—C36—C37	-175.2 (4)
C9—C8—C16—C15	-51.5 (6)	C29—C28—C36—C35	-56.0 (5)
C7—C8—C16—C15	-175.6 (5)	C27—C28—C36—C35	-177.4 (4)
C9—C8—C16—C17	176.7 (4)	C29—C28—C36—C37	175.3 (4)
C7—C8—C16—C17	52.7 (6)	C27—C28—C36—C37	53.9 (5)
C4—C5—C17—C1	5.8 (8)	C24—C25—C37—C21	4.3 (7)
C6-C5-C17-C1	178.0 (5)	C26—C25—C37—C21	179.1 (5)
C4—C5—C17—C18	125.0 (6)	C24—C25—C37—C38	122.6 (6)
C6-C5-C17-C18	-62.8 (7)	C26—C25—C37—C38	-62.6 (6)
C4—C5—C17—C16	-114.9 (6)	C24—C25—C37—C36	-115.5 (6)
C6-C5-C17-C16	57.3 (6)	C26—C25—C37—C36	59.4 (6)
C2-C1-C17-C5	-4.2 (8)	C22—C21—C37—C25	-2.8 (8)
C2-C1-C17-C18	-125.7 (6)	C22—C21—C37—C38	-123.2 (6)
C2-C1-C17-C16	115.0 (6)	C22—C21—C37—C36	114.2 (6)
C15—C16—C17—C5	174.9 (4)	C35—C36—C37—C25	177.5 (4)
C8—C16—C17—C5	-54.3 (5)	C28—C36—C37—C25	-55.5 (5)
C15—C16—C17—C1	52.1 (6)	C35—C36—C37—C21	59.1 (6)
C8—C16—C17—C1	-177.1 (5)	C28—C36—C37—C21	-174.0 (5)
C15—C16—C17—C18	-64.8 (6)	C35—C36—C37—C38	-61.1 (6)
C8—C16—C17—C18	66.0 (6)	C28—C36—C37—C38	65.9 (6)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
02—H2 <i>O</i> 2···O4 ⁱ	0.82	2.00	2.808 (7)	167
O4—H4 <i>O</i> 4···O3 ⁱⁱ	0.82	2.09	2.858 (7)	156

Symmetry codes: (i) *x*+1/2, *y*-1/2, *z*; (ii) -*x*+1, *y*+1, -*z*+2.