Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

N-(1,3-Thiazol-2-yl)- N^{\prime}-[(thiophen-2-yl)carbonyl]thiourea hemihydrate

Durga Prasad Singh, ${ }^{\text {a }}$ Seema Pratap, ${ }^{\text {a }}$ Sema Öztürk Yildirim ${ }^{\text {b }}$ and Ray J. Butcher ${ }^{\text {c* }}$
a Department of Chemistry, M.M.V., Banaras Hindu University, Varanasi 221005 , India, ${ }^{\mathbf{b}}$ Erciyes University, Faculty of Sciences, Department of Physics, 38039 Kayseri, Turkey, and ${ }^{\text {c }}$ Department of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
Correspondence e-mail: rbutcher99@yahoo.com

Received 18 October 2012; accepted 30 October 2012

Key indicators: single-crystal X-ray study; $T=123 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.039 ; w R$ factor $=0.110$; data-to-parameter ratio $=15.0$.

The title compound, $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{OS}_{3} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$, crystallizes with two independent but similar molecules in the asymmetric unit, both of which are linked by a water molecule through O $\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds. In addition the water O atom is further linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to two additional main molecules, forming a tetrameric unit. These tetrameric units then form infinite ribbons parallel to the $a c$ plane.The dihedral angle between the thiophenoyl and thiazolyl rings is 12.15 (10) and 21.69 (11) ${ }^{\circ}$ in molecules A and B, respectively. The central thiourea core makes dihedral angles of 5.77 (11) and $8.61(9)^{\circ}$, respectively, with the thiophenoyl and thiazolyl rings in molecule A and 8.41 (10) and 13.43 (12) ${ }^{\circ}$ in molecule B. Each molecule adopts a trans-cis geometry with respect to the position of thiophenoyl and thiazole groups relative to the S atom across the thiourea $\mathrm{C}-\mathrm{N}$ bonds. This geometry is stabilized by intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Related literature

For general background to aroylthiourea and its derivatives, see: Aly et al. (2007). For related structures, see: Koch (2001); Pérez et al. (2008). For their biological activity, see: Saeed et al. (2008); Gu et al. (2007); Xu et al. (2004); Yan \& Xue (2008).

Experimental

Crystal data
$\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{OS}_{3} \cdot 0.5 \mathrm{H}_{2} \mathrm{O} \quad M_{r}=278.37$

Triclinic, $P \overline{1}$
$a=7.4489$ (4) Å
$b=11.1060(6) \AA$
$c=14.7935$ (7) \AA
$\alpha=93.559(4)^{\circ}$
$\beta=99.813(4)^{\circ}$
$\gamma=107.789(5)^{\circ}$
$V=1139.74(11) \AA^{3}$
$Z=4$
$\mathrm{Cu} K \alpha$ radiation
$\mu=5.86 \mathrm{~mm}^{-1}$
$T=123 \mathrm{~K}$
$0.35 \times 0.25 \times 0.18 \mathrm{~mm}$

Data collection

Oxford Diffraction Xcalibur (Ruby Gemini CCD) diffractometer
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011)
$T_{\text {min }}=0.441, T_{\text {max }}=1.000$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.110$
$S=1.08$
4566 reflections
304 parameters
3 restraints

7828 measured reflections 4566 independent reflections 3906 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.034$

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\max }=0.43 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.30 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 A-\mathrm{H} 1 A A \cdots \mathrm{O} 1 W^{\mathrm{i}}$	0.86	2.22	$3.003(3)$	152
$\mathrm{~N} 1 B-\mathrm{H} 1 B A \cdots \mathrm{O} 1 W^{\mathrm{ii}}$	0.86	2.14	$2.973(3)$	163
$\mathrm{~N} 2 A-\mathrm{H} 2 A A \cdots \mathrm{O} 1 A$	0.86	1.89	$2.599(3)$	138
$\mathrm{~N} 2 B-\mathrm{H} 2 B A \cdots \mathrm{O} 1 B$	0.86	1.90	$2.588(3)$	136
$\mathrm{O} 1 W-\mathrm{H} 1 W \cdots \mathrm{~N} 3 B$	$0.82(1)$	$2.06(1)$	$2.852(3)$	$163(4)$
$\mathrm{O} 1 W-\mathrm{H} 2 W \cdots \mathrm{~N} 3 A$	$0.82(1)$	$2.09(1)$	$2.892(3)$	$167(3)$
Symmetry codes: $(\mathrm{i})-x+1,-y,-z+1 \cdot(\mathrm{iii})-x+1,-y,-z+2$				

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

DPS and SP are grateful to Banaras Hindu University, Varanasi, for financial support. RJB acknowledges the NSFMRI program (grant No. CHE0619278) for funds to purchase the X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2240).

References

Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.
Aly, A. A., Ahmed, E. K., El-Mokadem, K. M. \& Hegazy, M. E. F. (2007). J. Sulfur Chem. 28, 73-93.
Gu, C.-L., Liu, L., Sui, Y., Zhao, J.-L. D., Wang, D. \& Chen, Y.-J. (2007). Tetrahedron, 18, 455-463.
Koch, K. R. (2001). Coord. Chem. Rev. 216-217, 473-488.
Pérez, H., Mascarenhas, Y., Estévez-Hernández, O., Santos, S. Jr \& Duque, J. (2008). Acta Cryst. E64, 0695.

Saeed, S., Bhatti, M. H., Yunus, U. \& Jones, P. G. (2008). Acta Cryst. E64, o1485.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Xu, Y., Hua, W., Liu, X. \& Zhu, D. (2004). Chin. J. Org. Chem. 24, 1217-1222.
Yan, L. \& Xue, S.-J. (2008). Chin. J. Struct. Chem. 27, 543-546.

supporting information

Acta Cryst. (2012). E68, o3295 [doi:10.1107/S160053681204500X]

N-(1,3-Thiazol-2-yl)- \mathbf{N}^{\prime}-[(thiophen-2-yl)carbonyl]thiourea hemihydrate
 Durga Prasad Singh, Seema Pratap, Sema Öztürk Yildirim and Ray J. Butcher

S1. Comment

Aroylthiourea and its derivatives are an important class of organic compounds in which the sulphur atom is a major ligand atom and plays an important role in coordination chemistry with transition metals. These compounds are found to be useful in heterocyclic synthesis and many of these substrates have interesting biological activities (Aly et al., 2007). Aroylthioureas and and its derivatives are also known to exhibit a wide range of biological activities, such as anticancer (Saeed et al., 2010), anti-fungal (Saeed et al., 2008), antibacterial, antiviral, anti-tubercular, insecticidal, organocatalyst (Gu et al., 2007) and as agrochemicals (Xu et al., 2004).
The title compound (Fig. 1), $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{OS}_{3} .0 .5 \mathrm{H}_{2} \mathrm{O}$, crystallizes with two independent but similar molecules in the asymmetric unit both of which are linked by a water molecule through $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds. In addition the water O is further linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to two additional $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{OS}_{3}$ molecules, forming a tetrameric moiety. These tetrameric moieties then form infinite ribbons parallel to the ac plane (Fig.2).
The main bond lengths and angles are within the range obtained for similar compounds (Koch et al., 2001; Perez et al., 2008). The C6A-S2A [1.657 (2) \AA], C6B-S2B [1.659 (2) \AA] and C5A-O1A [1.233 (3) \AA], C5B-O1B [1.232 (3) \AA] bonds show typical double-bond character. However, the C-N bond lengths, C5A-N1A [1.388 (3) \AA], C6A-N1A [1.395 (3) \AA], C6A-N2A [1.345 (3) \AA], C7A-N2A [1.383 (3) \AA] and C5B-N1B [1.385 (3) \AA], C6B-N1B [1.390 (3) \AA], C6B-N2B [1.350 (3) \AA], C7B-N2B [1.383 (3) \AA] are shorter than the normal C-N single-bond length of about $1.48 \AA$ (Allen, 2002). These results can be explained by the existence of resonance in this part of the molecule. In first molecule (A) the central thiourea fragment (N1A-C6A-S2A-N2A) makes the dihedral angle of $5.77(0.11)^{\circ}$ and $8.61(0.09)^{\circ}$ with thiophenoyl (S1A/C4A-C1A) and thiazolyl ring (C7A-S3A-C9A-C8A-N3A). Where as in second molecule(B) the central thiourea fragment ($\mathrm{N} 1 \mathrm{~B} / \mathrm{C} 6 \mathrm{~B} / \mathrm{S} 2 \mathrm{~B} / \mathrm{N} 2 \mathrm{~B}$) makes the dihedral angle of $8.41(0.10)^{\circ}$ with $(\mathrm{S} 1 \mathrm{~B} / \mathrm{C} 4 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B})$ group, and the thiazole ring (C7B-S3B-C9B-C8B-N3B) is $13.43(0.12)^{\circ}$, respectively. The dihedral angle between the thiophenoyl and thiazolyl rings is $12.15(0.10)^{\circ}$ in molecule A and $21.69(0.11)^{\circ}$ in molecule B . The trans-cis geometry in the thiourea moiety of both molecule is stabilized by the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Fig. 2 and Table 1).

S2. Experimental

A solution of 2-thiophenecarbonyl chloride (0.01 mol) in anhydrous acetone $(80 \mathrm{ml})$ was added dropwise to a suspension of ammonium thiocyanate $(0.01 \mathrm{~mol})$ in anhydrous acetone $(50 \mathrm{ml})$ and the reaction mixture was refluxed for 50 minutes. After cooling to room temperature, a solution of 4-chloroaniline (0.01 mol) in dry acetone $(25 \mathrm{ml})$ was added and the resulting mixture refluxed for 2 h . The reaction mixture was poured into five times its volume of cold water, upon which the thiourea precipitated. The product was recrystallized from ethanol as colorless block crystals.

S3. Refinement

Hydrogen atoms on the water molecule were located in a difference-Fourier map and both positional and isotropic displacement parameters were refined. Other H atoms were placed in calculated positions with $\mathrm{N}-\mathrm{H}=0.88 \AA$ and $\mathrm{C}-\mathrm{H}$ $=0.95 \AA$ and refined using a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$.

Figure 1

Molecular structure of the title compound showing the atom labeling scheme and 30\% probability displacement ellipsoids. Dashed lines indicate the intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and inter-species $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds.

Figure 2

Crystal packing for the title compound viewed along the c axis. Dashed lines indicate an intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and O $-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds.

N-(1,3-Thiazol-2-yl)- N^{\prime}-[(thiophen-2-yl)carbonyl]thiourea hemihydrate

Crystal data

$\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{OS}_{3} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=278.37$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=7.4489$ (4) Å
$b=11.1060$ (6) \AA
$c=14.7935$ (7) \AA
$\alpha=93.559(4)^{\circ}$
$\beta=99.813$ (4) ${ }^{\circ}$
$\gamma=107.789(5)^{\circ}$
$V=1139.74(11) \AA^{3}$

$$
\begin{aligned}
& Z=4 \\
& F(000)=572 \\
& D_{\mathrm{x}}=1.622 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \mathrm{Cu} K \alpha \text { radiation, } \lambda=1.54184 \AA \\
& \text { Cell parameters from } 3735 \text { reflections } \\
& \theta=3.1-75.6^{\circ} \\
& \mu=5.86 \mathrm{~mm}^{-1} \\
& T=123 \mathrm{~K} \\
& \text { Block, colorless } \\
& 0.35 \times 0.25 \times 0.18 \mathrm{~mm}
\end{aligned}
$$

Data collection

Oxford Diffraction Xcalibur (Ruby, Gemini
CCD)
diffractometer
Radiation source: Enhance (Cu) X-ray Source
Graphite monochromator
Detector resolution: 10.5081 pixels mm^{-1}
ω scans
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)

$$
\begin{aligned}
& T_{\min }=0.441, T_{\max }=1.000 \\
& 7828 \text { measured reflections } \\
& 4566 \text { independent reflections } \\
& 3906 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.034 \\
& \theta_{\max }=75.8^{\circ}, \theta_{\min }=3.1^{\circ} \\
& h=-9 \rightarrow 6 \\
& k=-13 \rightarrow 13 \\
& l=-12 \rightarrow 18
\end{aligned}
$$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.110$
$S=1.08$
4566 reflections
304 parameters
3 restraints
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
S1A	$0.17373(9)$	$0.25490(5)$	$0.47025(4)$	$0.02167(15)$
S1B	$0.26874(10)$	$-0.44204(6)$	$0.98233(4)$	$0.02371(15)$
S2A	$0.29573(10)$	$-0.30344(6)$	$0.38262(4)$	$0.02567(16)$
S2B	$0.22859(9)$	$0.13688(5)$	$1.07688(4)$	$0.01906(14)$
S3A	$0.32482(9)$	$-0.42492(5)$	$0.56122(4)$	$0.02351(15)$
S3B	$0.14624(9)$	$0.23871(5)$	$0.89130(4)$	$0.02046(15)$
O1A	$0.2481(3)$	$0.03651(16)$	$0.55080(11)$	$0.0221(4)$
O1B	$0.2523(3)$	$-0.20849(16)$	$0.90756(12)$	$0.0243(4)$
O1W	$0.5774(2)$	$0.02421(15)$	$0.75431(12)$	$0.0196(4)$
N1A	$0.2661(3)$	$-0.07508(18)$	$0.41864(13)$	$0.0171(4)$
H1AA	0.2675	-0.0709	0.3609	0.021^{*}
N1B	$0.2789(3)$	$-0.08541(17)$	$1.04263(13)$	$0.0149(4)$
H1BA	0.3020	-0.0830	1.1018	0.018^{*}
N2A	$0.3233(3)$	$-0.17714(18)$	$0.54658(13)$	$0.0172(4)$
H2AA	0.3276	-0.1065	0.5757	0.021^{*}

N2B	0.2633 (3)	0.02718 (18)	0.91718 (13)	0.0158 (4)
H2BA	0.2896	-0.0347	0.8907	0.019*
N3A	0.3823 (3)	-0.24320 (18)	0.69077 (14)	0.0198 (4)
N3B	0.2608 (3)	0.10852 (18)	0.77715 (13)	0.0187 (4)
C1A	0.1092 (4)	0.3120 (2)	0.36934 (18)	0.0230 (5)
H1A	0.0858	0.3894	0.3665	0.028*
C1B	0.2768 (4)	-0.5164 (2)	1.07967 (18)	0.0253 (5)
H1B	0.2776	-0.5999	1.0804	0.030*
C2A	0.0959 (4)	0.2312 (2)	0.29353 (18)	0.0235 (5)
H2A	0.0615	0.2470	0.2331	0.028*
C2B	0.2821 (4)	-0.4394 (2)	1.15643 (17)	0.0228 (5)
H2B	0.2863	-0.4647	1.2153	0.027*
C3A	0.1405 (3)	0.1203 (2)	0.31700 (17)	0.0196 (5)
H3A	0.1388	0.0553	0.2738	0.024*
C3B	0.2803 (3)	-0.3171 (2)	1.13637 (16)	0.0188 (5)
H3B	0.2834	-0.2528	1.1805	0.023*
C4A	0.1863 (3)	0.1199 (2)	0.41070 (16)	0.0163 (5)
C4B	0.2735 (3)	-0.3040 (2)	1.04436 (16)	0.0164 (5)
C5A	0.2352 (3)	0.0259 (2)	0.46643 (16)	0.0161 (5)
C5B	0.2672 (3)	-0.1975 (2)	0.99201 (16)	0.0161 (5)
C6A	0.2953 (3)	-0.1828 (2)	0.45404 (16)	0.0170 (5)
C6B	0.2569 (3)	0.0239 (2)	1.00755 (16)	0.0152 (4)
C7A	0.3461 (3)	-0.2706 (2)	0.60104 (17)	0.0167 (5)
C7B	0.2328 (3)	0.1179 (2)	0.86155 (16)	0.0149 (4)
C8A	0.3920 (4)	-0.3491 (2)	0.73281 (18)	0.0226 (5)
H8A	0.4158	-0.3481	0.7967	0.027*
C8B	0.2079 (4)	0.2002 (2)	0.73046 (17)	0.0210 (5)
H8B	0.2173	0.2082	0.6691	0.025*
C9A	0.3645 (4)	-0.4542 (2)	0.67459 (18)	0.0254 (6)
H9A	0.3667	-0.5323	0.6932	0.030*
C9B	0.1420 (4)	0.2768 (2)	0.77978 (17)	0.0219 (5)
H9B	0.0998	0.3417	0.7570	0.026*
H1W	0.486 (3)	0.052 (3)	0.750 (3)	0.050*
H2W	0.531 (4)	-0.0536 (3)	0.744 (2)	0.050*

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1A	$0.0280(3)$	$0.0159(3)$	$0.0215(3)$	$0.0091(2)$	$0.0033(2)$	$-0.0003(2)$
S1B	$0.0384(4)$	$0.0153(3)$	$0.0203(3)$	$0.0137(3)$	$0.0053(2)$	$-0.0009(2)$
S2A	$0.0424(4)$	$0.0177(3)$	$0.0177(3)$	$0.0141(3)$	$0.0017(3)$	$-0.0029(2)$
S2B	$0.0280(3)$	$0.0126(3)$	$0.0167(3)$	$0.0081(2)$	$0.0033(2)$	$-0.0014(2)$
S3A	$0.0336(3)$	$0.0113(3)$	$0.0234(3)$	$0.0059(2)$	$0.0030(2)$	$-0.0002(2)$
S3B	$0.0286(3)$	$0.0172(3)$	$0.0218(3)$	$0.0133(2)$	$0.0095(2)$	$0.0050(2)$
O1A	$0.0312(10)$	$0.0176(8)$	$0.0176(9)$	$0.0089(7)$	$0.0043(7)$	$-0.0004(6)$
O1B	$0.0396(11)$	$0.0183(8)$	$0.0183(9)$	$0.0139(8)$	$0.0064(8)$	$0.0011(7)$
O1W	$0.0232(9)$	$0.0117(8)$	$0.0228(9)$	$0.0067(7)$	$0.0012(7)$	$-0.0014(7)$
N1A	$0.0231(10)$	$0.0127(9)$	$0.0151(9)$	$0.0065(8)$	$0.0015(8)$	$0.0000(7)$

N1B	$0.0183(9)$	$0.0120(9)$	$0.0145(9)$	$0.0060(7)$	$0.0019(7)$	$0.0006(7)$
N2A	$0.0217(10)$	$0.0104(9)$	$0.0175(10)$	$0.0043(7)$	$0.0018(8)$	$-0.0020(7)$
N2B	$0.0189(9)$	$0.0123(9)$	$0.0181(10)$	$0.0079(7)$	$0.0046(8)$	$-0.0001(7)$
N3A	$0.0210(10)$	$0.0154(10)$	$0.0204(10)$	$0.0035(8)$	$0.0015(8)$	$0.0019(8)$
N3B	$0.0229(10)$	$0.0139(9)$	$0.0192(10)$	$0.0061(8)$	$0.0042(8)$	$0.0007(8)$
C1A	$0.0238(12)$	$0.0190(12)$	$0.0285(13)$	$0.0101(10)$	$0.0045(10)$	$0.0058(10)$
C1B	$0.0376(15)$	$0.0148(11)$	$0.0254(13)$	$0.0125(10)$	$0.0030(11)$	$0.0042(10)$
C2A	$0.0228(12)$	$0.0283(13)$	$0.0220(12)$	$0.0117(10)$	$0.0037(10)$	$0.0058(10)$
C2B	$0.0313(13)$	$0.0177(12)$	$0.0184(12)$	$0.0090(10)$	$0.0006(10)$	$0.0026(9)$
C3A	$0.0189(11)$	$0.0183(11)$	$0.0220(12)$	$0.0066(9)$	$0.0043(9)$	$0.0014(9)$
C3B	$0.0210(12)$	$0.0130(11)$	$0.0202(12)$	$0.0059(9)$	$-0.0009(9)$	$-0.0031(9)$
C4A	$0.0141(10)$	$0.0137(10)$	$0.0195(11)$	$0.0031(8)$	$0.0023(9)$	$-0.0008(9)$
C4B	$0.0153(10)$	$0.0117(10)$	$0.0218(12)$	$0.0055(8)$	$0.0020(9)$	$-0.0031(9)$
C5A	$0.0139(10)$	$0.0120(10)$	$0.0199(12)$	$0.0018(8)$	$0.0022(9)$	$-0.0015(9)$
C5B	$0.0139(10)$	$0.0124(10)$	$0.0212(12)$	$0.0045(8)$	$0.0024(9)$	$-0.0010(9)$
C6A	$0.0164(11)$	$0.0137(10)$	$0.0182(11)$	$0.0030(8)$	$0.0002(9)$	$0.0009(8)$
C6B	$0.0132(10)$	$0.0100(10)$	$0.0201(11)$	$0.0022(8)$	$0.0009(8)$	$0.0003(8)$
C7A	$0.0150(11)$	$0.0107(10)$	$0.0219(12)$	$0.0016(8)$	$0.0026(9)$	$-0.0003(8)$
C7B	$0.0137(10)$	$0.0109(10)$	$0.0194(11)$	$0.0042(8)$	$0.0015(8)$	$-0.0006(8)$
C8A	$0.0228(12)$	$0.0218(12)$	$0.0217(12)$	$0.0054(10)$	$0.0026(10)$	$0.0062(10)$
C8B	$0.0245(12)$	$0.0181(11)$	$0.0196(12)$	$0.0059(10)$	$0.0029(9)$	$0.0042(9)$
C9A	$0.0304(14)$	$0.0169(12)$	$0.0269(14)$	$0.0048(10)$	$0.0036(11)$	$0.0082(10)$
C9B	$0.0268(13)$	$0.0195(12)$	$0.0219(12)$	$0.0102(10)$	$0.0042(10)$	$0.0088(10)$

Geometric parameters ($\mathrm{A},{ }^{\circ}$)

S1A-C1A	1.709 (3)	N2B-H2BA	0.8600
S1A-C4A	1.727 (2)	N3A-C7A	1.306 (3)
S1B-C1B	1.705 (3)	N3A-C8A	1.379 (3)
S1B-C4B	1.725 (2)	N3B-C7B	1.303 (3)
S2A-C6A	1.655 (2)	N3B-C8B	1.382 (3)
S2B-C6B	1.657 (2)	C1A-C2A	1.362 (4)
S3A-C9A	1.721 (3)	C1A-H1A	0.9300
S3A-C7A	1.728 (2)	C1B-C2B	1.366 (4)
S3B-C7B	1.721 (2)	C1B-H1B	0.9300
S3B-C9B	1.726 (2)	$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	1.418 (3)
O1A-C5A	1.231 (3)	$\mathrm{C} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{~A}$	0.9300
O1B-C5B	1.230 (3)	C2B-C3B	1.411 (3)
O1W-H1W	0.8199 (10)	C2B-H2B	0.9300
O1W-H2W	0.8199 (11)	C3A-C4A	1.370 (3)
N1A-C5A	1.387 (3)	C3A-H3A	0.9300
N1A-C6A	1.396 (3)	C3B-C4B	1.372 (3)
N1A-H1AA	0.8600	C3B-H3B	0.9300
N1B-C5B	1.383 (3)	C4A-C5A	1.463 (3)
N1B-C6B	1.393 (3)	C4B-C5B	1.461 (3)
N1B-H1BA	0.8600	C8A-C9A	1.347 (4)
N2A-C6A	1.344 (3)	C8A-H8A	0.9300
N2A-C7A	1.385 (3)	C8B-C9B	1.340 (4)

$\mathrm{N} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{AA}$	0.8600
N2B-C6B	1.348 (3)
N2B-C7B	1.387 (3)
$\mathrm{C} 1 \mathrm{~A}-\mathrm{S} 1 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	91.39 (12)
C1B-S1B-C4B	91.37 (12)
C9A-S3A-C7A	88.14 (12)
C7B-S3B-C9B	88.16 (11)
H1W-O1W-H2W	106 (2)
C5A-N1A-C6A	127.1 (2)
C5A-N1A-H1AA	116.4
C6A-N1A-H1AA	116.4
C5B-N1B-C6B	126.7 (2)
C5B-N1B-H1BA	116.7
C6B-N1B-H1BA	116.7
C6A-N2A-C7A	128.3 (2)
C6A-N2A-H2AA	115.9
C7A-N2A-H2AA	115.9
C6B-N2B-C7B	128.1 (2)
C6B-N2B-H2BA	116.0
C7B-N2B-H2BA	116.0
C7A-N3A-C8A	110.1 (2)
C7B-N3B-C8B	109.9 (2)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{S} 1 \mathrm{~A}$	112.31 (19)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{H} 1 \mathrm{~A}$	123.8
S1A-C1A-H1A	123.8
C2B-C1B-S1B	112.34 (19)
$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{H} 1 \mathrm{~B}$	123.8
S1B-C1B-H1B	123.8
C1A-C2A-C3A	112.5 (2)
$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{~A}$	123.7
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{~A}$	123.7
C1B-C2B-C3B	112.4 (2)
$\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{~B}$	123.8
$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{~B}$	123.8
$\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	112.3 (2)
$\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{H} 3 \mathrm{~A}$	123.9
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{H} 3 \mathrm{~A}$	123.9
$\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}$	112.4 (2)
$\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{H} 3 \mathrm{~B}$	123.8
$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{H} 3 \mathrm{~B}$	123.8
$\mathrm{C} 4 \mathrm{~A}-\mathrm{S} 1 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	0.6 (2)
C4B-S1B-C1B-C2B	0.3 (2)
$\mathrm{S} 1 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	-0.5 (3)
S1B-C1B-C2B-C3B	-0.3 (3)
$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	0.1 (3)
$\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}$	0.1 (3)

C8B-H8B	0.9300
C9A-H9A	0.9300
C9B-H9B	0.9300
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}$	131.8 (2)
C3A-C4A-S1A	111.53 (18)
C5A-C4A-S1A	116.61 (17)
$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}$	131.9 (2)
C3B-C4B-S1B	111.50 (17)
C5B-C4B-S1B	116.60 (18)
O1A-C5A-N1A	122.3 (2)
O1A-C5A-C4A	121.5 (2)
N1A-C5A-C4A	116.1 (2)
O1B-C5B-N1B	122.6 (2)
O1B-C5B-C4B	121.1 (2)
N1B-C5B-C4B	116.3 (2)
$\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}$	114.9 (2)
N2A-C6A-S2A	125.44 (18)
N1A-C6A-S2A	119.68 (17)
N2B-C6B-N1B	114.6 (2)
N2B-C6B-S2B	125.81 (17)
N1B-C6B-S2B	119.57 (17)
N3A-C7A-N2A	118.5 (2)
N3A-C7A-S3A	115.58 (18)
N2A-C7A-S3A	125.85 (18)
$\mathrm{N} 3 \mathrm{~B}-\mathrm{C} 7 \mathrm{~B}-\mathrm{N} 2 \mathrm{~B}$	118.3 (2)
N3B-C7B-S3B	115.79 (17)
N2B-C7B-S3B	125.78 (18)
C9A-C8A-N3A	115.1 (2)
C9A-C8A-H8A	122.4
N3A-C8A-H8A	122.4
C9B-C8B-N3B	115.3 (2)
C9B-C8B-H8B	122.3
N3B-C8B-H8B	122.3
C8A-C9A-S3A	111.08 (19)
C8A-C9A-H9A	124.5
S3A-C9A-H9A	124.5
C8B-C9B-S3B	110.83 (18)
C8B-C9B-H9B	124.6
S3B-C9B-H9B	124.6
$\mathrm{C} 7 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}$	176.5 (2)
$\mathrm{C} 7 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}-\mathrm{S} 2 \mathrm{~A}$	-4.3 (4)
$\mathrm{C} 5 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}$	-10.2 (3)
$\mathrm{C} 5 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}-\mathrm{S} 2 \mathrm{~A}$	170.44 (18)
$\mathrm{C} 7 \mathrm{~B}-\mathrm{N} 2 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}$	175.1 (2)
$\mathrm{C} 7 \mathrm{~B}-\mathrm{N} 2 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}-\mathrm{S} 2 \mathrm{~B}$	-5.7 (4)

$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}$	$177.8(2)$
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{S} 1 \mathrm{~A}$	$0.3(3)$
$\mathrm{C} 1 \mathrm{~A}-\mathrm{S} 1 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	$-0.49(19)$
$\mathrm{C} 1 \mathrm{~A}-\mathrm{S} 1 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}$	$-178.44(19)$
$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}$	$179.2(2)$
$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{S} 1 \mathrm{~B}$	$0.1(3)$
$\mathrm{C} 1 \mathrm{~B}-\mathrm{S} 1 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}$	$-0.2(2)$
$\mathrm{C} 1 \mathrm{~B}-\mathrm{S} 1 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}$	$-179.44(19)$
$\mathrm{C} 6 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}-\mathrm{O} 1 \mathrm{~A}$	$7.0(4)$
$\mathrm{C} 6 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	$-173.1(2)$
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}-\mathrm{O} 1 \mathrm{~A}$	$-170.5(2)$
$\mathrm{S} 1 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}-\mathrm{O} 1 \mathrm{~A}$	$6.9(3)$
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}$	$9.6(4)$
S1A-C4A-C5A-N1A	$-173.01(16)$
C6B-N1B-C5B-O1B	$6.8(4)$
C6B-N1B-C5B-C4B	$-173.2(2)$
C3B-C4B-C5B-O1B	$-176.5(2)$
S1B-C4B-C5B-O1B	$2.5(3)$
C3B-C4B-C5B-N1B	$3.5(4)$
S1B-C4B-C5B-N1B	$-177.49(16)$

$\mathrm{C} 5 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}-\mathrm{N} 2 \mathrm{~B}$	$-13.9(3)$
$\mathrm{C} 5 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}-\mathrm{S} 2 \mathrm{~B}$	$166.76(18)$
$\mathrm{C} 8 \mathrm{~A}-\mathrm{N} 3 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}$	$177.4(2)$
$\mathrm{C} 8 \mathrm{~A}-\mathrm{N} 3 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}-\mathrm{S} 3 \mathrm{~A}$	$-0.9(3)$
$\mathrm{C} 6 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}-\mathrm{N} 3 \mathrm{~A}$	$176.3(2)$
$\mathrm{C} 6 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}-\mathrm{S} 3 \mathrm{~A}$	$-5.5(4)$
$\mathrm{C} 9 \mathrm{~A}-\mathrm{S} 3 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}-\mathrm{N} 3 \mathrm{~A}$	$0.9(2)$
$\mathrm{C} 9 \mathrm{~A}-\mathrm{S} 3 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}$	$-177.3(2)$
$\mathrm{C} 8 \mathrm{~B}-\mathrm{N} 3 \mathrm{~B}-\mathrm{C} 7 \mathrm{~B}-\mathrm{N} 2 \mathrm{~B}$	$174.97(19)$
$\mathrm{C} 8 \mathrm{~B}-\mathrm{N} 3 \mathrm{~B}-\mathrm{C} 7 \mathrm{~B}-\mathrm{S} 3 \mathrm{~B}$	$-1.3(3)$
$\mathrm{C} 6 \mathrm{~B}-\mathrm{N} 2 \mathrm{~B}-\mathrm{C} 7 \mathrm{~B}-\mathrm{N} 3 \mathrm{~B}$	$174.7(2)$
$\mathrm{C} 6 \mathrm{~B}-\mathrm{N} 2 \mathrm{~B}-\mathrm{C} 7 \mathrm{~B}-\mathrm{S} 3 \mathrm{~B}$	$-9.5(3)$
$\mathrm{C} 9 \mathrm{~B}-\mathrm{S} 3 \mathrm{~B}-\mathrm{C} 7 \mathrm{~B}-\mathrm{N} 3 \mathrm{~B}$	$1.54(19)$
$\mathrm{C} 9 \mathrm{~B}-\mathrm{S} 3 \mathrm{~B}-\mathrm{C} 7 \mathrm{~B}-\mathrm{N} 2 \mathrm{~B}$	$-174.4(2)$
$\mathrm{C} 7 \mathrm{~A}-\mathrm{N} 3 \mathrm{~A}-\mathrm{C} 8 \mathrm{~A}-\mathrm{C} 9 \mathrm{~A}$	$0.5(3)$
$\mathrm{C} 7 \mathrm{~B}-\mathrm{N} 3 \mathrm{~B}-\mathrm{C} 8 \mathrm{~B}-\mathrm{C} 9 \mathrm{~B}$	$0.2(3)$
$\mathrm{N} 3 \mathrm{~A}-\mathrm{C} 8 \mathrm{~A}-\mathrm{C} 9 \mathrm{~A}-\mathrm{S} 3 \mathrm{~A}$	$0.2(3)$
$\mathrm{C} 7 \mathrm{~A}-\mathrm{S} 3 \mathrm{~A}-\mathrm{C} 9 \mathrm{~A}-\mathrm{C} 8 \mathrm{~A}$	$-0.6(2)$
$\mathrm{N} 3 \mathrm{~B}-\mathrm{C} 8 \mathrm{~B}-\mathrm{C} 9 \mathrm{~B}-\mathrm{S} 3 \mathrm{~B}$	$0.9(3)$
$\mathrm{C} 7 \mathrm{~B}-\mathrm{S} 3 \mathrm{~B}-\mathrm{C} 9 \mathrm{~B}-\mathrm{C} 8 \mathrm{~B}$	$-1.32(19)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 A — \mathrm{H} 1 A A \cdots \mathrm{O} 1 W^{\mathrm{i}}$	0.86	2.22	$3.003(3)$	152
$\mathrm{~N} 1 B — \mathrm{H} 1 B A \cdots \mathrm{O} 1 W^{\text {Ki }}$	0.86	2.14	$2.973(3)$	163
$\mathrm{~N} 2 A — \mathrm{H} 2 A A \cdots \mathrm{O} 1 A$	0.86	1.89	$2.599(3)$	138
$\mathrm{~N} 2 B — \mathrm{H} 2 B A \cdots \mathrm{O} 1 B$	0.86	1.90	$2.588(3)$	136
$\mathrm{O} 1 W — \mathrm{H} 1 W \cdots \mathrm{~N} 3 B$	$0.82(1)$	$2.06(1)$	$2.852(3)$	$163(4)$
$\mathrm{O} 1 W — \mathrm{H} 2 W \cdots \mathrm{~N} 3 A$	$0.82(1)$	$2.09(1)$	$2.892(3)$	$167(3)$

[^0]
[^0]: Symmetry codes: (i) $-x+1,-y,-z+1$; (ii) $-x+1,-y,-z+2$.

