

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# Di- $\mu$ -chlorido-bis({8-[bis(naphthalen-1-yl)phosphanyl]naphthalen-1-yl- $\kappa^2 C^1$ ,*P*}-palladium(II)) dichloromethane disolvate

#### Wade L. Davis and Alfred Muller\*

Research Centre for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg (APK Campus), PO Box 524, Auckland Park, Johannesburg, 2006, South Africa

Correspondence e-mail: mullera@uj.ac.za

Received 19 November 2012; accepted 24 November 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean  $\sigma$ (C–C) = 0.007 Å; R factor = 0.052; wR factor = 0.154; data-to-parameter ratio = 19.5.

The title compound,  $[Pd_2{P(C_{10}H_7)_2(C_{10}H_6)}_2Cl_2]\cdot 2CH_2Cl_2$ , shows cyclometalation of one naphthalen-1-yl substituent of each of the phosphane ligands to the Pd dimer in a *trans* orientation; the complete dimer is generated by a centre of inversion. Two dichloromethane solvent molecules create C– H···Cl interactions with the metal complex, generating supermolecular layers in the *ab* plane. Additional C–H··· $\pi$ and  $\pi$ – $\pi$  [centroid–centroid distances = 3.713 (3), 3.850 (4) and 3.926 (3) Å] interactions join these planes into a threedimensional supermolecular network.

#### **Related literature**

For background to palladium compounds in catalysis, see: Dunina *et al.* (2008, 2009); Bedford *et al.* (2004); Morales-Morales *et al.* (2002). For the synthesis of the starting materials, see: Drew & Doyle (1990).



#### **Experimental**

Crystal data  $[Pd_2(C_{30}H_{20}P)_2Cl_2] \cdot 2CH_2Cl_2$  $M_r = 1276.41$ 

Triclinic,  $P\overline{1}$ a = 9.4823 (8) Å

|       | •         |          |   |
|-------|-----------|----------|---|
| metal | -organic  | compound | 2 |
| incua | - or Same | compound | • |

Mo  $K\alpha$  radiation

 $0.33 \times 0.13 \times 0.13$  mm

 $\mu = 1.12 \text{ mm}^{-1}$ 

T = 100 K

Z = 1

b = 11.4272 (9) Å c = 12.343 (1) Å  $\alpha = 80.652 (2)^{\circ}$   $\beta = 76.592 (2)^{\circ}$   $\gamma = 89.013 (2)^{\circ}$  $V = 1283.42 (18) \text{ Å}^{3}$ 

#### Data collection

| Bruker APEX DUO 4K-CCD                 | 40200 measured reflections             |
|----------------------------------------|----------------------------------------|
| diffractometer                         | 6340 independent reflections           |
| Absorption correction: multi-scan      | 5675 reflections with $I > 2\sigma(I)$ |
| (SADABS; Bruker, 2008)                 | $R_{\rm int} = 0.030$                  |
| $T_{\min} = 0.709, \ T_{\max} = 0.868$ |                                        |
|                                        |                                        |

#### Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.052 & 325 \text{ parameters} \\ wR(F^2) &= 0.154 & H\text{-atom parameters constrained} \\ S &= 1.07 & \Delta\rho_{\text{max}} &= 1.59 \text{ e } \text{\AA}^{-3} \\ 6340 \text{ reflections} & \Delta\rho_{\text{min}} &= -2.36 \text{ e } \text{\AA}^{-3} \end{split}$$

#### Table 1

Hydrogen-bond geometry (Å, °).

Cg1, Cg2, Cg3 and Cg4 are the centroids of the C11–C15/C20, C21–C25/C30, Pd1/Cl1/Pd1'/Cl1' and C1/C2/C7–C10 rings, respectively.

| $D - H \cdots A$                        | $D-\mathrm{H}$ | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-----------------------------------------|----------------|-------------------------|--------------|--------------------------------------|
| C10-H10···Cl3                           | 0.95           | 2.72                    | 3.536 (7)    | 145                                  |
| $C31 - H31A \cdots Cl3^{i}$             | 0.99           | 2.52                    | 3.366 (16)   | 143                                  |
| $C9 - H9 \cdot \cdot \cdot Cg1^{ii}$    | 0.95           | 2.83                    | 3.666 (5)    | 148                                  |
| $C18 - H18 \cdot \cdot \cdot Cg2^{iii}$ | 0.95           | 2.91                    | 3.788 (6)    | 154                                  |
| $C26-H26\cdots Cg3^{iv}$                | 0.95           | 2.59                    | 3.535 (5)    | 172                                  |
| $C31 - H31B \cdots Cg4^{ii}$            | 0.99           | 2.75                    | 3.632 (15)   | 148                                  |

Symmetry codes: (i) -x, -y + 1, -z; (ii) -x + 1, -y + 1, -z; (iii) x + 1, y, z; (iv) -x, -y, -z + 1.

Data collection: *APEX2* (Bruker, 2011); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT* and *XPREP* (Bruker, 2008); program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2005); software used to prepare material for publication: *publCIF* (Westrip, 2010) and *WinGX* (Farrugia, 2012).

Financial assistance from the Research Fund of the University of Johannesburg is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZQ2190).

#### References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Bedford, R. B., Cazin, C. S. J. & Holder, D. (2004). Coord. Chem. Rev. 248, 2283–2321.
- Brandenburg, K. & Putz, H. (2005). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.

- Drew, D. & Doyle, J. R. (1990). Inorg. Synth. 28, 346-349.
- Dunina, V. V., Turubanova, E. I., Livantsov, M. V., Lyssenko, K. A. & Grishin, Y. K. (2008). *Tetrahedron Asymmetry* 19, 1519–1522.
- Dunina, V. V., Zykov, P. A., Livantsov, M. V., Glukhov, I. V., Kochetkov, K. A., Gloriozov, I. P. & Grishin, Y. K. (2009). Organometallics, 28, 425–432.

 Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
 Morales-Morales, D., Cramer, R. E. & Jensen, C. M. (2002). J. Organomet. Chem. 654, 44–50. Sheldrick, G. M. (2008). Acta Cryst. A**64**, 112–122. Westrip, S. P. (2010). J. Appl. Cryst. **43**, 920–925.

### supporting information

Acta Cryst. (2012). E68, m1565-m1566 [doi:10.1107/S1600536812048222]

## Di- $\mu$ -chlorido-bis({8-[bis(naphthalen-1-yl)phosphanyl]naphthalen-1-yl- $\kappa^2 C^1$ ,*P*}palladium(II)) dichloromethane disolvate

#### Wade L. Davis and Alfred Muller

#### S1. Comment

In the past few decades, phosphapalladacycles have attracted extensive attention due to their activity as catalysts in C—C bond formation scenarios (Dunina *et al.*, 2008, 2009; Bedford *et al.*, 2004; Morales-Morales *et al.*, 2002). [PdCl<sub>2</sub>(L)<sub>2</sub>] (L = tertiary phosphine, arsine or stibine) complexes can conveniently be prepared by the substitution of 1,5-cyclooctadiene (COD) from [PdCl<sub>2</sub>(COD)]. Reported here is the product of the reaction between tris(naphthalen-1-yl)phosphane and [PdCl<sub>2</sub>(COD)], which shows dimerization of the Pd<sup>II</sup> metal as well as chelation of one naphthalen-1-yl substituent of each of the phosphane ligands to the Pd dimer.

The title compound (Fig.1) crystallizes in the triclinic space group  $P\overline{1}$  (Z = 1), situated around an inversion centre and accompanied by two dichloromethane solvate molecules in the unit cell. The coordination centre for each Pd<sup>II</sup> centre is distorted due to the strained five membered chelation of the naphthalen-1-yl ligand to each metal centre in a *trans* orientation. This distortion is noted most prominently in the displacement of the P and C donor atoms from the plane formed by the Pd and bridged Cl atoms (C3 and P1 displaced 0.2811 (4) and -0.2508 (12) Å, respectively).

Crystal packing reveals a 2-dimentional network generated by C—H···Cl interactions between the *cyclo*-metalated Pd complex and the dichloromethane solvates (see Fig. 2, table 1). In addition to the above several C—H··· $\pi$  interactions (see Fig. 3, table 1) and  $\pi$ - $\pi$  stacking (see Fig. 4; centroid to centroid distances = 3.713 (3), 3.850 (4), 3.926 (3) Å) are observed, linking the 2-dimentional layers into 3-dimentional network.

#### **S2. Experimental**

Dichloro(1,5-cyclooctadiene)palladium(II), [PdCl<sub>2</sub>(COD)], was prepared according to the literature procedure of Drew & Doyle (1990). Tris(naphthalen-1-yl)phosphane (15 mg, 0.036 mmol) was dissolved in  $CH_2Cl_2$  (5 cm<sup>3</sup>). A solution of [Pd(COD)Cl<sub>2</sub>] (5.2 mg, 0.018 mmol) in  $CH_2Cl_2$  (5 cm<sup>3</sup>) was added to the phosphane solution. The mixture was stirred for 6hr at room temperature, after which the solution was left to slowly evaporate giving a yellow powder in 65% yield. Yellow crystals of the title compound suitable for a single-crystal X-ray study were obtained after recrystallization from a  $CH_2Cl_2/DMSO$  solution.

<sup>31</sup>P NMR (CDCl<sub>3</sub>, 162.0 MHz): δ (p.p.m.) 24.91 (s, 1P).

FTIR (cm<sup>-1</sup>):2199, 2162, 1712, 1630, 1560, 1507, 1252, 1165, 1043, 929, 794, 769, 720, 668, 622.

#### S3. Refinement

The aromatic and methylene H atoms were placed in geometrically idealized positions (C—H = 0.95 and 0.99 Å) and allowed to ride on their parent atoms, with  $U_{iso}(H) = 1.2U_{eq}(C)$ . The deepest residual electron-density hole (-2.36 e.Å<sup>3</sup>) is located at 0.7 Å from C31 and the highest peak (1.59 e.Å<sup>3</sup>) 1.12 Å from C13, both associated with the solvate molecule and representing no physical meaning.



A view of the title complex, showing the atom-numbering scheme and 50% probability displacement ellipsoids (H atoms omitted for clarity). Accented lettering indicate atoms generated by symmetry code i = 1-x, -y, 1-z.



Packing diagram showing the 2-dimentional network generated by C—H…Cl interactions (indicated by red dashed lines) between the metal complex and the dichloromethane solvates (H atoms not involved in interactions are omitted for clarity).



Packing diagram showing the C—H $\cdots$  $\pi$  interactions (indicated by red dashed lines). H atoms not involved in interactions are omitted for clarity.



Packing diagram showing the  $\pi$ - $\pi$  interactions (indicated by red dashed lines). H atoms are omitted for clarity.

## $Di-\mu$ -chlorido-bis({8-[bis(naphthalen-1-yl)phosphanyl]naphthalen-1-yl- $\kappa^2 C^1$ ,*P*}palladium(II)) dichloromethane disolvate

| Crystal data                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $[Pd_{2}(C_{30}H_{20}P)_{2}Cl_{2}] \cdot 2CH_{2}Cl_{2}$<br>$M_{r} = 1276.41$<br>Triclinic, $P\overline{1}$<br>Hall symbol: -P 1<br>a = 9.4823 (8) Å<br>b = 11.4272 (9) Å<br>c = 12.343 (1) Å<br>a = 80.652 (2)°<br>$\beta = 76.592$ (2)°<br>$\gamma = 89.013$ (2)°<br>V = 1283.42 (18) Å <sup>3</sup>       | Z = 1<br>F(000) = 640<br>$D_x = 1.651 \text{ Mg m}^{-3}$<br>Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$<br>Cell parameters from 9967 reflections<br>$\theta = 2.3-28.4^{\circ}$<br>$\mu = 1.12 \text{ mm}^{-1}$<br>T = 100 K<br>Needle, yellow<br>$0.33 \times 0.13 \times 0.13 \text{ mm}$ |
| $p = 1263.42 (18) A$ Data collection Bruker APEX DUO 4K-CCD diffractometer Radiation source: sealed tube Graphite monochromator Detector resolution: 8.4 pixels mm <sup>-1</sup> $\varphi$ and $\omega$ scans Absorption correction: multi-scan (SADABS; Bruker, 2008) $T_{\min} = 0.709, T_{\max} = 0.868$ | 40200 measured reflections<br>6340 independent reflections<br>5675 reflections with $I > 2\sigma(I)$<br>$R_{int} = 0.030$<br>$\theta_{max} = 28.4^{\circ}, \theta_{min} = 1.7^{\circ}$<br>$h = -12 \rightarrow 12$<br>$k = -15 \rightarrow 15$<br>$l = -16 \rightarrow 16$                     |

Refinement

| Refinement on $F^2$                                            | Secondary atom site location: difference Fourier                                                                      |
|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Least-squares matrix: full                                     | map                                                                                                                   |
| $R[F^2 > 2\sigma(F^2)] = 0.052$                                | Hydrogen site location: inferred from                                                                                 |
| $wR(F^2) = 0.154$                                              | neighbouring sites                                                                                                    |
| S = 1.07                                                       | H-atom parameters constrained                                                                                         |
| 6340 reflections                                               | $w = 1/[\sigma^2(F^2) + (0.0813P)^2 + 7.0269P]$                                                                       |
| 325 parameters                                                 | where $P = (F_o^2 + 2F_c^2)/3$                                                                                        |
| 0 restraints                                                   | $(\Delta/\sigma)_{\text{max}} < 0.001$                                                                                |
| Primary atom site location: structure-invariant direct methods | $\Delta \rho_{\rm max} = 1.59 \text{ e } {\rm \AA}^{-3}$<br>$\Delta \rho_{\rm min} = -2.36 \text{ e } {\rm \AA}^{-3}$ |

#### Special details

**Experimental.** The intensity data was collected on a Bruker Apex DUO 4 K CCD diffractometer using an exposure time of 10 s/frame. A total of 3976 frames were collected with a frame width of  $0.5^{\circ}$  covering up to  $\theta = 28.38^{\circ}$  with 98.6% completeness accomplished.

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|     | x            | у           | Ζ           | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|-----|--------------|-------------|-------------|-----------------------------|--|
| Pd1 | 0.48238 (3)  | 0.07664 (2) | 0.36232 (2) | 0.01412 (11)                |  |
| P1  | 0.37614 (12) | 0.23315 (9) | 0.28438 (8) | 0.0156 (2)                  |  |
| Cl1 | 0.42468 (11) | 0.10775 (9) | 0.55808 (8) | 0.0192 (2)                  |  |
| Cl2 | 0.0088 (5)   | 0.7412 (4)  | 0.0879 (3)  | 0.1348 (16)                 |  |
| C13 | 0.1322 (4)   | 0.5129 (4)  | 0.0838 (4)  | 0.1423 (16)                 |  |
| C3  | 0.5601 (5)   | 0.0555 (4)  | 0.2007 (4)  | 0.0222 (9)                  |  |
| C2  | 0.5448 (6)   | 0.1477 (4)  | 0.1105 (4)  | 0.0252 (9)                  |  |
| C1  | 0.4615 (5)   | 0.2484 (4)  | 0.1354 (4)  | 0.0230 (9)                  |  |
| C21 | 0.1836 (5)   | 0.1992 (4)  | 0.2977 (4)  | 0.0181 (8)                  |  |
| C30 | 0.0811 (5)   | 0.1809 (3)  | 0.4047 (3)  | 0.0179 (8)                  |  |
| C25 | -0.0606 (5)  | 0.1358 (4)  | 0.4107 (4)  | 0.0212 (8)                  |  |
| C24 | -0.0963 (6)  | 0.1117 (4)  | 0.3107 (4)  | 0.0278 (10)                 |  |
| H24 | -0.1899      | 0.0806      | 0.3144      | 0.033*                      |  |
| C23 | 0.0024 (6)   | 0.1326 (4)  | 0.2095 (4)  | 0.0272 (10)                 |  |
| H23 | -0.0237      | 0.1178      | 0.143       | 0.033*                      |  |
| C22 | 0.1425 (5)   | 0.1759 (4)  | 0.2030 (4)  | 0.0234 (9)                  |  |
| H22 | 0.2103       | 0.1893      | 0.132       | 0.028*                      |  |
| C26 | -0.1636 (5)  | 0.1163 (4)  | 0.5160 (4)  | 0.0271 (10)                 |  |
| H26 | -0.2582      | 0.0874      | 0.5194      | 0.033*                      |  |
| C27 | -0.1295 (5)  | 0.1381 (4)  | 0.6122 (4)  | 0.0272 (10)                 |  |
| H27 | -0.1991      | 0.1233      | 0.6822      | 0.033*                      |  |
| C28 | 0.0099 (5)   | 0.1829 (4)  | 0.6070 (4)  | 0.0243 (9)                  |  |

| H28  | 0.0336      | 0.1983      | 0.6742      | 0.029*      |
|------|-------------|-------------|-------------|-------------|
| C29  | 0.1120 (5)  | 0.2047 (4)  | 0.5068 (4)  | 0.0197 (8)  |
| H29  | 0.2046      | 0.2361      | 0.5054      | 0.024*      |
| C11  | 0.3889 (5)  | 0.3794 (3)  | 0.3228 (3)  | 0.0183 (8)  |
| C20  | 0.5266 (5)  | 0.4266 (4)  | 0.3270 (3)  | 0.0199 (8)  |
| C19  | 0.6584 (5)  | 0.3643 (4)  | 0.3056 (4)  | 0.0249 (9)  |
| H19  | 0.6575      | 0.2862      | 0.2885      | 0.03*       |
| C18  | 0.7875 (6)  | 0.4152 (4)  | 0.3092 (5)  | 0.0324 (11) |
| H18  | 0.8741      | 0.3715      | 0.2954      | 0.039*      |
| C17  | 0.7928 (6)  | 0.5312 (5)  | 0.3332 (5)  | 0.0340 (11) |
| H17  | 0.8826      | 0.5658      | 0.3345      | 0.041*      |
| C16  | 0.6669 (6)  | 0.5941 (4)  | 0.3549 (4)  | 0.0277 (10) |
| H16  | 0.6705      | 0.6722      | 0.3714      | 0.033*      |
| C15  | 0.5323 (6)  | 0.5443 (4)  | 0.3528 (4)  | 0.0227 (9)  |
| C14  | 0.4021 (6)  | 0.6095 (4)  | 0.3743 (4)  | 0.0252 (9)  |
| H14  | 0.4053      | 0.6867      | 0.393       | 0.03*       |
| C13  | 0.2732 (6)  | 0.5630 (4)  | 0.3684 (4)  | 0.0260 (9)  |
| H13  | 0.1878      | 0.6083      | 0.3822      | 0.031*      |
| C12  | 0.2659 (5)  | 0.4472 (4)  | 0.3418 (4)  | 0.0227 (9)  |
| H12  | 0.1757      | 0.416       | 0.337       | 0.027*      |
| C10  | 0.4477 (6)  | 0.3402 (4)  | 0.0525 (4)  | 0.0314 (11) |
| H10  | 0.393       | 0.4075      | 0.0712      | 0.038*      |
| С9   | 0.5155 (8)  | 0.3341 (5)  | -0.0616 (4) | 0.0399 (14) |
| H9   | 0.5063      | 0.3975      | -0.1196     | 0.048*      |
| C8   | 0.5943 (9)  | 0.2369 (5)  | -0.0882 (4) | 0.0468 (16) |
| H8   | 0.6375      | 0.2332      | -0.1651     | 0.056*      |
| C7   | 0.6129 (7)  | 0.1420 (5)  | -0.0042 (4) | 0.0373 (13) |
| C6   | 0.6978 (9)  | 0.0412 (6)  | -0.0281 (4) | 0.0526 (19) |
| H6   | 0.7444      | 0.0351      | -0.1039     | 0.063*      |
| C5   | 0.7122 (9)  | -0.0463 (6) | 0.0572 (5)  | 0.0504 (18) |
| Н5   | 0.7701      | -0.1125     | 0.0402      | 0.061*      |
| C4   | 0.6423 (6)  | -0.0409 (5) | 0.1719 (4)  | 0.0323 (11) |
| H4   | 0.6522      | -0.1045     | 0.2293      | 0.039*      |
| C31  | 0.1100 (14) | 0.6358 (15) | 0.0065 (11) | 0.116 (5)   |
| H31A | 0.0579      | 0.6198      | -0.0506     | 0.139*      |
| H31B | 0.2061      | 0.6711      | -0.0341     | 0.139*      |
|      |             |             |             |             |

#### Atomic displacement parameters $(Å^2)$

|     | $U^{11}$     | $U^{22}$     | $U^{33}$     | $U^{12}$     | $U^{13}$      | $U^{23}$      |
|-----|--------------|--------------|--------------|--------------|---------------|---------------|
| Pd1 | 0.01857 (17) | 0.01053 (16) | 0.01332 (16) | 0.00039 (11) | -0.00303 (11) | -0.00303 (10) |
| P1  | 0.0217 (5)   | 0.0111 (4)   | 0.0135 (4)   | 0.0009 (4)   | -0.0031 (4)   | -0.0021 (3)   |
| Cl1 | 0.0273 (5)   | 0.0162 (4)   | 0.0152 (4)   | 0.0083 (4)   | -0.0056 (4)   | -0.0051 (3)   |
| Cl2 | 0.137 (3)    | 0.177 (4)    | 0.0702 (17)  | 0.055 (3)    | -0.0036 (18)  | 0.004 (2)     |
| Cl3 | 0.098 (2)    | 0.131 (3)    | 0.182 (4)    | 0.005 (2)    | -0.037 (3)    | 0.026 (3)     |
| C3  | 0.033 (2)    | 0.0179 (19)  | 0.0147 (18)  | 0.0011 (17)  | -0.0013 (16)  | -0.0054 (15)  |
| C2  | 0.037 (3)    | 0.020 (2)    | 0.0160 (19)  | -0.0006 (18) | 0.0004 (17)   | -0.0045 (16)  |
| C1  | 0.033 (2)    | 0.0167 (19)  | 0.0162 (18)  | -0.0011 (17) | 0.0009 (16)   | -0.0023 (15)  |
|     |              |              |              |              |               |               |

| C21 | 0.021 (2) | 0.0132 (17) | 0.0208 (19) | 0.0030 (15)  | -0.0060 (15) | -0.0036 (14) |
|-----|-----------|-------------|-------------|--------------|--------------|--------------|
| C30 | 0.022 (2) | 0.0120 (17) | 0.0199 (18) | 0.0023 (15)  | -0.0063 (15) | -0.0021 (14) |
| C25 | 0.021 (2) | 0.0129 (18) | 0.030 (2)   | 0.0025 (15)  | -0.0073 (17) | -0.0042 (16) |
| C24 | 0.029 (2) | 0.020 (2)   | 0.040 (3)   | 0.0016 (18)  | -0.017 (2)   | -0.0067 (18) |
| C23 | 0.037 (3) | 0.023 (2)   | 0.029 (2)   | 0.0030 (19)  | -0.019 (2)   | -0.0101 (18) |
| C22 | 0.033 (2) | 0.020 (2)   | 0.0189 (19) | 0.0044 (18)  | -0.0092 (17) | -0.0065 (16) |
| C26 | 0.021 (2) | 0.018 (2)   | 0.039 (3)   | 0.0015 (16)  | -0.0007 (18) | -0.0025 (18) |
| C27 | 0.026 (2) | 0.020 (2)   | 0.029 (2)   | 0.0052 (17)  | 0.0047 (18)  | -0.0029 (17) |
| C28 | 0.030 (2) | 0.020 (2)   | 0.022 (2)   | 0.0069 (17)  | -0.0052 (17) | -0.0054 (16) |
| C29 | 0.022 (2) | 0.0166 (18) | 0.0212 (19) | 0.0023 (15)  | -0.0053 (16) | -0.0060 (15) |
| C11 | 0.029 (2) | 0.0115 (17) | 0.0139 (17) | 0.0004 (15)  | -0.0051 (15) | -0.0019 (13) |
| C20 | 0.031 (2) | 0.0129 (18) | 0.0161 (18) | 0.0007 (16)  | -0.0056 (16) | -0.0024 (14) |
| C19 | 0.031 (2) | 0.0147 (19) | 0.030 (2)   | 0.0002 (17)  | -0.0086 (18) | -0.0056 (16) |
| C18 | 0.033 (3) | 0.022 (2)   | 0.043 (3)   | 0.001 (2)    | -0.010 (2)   | -0.006 (2)   |
| C17 | 0.038 (3) | 0.023 (2)   | 0.045 (3)   | -0.005 (2)   | -0.016 (2)   | -0.006 (2)   |
| C16 | 0.043 (3) | 0.0158 (19) | 0.028 (2)   | -0.0017 (19) | -0.014 (2)   | -0.0059 (17) |
| C15 | 0.040 (3) | 0.0112 (17) | 0.0172 (18) | 0.0013 (17)  | -0.0083 (17) | -0.0014 (14) |
| C14 | 0.042 (3) | 0.0126 (18) | 0.021 (2)   | 0.0024 (18)  | -0.0071 (18) | -0.0038 (15) |
| C13 | 0.037 (3) | 0.0133 (19) | 0.027 (2)   | 0.0066 (17)  | -0.0046 (19) | -0.0042 (16) |
| C12 | 0.033 (2) | 0.0147 (19) | 0.0203 (19) | 0.0017 (17)  | -0.0056 (17) | -0.0025 (15) |
| C10 | 0.051 (3) | 0.018 (2)   | 0.021 (2)   | 0.005 (2)    | -0.002 (2)   | -0.0014 (17) |
| C9  | 0.071 (4) | 0.025 (2)   | 0.017 (2)   | 0.000 (3)    | -0.002 (2)   | 0.0041 (18)  |
| C8  | 0.083 (5) | 0.030 (3)   | 0.018 (2)   | 0.007 (3)    | 0.003 (3)    | 0.001 (2)    |
| C7  | 0.060 (4) | 0.030 (3)   | 0.015 (2)   | 0.007 (2)    | 0.003 (2)    | -0.0045 (18) |
| C6  | 0.088 (5) | 0.045 (3)   | 0.015 (2)   | 0.025 (3)    | 0.006 (3)    | -0.007 (2)   |
| C5  | 0.084 (5) | 0.040 (3)   | 0.023 (2)   | 0.027 (3)    | -0.001 (3)   | -0.014 (2)   |
| C4  | 0.049 (3) | 0.030 (2)   | 0.017 (2)   | 0.013 (2)    | -0.005 (2)   | -0.0074 (18) |
| C31 | 0.095 (9) | 0.176 (14)  | 0.092 (8)   | 0.047 (9)    | -0.043 (7)   | -0.044 (9)   |
|     |           |             |             |              |              |              |

Geometric parameters (Å, °)

| Pd1—C3               | 2.013 (4)   | C11—C12 | 1.385 (6) |  |
|----------------------|-------------|---------|-----------|--|
| Pd1—P1               | 2.2288 (10) | C11—C20 | 1.436 (6) |  |
| Pd1—Cl1 <sup>i</sup> | 2.4180 (10) | C20—C19 | 1.420 (6) |  |
| Pd1—Cl1              | 2.4337 (10) | C20—C15 | 1.435 (6) |  |
| P1—C1                | 1.811 (4)   | C19—C18 | 1.377 (7) |  |
| P1—C11               | 1.823 (4)   | C19—H19 | 0.95      |  |
| P1—C21               | 1.838 (4)   | C18—C17 | 1.408 (7) |  |
| Cl1—Pd1 <sup>i</sup> | 2.4180 (10) | C18—H18 | 0.95      |  |
| Cl2—C31              | 1.813 (14)  | C17—C16 | 1.378 (8) |  |
| Cl3—C31              | 1.604 (15)  | C17—H17 | 0.95      |  |
| C3—C4                | 1.384 (6)   | C16—C15 | 1.414 (7) |  |
| C3—C2                | 1.435 (6)   | C16—H16 | 0.95      |  |
| C2—C1                | 1.419 (6)   | C15—C14 | 1.425 (7) |  |
| С2—С7                | 1.424 (6)   | C14—C13 | 1.363 (7) |  |
| C1-C10               | 1.368 (6)   | C14—H14 | 0.95      |  |
| C21—C22              | 1.380 (6)   | C13—C12 | 1.420 (6) |  |
| C21—C30              | 1.433 (6)   | С13—Н13 | 0.95      |  |
|                      |             |         |           |  |

| C30—C29                        | 1.426 (6)                | C12—H12                    | 0.95                  |
|--------------------------------|--------------------------|----------------------------|-----------------------|
| C30—C25                        | 1.429 (6)                | С10—С9                     | 1.418 (7)             |
| C25—C26                        | 1.421 (6)                | C10—H10                    | 0.95                  |
| C25—C24                        | 1.422 (7)                | С9—С8                      | 1.370 (8)             |
| C24—C23                        | 1.365 (7)                | С9—Н9                      | 0.95                  |
| C24—H24                        | 0.95                     | C8—C7                      | 1.413 (8)             |
| C23—C22                        | 1.406 (7)                | С8—Н8                      | 0.95                  |
| С23—Н23                        | 0.95                     | C7—C6                      | 1.425 (8)             |
| С22—Н22                        | 0.95                     | C6—C5                      | 1.359 (8)             |
| C26—C27                        | 1.362 (7)                | С6—Н6                      | 0.95                  |
| C26—H26                        | 0.95                     | C5—C4                      | 1.428 (7)             |
| C27—C28                        | 1,409 (7)                | С5—Н5                      | 0.95                  |
| С27—Н27                        | 0.95                     | C4—H4                      | 0.95                  |
| $C_{28}$ $C_{29}$              | 1.372 (6)                | C31—H31A                   | 0.99                  |
| C28—H28                        | 0.95                     | C31—H31B                   | 0.99                  |
| C29—H29                        | 0.95                     |                            |                       |
|                                | 0.95                     |                            |                       |
| C3—Pd1—P1                      | 83 19 (13)               | C19 - C20 - C15            | 1178(4)               |
| $C_3 - Pd_1 - C_{11^i}$        | 95.05 (13)               | C19 - C20 - C11            | 123.8(4)              |
| $P1_Pd1_Cl1^i$                 | 173 01 (4)               | $C_{15} = C_{20} = C_{11}$ | 123.8(4)<br>118 4 (4) |
| $C_3 = Pd_1 = C_{11}$          | 171.70 (15)              | C18 - C19 - C20            | 110.4(4)              |
| $P_1 P_4 C_1$                  | 1/1.70(13)<br>100.16(3)  | $C_{18} = C_{19} = C_{20}$ | 121.1 (4)             |
| $C_{11i}$ <b>P</b> d1 $C_{11}$ | 82 51 (3)                | $C_{10} = C_{10} = H_{10}$ | 119.5                 |
| C1 P1 C11                      | 32.51(3)                 | $C_{20} = C_{19} = 1119$   | 119.5                 |
| $C_1 = P_1 = C_{11}$           | 105.94(19)<br>106.2(2)   | $C_{19} = C_{18} = C_{17}$ | 120.9 (3)             |
| $C_1 = 1 = C_2 I$              | 100.2(2)<br>107.82(10)   | $C_{17} = C_{18} = H_{18}$ | 119.5                 |
| C1 P1 Pd1                      | 107.03(19)<br>102.00(15) | $C_{1} = C_{10} = 1118$    | 119.5                 |
|                                | 103.99(13)<br>121.52(14) | C16 - C17 - C18            | 119.0 (3)             |
| C11 - P1 - P01                 | 121.35(14)<br>110.22(12) | C10 - C17 - H17            | 120.2                 |
|                                | 110.25(15)               | C13 - C17 - H17            | 120.2                 |
|                                | 97.49 (3)                | C17 = C16 = C13            | 121.0 (4)             |
| C4 - C3 - C2                   | 117.3 (4)                | C17 - C16 - H16            | 119.5                 |
| C4 - C3 - Pd1                  | 122.1(3)                 | C15—C16—H16                | 119.5                 |
| C2                             | 120.2 (3)                | C16 - C15 - C14            | 121.1 (4)             |
| C1 = C2 = C7                   | 118.6 (4)                | C16-C15-C20                | 119.6 (4)             |
| C1 - C2 - C3                   | 119.6 (4)                | C14 - C15 - C20            | 119.3 (5)             |
| $C_{}C_{2}C_{3}$               | 121.7 (4)                | C13 - C14 - C15            | 121.0 (4)             |
| C10 - C1 - C2                  | 121.6 (4)                | C13—C14—H14                | 119.5                 |
| Clo—Cl—Pl                      | 127.1 (4)                | С15—С14—Н14                | 119.5                 |
| C2—C1—P1                       | 111.2 (3)                | C14—C13—C12                | 120.4 (4)             |
| C22—C21—C30                    | 119.6 (4)                | С14—С13—Н13                | 119.8                 |
| C22—C21—P1                     | 117.7 (3)                | С12—С13—Н13                | 119.8                 |
| C30—C21—P1                     | 122.1 (3)                | C11—C12—C13                | 120.6 (5)             |
| C29—C30—C25                    | 117.5 (4)                | C11—C12—H12                | 119.7                 |
| C29—C30—C21                    | 123.9 (4)                | C13—C12—H12                | 119.7                 |
| C25—C30—C21                    | 118.7 (4)                | C1—C10—C9                  | 119.6 (5)             |
| C26—C25—C24                    | 121.0 (4)                | C1—C10—H10                 | 120.2                 |
| C26—C25—C30                    | 119.7 (4)                | С9—С10—Н10                 | 120.2                 |
| C24—C25—C30                    | 119.3 (4)                | C8—C9—C10                  | 120.0 (5)             |

| C23—C24—C25                                | 120.7 (5)   | С8—С9—Н9        | 120        |
|--------------------------------------------|-------------|-----------------|------------|
| C23—C24—H24                                | 119.6       | С10—С9—Н9       | 120        |
| C25—C24—H24                                | 119.6       | C9—C8—C7        | 121.7 (5)  |
| C24—C23—C22                                | 120.3 (4)   | С9—С8—Н8        | 119.2      |
| C24—C23—H23                                | 119.8       | С7—С8—Н8        | 119.2      |
| С22—С23—Н23                                | 119.8       | C8—C7—C2        | 118.5 (5)  |
| C21—C22—C23                                | 121.3 (4)   | C8—C7—C6        | 123.3 (5)  |
| C21—C22—H22                                | 119.3       | C2—C7—C6        | 118.2 (5)  |
| C23—C22—H22                                | 119.3       | C5—C6—C7        | 120.1 (5)  |
| C27—C26—C25                                | 121.3 (5)   | С5—С6—Н6        | 119.9      |
| C27—C26—H26                                | 119.4       | С7—С6—Н6        | 119.9      |
| C25—C26—H26                                | 119.4       | C6—C5—C4        | 121.5 (5)  |
| C26—C27—C28                                | 119.5 (4)   | С6—С5—Н5        | 119.3      |
| C26—C27—H27                                | 120.3       | C4—C5—H5        | 119.3      |
| С28—С27—Н27                                | 120.3       | C3—C4—C5        | 121.1 (5)  |
| C29—C28—C27                                | 121.2 (4)   | C3—C4—H4        | 119.4      |
| C29—C28—H28                                | 119.4       | C5—C4—H4        | 119.4      |
| C27—C28—H28                                | 119.4       | Cl3—C31—Cl2     | 112.5 (8)  |
| C28—C29—C30                                | 121.0 (4)   | Cl3—C31—H31A    | 109.1      |
| С28—С29—Н29                                | 119.5       | Cl2—C31—H31A    | 109.1      |
| С30—С29—Н29                                | 119.5       | Cl3—C31—H31B    | 109.1      |
| C12—C11—C20                                | 120.2 (4)   | Cl2—C31—H31B    | 109.1      |
| C12—C11—P1                                 | 119.3 (3)   | H31A—C31—H31B   | 107.8      |
| C20—C11—P1                                 | 120.4 (3)   |                 |            |
|                                            |             |                 |            |
| C3—Pd1—P1—C1                               | -11.1 (2)   | C25—C26—C27—C28 | 1.1 (7)    |
| Cl1—Pd1—P1—C1                              | 161.18 (17) | C26—C27—C28—C29 | -0.1 (7)   |
| C3—Pd1—P1—C11                              | -130.1 (2)  | C27—C28—C29—C30 | -1.0 (7)   |
| Cl1—Pd1—P1—C11                             | 42.19 (17)  | C25—C30—C29—C28 | 1.1 (6)    |
| C3—Pd1—P1—C21                              | 102.4 (2)   | C21—C30—C29—C28 | -178.7 (4) |
| Cl1—Pd1—P1—C21                             | -85.31 (15) | C1—P1—C11—C12   | 106.0 (4)  |
| P1—Pd1—Cl1—Pd1 <sup>i</sup>                | 173.47 (4)  | C21—P1—C11—C12  | -7.4 (4)   |
| Cl1 <sup>i</sup> —Pd1—Cl1—Pd1 <sup>i</sup> | 0           | Pd1—P1—C11—C12  | -135.9 (3) |
| P1—Pd1—C3—C4                               | -175.6 (5)  | C1—P1—C11—C20   | -70.5 (4)  |
| Cl1 <sup>i</sup> —Pd1—C3—C4                | -2.4 (5)    | C21—P1—C11—C20  | 176.1 (3)  |
| P1—Pd1—C3—C2                               | 11.2 (4)    | Pd1—P1—C11—C20  | 47.6 (4)   |
| Cl1 <sup>i</sup> —Pd1—C3—C2                | -175.6 (4)  | C12-C11-C20-C19 | -178.3 (4) |
| C4—C3—C2—C1                                | 179.9 (5)   | P1-C11-C20-C19  | -1.8 (6)   |
| Pd1—C3—C2—C1                               | -6.5 (7)    | C12-C11-C20-C15 | 0.8 (6)    |
| C4—C3—C2—C7                                | -1.0 (8)    | P1-C11-C20-C15  | 177.3 (3)  |
| Pd1—C3—C2—C7                               | 172.6 (4)   | C15—C20—C19—C18 | -0.1 (7)   |
| C7—C2—C1—C10                               | -1.2 (8)    | C11—C20—C19—C18 | 178.9 (4)  |
| C3—C2—C1—C10                               | 177.9 (5)   | C20-C19-C18-C17 | -0.6 (8)   |
| C7—C2—C1—P1                                | 176.5 (4)   | C19—C18—C17—C16 | 0.9 (8)    |
| C3—C2—C1—P1                                | -4.4 (6)    | C18—C17—C16—C15 | -0.3 (8)   |
| C11—P1—C1—C10                              | -42.0 (6)   | C17—C16—C15—C14 | -179.5 (5) |
| C21—P1—C1—C10                              | 72.5 (5)    | C17—C16—C15—C20 | -0.4 (7)   |
| Pd1—P1—C1—C10                              | -171.1 (5)  | C19—C20—C15—C16 | 0.6 (6)    |
|                                            |             |                 |            |

| C11—P1—C1—C2    | 140.5 (4)  | C11—C20—C15—C16 | -178.5 (4) |
|-----------------|------------|-----------------|------------|
| C21—P1—C1—C2    | -105.0 (4) | C19—C20—C15—C14 | 179.8 (4)  |
| Pd1—P1—C1—C2    | 11.4 (4)   | C11—C20—C15—C14 | 0.6 (6)    |
| C1—P1—C21—C22   | 8.5 (4)    | C16—C15—C14—C13 | 177.7 (4)  |
| C11—P1—C21—C22  | 121.7 (3)  | C20-C15-C14-C13 | -1.4 (7)   |
| Pd1—P1—C21—C22  | -103.6 (3) | C15—C14—C13—C12 | 0.7 (7)    |
| C1—P1—C21—C30   | 179.9 (3)  | C20-C11-C12-C13 | -1.5 (6)   |
| C11—P1—C21—C30  | -66.9 (4)  | P1-C11-C12-C13  | -178.0 (3) |
| Pd1—P1—C21—C30  | 67.9 (3)   | C14—C13—C12—C11 | 0.8 (7)    |
| C22—C21—C30—C29 | -178.7 (4) | C2-C1-C10-C9    | 1.3 (9)    |
| P1-C21-C30-C29  | 10.1 (6)   | P1—C1—C10—C9    | -176.0 (5) |
| C22—C21—C30—C25 | 1.5 (6)    | C1—C10—C9—C8    | 0.0 (10)   |
| P1-C21-C30-C25  | -169.7 (3) | C10—C9—C8—C7    | -1.3 (11)  |
| C29—C30—C25—C26 | -0.2 (6)   | C9—C8—C7—C2     | 1.3 (11)   |
| C21—C30—C25—C26 | 179.6 (4)  | С9—С8—С7—С6     | -178.0 (7) |
| C29—C30—C25—C24 | 179.5 (4)  | C1—C2—C7—C8     | -0.1 (9)   |
| C21—C30—C25—C24 | -0.6 (6)   | C3—C2—C7—C8     | -179.2 (6) |
| C26—C25—C24—C23 | 178.9 (4)  | C1—C2—C7—C6     | 179.2 (6)  |
| C30—C25—C24—C23 | -0.9 (7)   | C3—C2—C7—C6     | 0.1 (9)    |
| C25—C24—C23—C22 | 1.5 (7)    | C8—C7—C6—C5     | 179.3 (8)  |
| C30—C21—C22—C23 | -1.0 (6)   | C2—C7—C6—C5     | 0.0 (12)   |
| P1—C21—C22—C23  | 170.7 (3)  | C7—C6—C5—C4     | 0.8 (13)   |
| C24—C23—C22—C21 | -0.6 (7)   | C2—C3—C4—C5     | 1.8 (9)    |
| C24—C25—C26—C27 | 179.4 (4)  | Pd1—C3—C4—C5    | -171.6 (5) |
| C30-C25-C26-C27 | -0.9 (6)   | C6—C5—C4—C3     | -1.8 (11)  |
|                 |            |                 |            |

Symmetry code: (i) -x+1, -y, -z+1.

#### Hydrogen-bond geometry (Å, °)

Cg1, Cg2, Cg3 and Cg4 are the centroids of the C11–C15/C20, C21–C25/C30, Pd1/C11/Pd1//C11' and C1/C2/C7–C10 rings, respectively.

| D—H···A                                | <i>D</i> —Н | H···A | $D \cdots A$ | D—H···A |
|----------------------------------------|-------------|-------|--------------|---------|
| C10—H10····Cl3                         | 0.95        | 2.72  | 3.536 (7)    | 145     |
| C31—H31 <i>A</i> ···Cl3 <sup>ii</sup>  | 0.99        | 2.52  | 3.366 (16)   | 143     |
| C9—H9··· <i>Cg</i> 1 <sup>iii</sup>    | 0.95        | 2.83  | 3.666 (5)    | 148     |
| C18—H18…Cg2 <sup>iv</sup>              | 0.95        | 2.91  | 3.788 (6)    | 154     |
| C26—H26··· <i>C</i> g3 <sup>v</sup>    | 0.95        | 2.59  | 3.535 (5)    | 172     |
| C31—H31 <i>B</i> ···Cg4 <sup>iii</sup> | 0.99        | 2.75  | 3.632 (15)   | 148     |

Symmetry codes: (ii) -*x*, -*y*+1, -*z*; (iii) -*x*+1, -*y*+1, -*z*; (iv) *x*+1, *y*, *z*; (v) -*x*, -*y*, -*z*+1.