Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3,3-Dinitroazetidinium chloride

Biao Yan,^{a,b} Hong-Ya Li,^{a,b} Ning-Ning Zhao,^b Jie Li^b and Hai-Xia Ma^b*

^aSchool of Chemistry and Chemical Engineering, Yulin University, Yulin 719000 Shaanxi, People's Republic of China, and ^bSchool of Chemical Engineering, Northwest University, Xi'an 710069 Shaanxi, People's Republic of China Correspondence e-mail: donghuhai@qq.com

Received 29 October 2012; accepted 9 November 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.021; wR factor = 0.055; data-to-parameter ratio = 11.4.

In the title *gem*-dinitroazetidinium chloride salt, $C_3H_6N_3O_4^+$.-Cl⁻, the cations and anions lie on a mirror plane. The azetidine ring is virtually planar, with a mean deviation from the plane of 0.0569 Å. The dihedral angle between the two nitro groups is 90.00 (5)°. In the crystal, the ions are linked by N-H···Cl interactions, forming a chain along the *c*-axis direction, and C-H···O interactions, forming a layer parallel to (010).

Related literature

For 1,3,3-trinitroazetidine and compounds prepared from its derivative 3,3-dinitroazetidine, see: Archibald *et al.* (1990); Hiskey *et al.* (1992); Ma *et al.* (2009*a,b*, 2011); Yan *et al.* (2009, 2010); Gao *et al.* (2009). For related structures, see: Gao *et al.* (2010); Ma *et al.* (2010). For the synthesis, see: Li *et al.* (2004).

Experimental

Crystal data

 $C_{3}H_{6}N_{3}O_{4}^{+}\cdot Cl^{-}$ $M_{r} = 183.56$ Orthorhombic, $Cmc2_{1}$ a = 6.6807 (17) Å b = 10.4409 (17) Å c = 9.9707 (19) Å

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 2000) $T_{min} = 0.839, T_{max} = 0.860$ $0.35 \times 0.34 \times 0.30$ mm 1968 measured reflections

V = 695.5 (2) Å³

Mo $K\alpha$ radiation

 $\mu = 0.52 \text{ mm}^-$

T = 293 K

Z = 4

1968 measured reflections 708 independent reflections 696 reflections with $I > 2\sigma(I)$ $R_{int} = 0.019$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.021$	H-atom parameters constrained
$vR(F^2) = 0.055$	$\Delta \rho_{\rm max} = 0.18 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.10	$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$
'08 reflections	Absolute structure: Flack (1983),
2 parameters	252 Friedel pairs
restraint	Flack parameter: 0.09 (7)

Table 1		
Hydrogen-bond geometry ((Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1-H1C\cdots Cl$	0.90	2.35	3.087 (2)	139
$N1 - H1D \cdots Cl^{i}$	0.90	2.19	3.0575 (19)	163
$C1 - H1B \cdots O4^{ii}$	0.97	2.58	3.543 (2)	172

Symmetry codes: (i) $-x, -y + 1, z + \frac{1}{2}$; (ii) $x + \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2003); cell refinement: *SAINT* (Bruker, 2003); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

We thank the National Natural Science Foundation of China (grant No. 21073141), the Education Committee Foundation of Shaanxi Province (grant Nos. 11 JK0564 and 11J K0582) and the Project sponsored by SRF for AT, YLU (No. 09GK019) for generously supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZQ2187).

References

- Archibald, T. G., Gilardi, R., Baum, K. & George, C. (1990). J. Org. Chem. 55, 2920–2924.
- Bruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Gao, R., Ma, H. X., Yan, B., Song, J. R. & Wang, Y. H. (2009). Chem. J. Chin. Univ. 30, 577–582.
- Gao, R., Yan, B., Mai, T., Hu, Y. & Guan, Y.-L. (2010). Acta Cryst. E66, 03036. Hiskey, M. A., Coburn, M. D., Mitchell, M. A. & Benicewicz, B. C. (1992). J.
- History, M. P., Cobarti, M. D., Hitchen, M. P. & Bondowski, D. C. (1992). J. Heterocycl. Chem. **29**, 1855–1856.
- Li, H. Z., Shu, Y. J., Huang, Y. G., Liu, S. J. & Jiang, Q. (2004). Chin. J. Org. Chem. 24, 775–777.
- Ma, H. X., Yan, B., Li, Z. N., Guan, Y. L., Song, J. R., Xu, K. Z. & Hu, R. Z. (2009a). J. Hazard. Mater. 169, 1068–1073.
- Ma, H. X., Yan, B., Li, J. F., Ren, Y. H., Chen, Y. S., Zhao, F. Q., Song, J. R. & Hu, R. Z. (2010). J. Mol. Struct. 981, 103–110.
- Ma, H. X., Yan, B., Li, Z. N., Song, J. R. & Hu, R. Z. (2009b). J. Therm. Anal. Calorim. 95, 437–444.
- Ma, H. X., Yan, B., Ren, Y. H., Guan, Y. L., Zhao, F. Q., Song, J. R. & Hu, R. Z. (2011). J. Therm. Anal. Calorim. 103, 569–575.
- Sheldrick, G. M. (2000). SADABS . University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Yan, B., Ma, H.-X., Hu, Y., Guan, Y.-L. & Song, J.-R. (2009). Acta Cryst. E65, 03215.
- Yan, B., Ma, H.-X., Li, J.-F., Guan, Y.-L. & Song, J.-R. (2010). Acta Cryst. E66, 057.

supporting information

Acta Cryst. (2012). E68, o3376 [doi:10.1107/S1600536812046302]

3,3-Dinitroazetidinium chloride

Biao Yan, Hong-Ya Li, Ning-Ning Zhao, Jie Li and Hai-Xia Ma

S1. Comment

Dinitro- and trinitro-derivatives of azetidine are of interest because they contain strained ring systems. This makes them good candidates for energetic materials (propellants or explosives). Azetidine-based explosives, such as 1,3,3-trinitro-azetidine (TNAZ) (Archibald *et al.*, 1990) demonstrate excellent performance partly because of the high strain associated with the four-membered ring. As one of the important derivates of TNAZ, 3,3-dinitroazetidine (DNAZ) (Hiskey *et al.*, 1992) can prepare a variety of solid energetic materials with high oxygen-balance (Ma *et al.*, 2009*a*; Ma *et al.*, 2009*b*; Yan *et al.*, 2009; Gao *et al.*, 2009; Yan *et al.*, 2010; Ma *et al.*, 2010; Ma *et al.*, 2011). This paper reports the crystal structure of the title DNAZ salt, $C_3H_6N_3O_4^+$.Cl⁻.

In the title dinitroazetidinium chloride salt, cations and anions lie on a mirror plane. The azetidine ring is virtually planar, with a mean deviation from the plane of 0.0569 Å. The dihedral angle between the two nitro groups is 90.00 (5)°. In the crystal, the ions are linked by N–H…Cl and C–H…O interactions.

S2. Experimental

The title compound was synthesized and purified by a reported method (Li *et al.*, 2004). The compound was then dissolved in water and colorless crystals were isolated after 1 d.

Elemental analysis calculated for C₃H₆N₃O₄Cl: C 19.63, N 22.89, H 3.29%; found: C 19.74, N 23.10, H 3.19%. IR (KBr, cm⁻¹): 3057, 2623, 1588, 1406, 1333, 850, 808.

S3. Refinement

H atoms were placed at calculated idealized positions and refined using a riding model, with C—H = 0.97 Å and N—H = 0.90 Å [and U_{iso} (H) = 1.2 U_{eq} (C,N)].

Figure 1

The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are drawn as spheres of arbitrary radius.

3,3-Dinitroazetidinium chloride

Crystal data	
$C_{3}H_{6}N_{3}O_{4}^{+}\cdot Cl^{-}$	Z = 4
$M_r = 183.56$	F(000) = 376
Orthorhombic, $Cmc2_1$	$D_{\rm x} = 1.753 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: C 2c -2	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 6.6807 (17) Å	$\mu = 0.52 \text{ mm}^{-1}$
b = 10.4409 (17) Å	T = 293 K
c = 9.9707 (19) Å	Block, colourless
$V = 695.5 (2) \text{ Å}^3$	$0.35\times0.34\times0.30~mm$
Data collection	
Bruker SMART APEXII CCD area-detector	1968 measured reflections
diffractometer	708 independent reflections
Radiation source: fine-focus sealed tube	696 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.019$
phi and ω scans	$\theta_{\text{max}} = 27.9^{\circ}, \ \theta_{\text{min}} = 3.6^{\circ}$
Absorption correction: multi-scan	$h = -8 \rightarrow 8$

(SADABS; Sheldrick, 2000) $T_{min} = 0.839, T_{max} = 0.860$

 $k = -13 \rightarrow 12$ $l = -11 \rightarrow 13$

Refinement

Refinement on F ² Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.021$	H-atom parameters constrained
$wR(F^2) = 0.055$	$w = 1/[\sigma^2(F_o^2) + (0.0313P)^2 + 0.199P]$
S = 1.10	where $P = (F_o^2 + 2F_c^2)/3$
708 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
62 parameters	$\Delta \rho_{\rm max} = 0.18 \text{ e} \text{ Å}^{-3}$
1 restraint	$\Delta \rho_{\rm min} = -0.16 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier	Extinction coefficient: 0.227 (9)
map	Absolute structure: Flack (1983), 252 Friedel pairs
	Absolute structure perameter: $0.00(7)$

Absolute structure parameter: 0.09 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 ,

conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl	0.0000	0.34257 (4)	0.24339 (6)	0.03211 (19)	
N2	0.0000	0.14030 (15)	0.5026 (2)	0.0277 (4)	
03	0.0000	0.07128 (19)	0.7449 (3)	0.0571 (6)	
C1	0.1613 (2)	0.35120 (12)	0.57848 (17)	0.0255 (3)	
H1A	0.2305	0.3773	0.6596	0.031*	
H1B	0.2557	0.3293	0.5081	0.031*	
N3	0.0000	0.1881 (2)	0.7388 (3)	0.0354 (4)	
N1	0.0000	0.44299 (15)	0.5346 (2)	0.0269 (4)	
H1C	0.0000	0.4581	0.4457	0.032*	
H1D	0.0000	0.5170	0.5808	0.032*	
04	0.0000	0.2614 (3)	0.8318 (2)	0.0536 (6)	
01	0.16253 (18)	0.10036 (10)	0.46749 (16)	0.0425 (4)	
C2	0.0000	0.24966 (18)	0.6017 (2)	0.0217 (4)	

interne inspireentent put interes (ii)	Atomic	displ	lacement	parameters	$(Å^2)$
--	--------	-------	----------	------------	---------

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl	0.0359 (3)	0.0347 (3)	0.0258 (3)	0.000	0.000	0.0048 (3)
N2	0.0314 (9)	0.0207 (8)	0.0309 (11)	0.000	0.000	0.0002 (7)
O3	0.0562 (12)	0.0522 (10)	0.0629 (14)	0.000	0.000	0.0373 (12)
C1	0.0226 (7)	0.0236 (7)	0.0304 (8)	-0.0015 (5)	0.0008 (6)	-0.0013 (5)
N3	0.0232 (8)	0.0556 (11)	0.0273 (9)	0.000	0.000	0.0133 (13)

supporting information

N1	0.0323 (10)	0.0202 (7)	0.0283 (9)	0.000	0.000	-0.0012 (7)
O4	0.0463 (12)	0.0904 (16)	0.0240 (9)	0.000	0.000	-0.0017 (9)
01	0.0365 (7)	0.0362 (6)	0.0549 (9)	0.0117 (4)	-0.0002 (7)	-0.0136 (6)
C2	0.0218 (9)	0.0215 (9)	0.0217 (11)	0.000	0.000	0.0007 (7)

Geometric parameters (Å, °)

N2—O1 ⁱ	1.2147 (14)	C1—H1B	0.9700
N201	1.2147 (14)	N3—O4	1.203 (4)
N2C2	1.510 (3)	N3—C2	1.511 (3)
O3—N3	1.221 (3)	N1—C1 ⁱ	1.5073 (19)
C1—N1	1.5073 (18)	N1—H1C	0.9000
C1—C2	1.5294 (19)	N1—H1D	0.9000
C1—H1A	0.9700	C2C1 ⁱ	1.5294 (19)
01 ⁱ —N2—O1	126.74 (19)	O4—N3—C2	115.2 (2)
01 ⁱ —N2—C2	116.63 (9)	O3—N3—C2	118.0 (3)
O1—N2—C2	116.63 (9)	C1—N1—C1 ⁱ	91.30 (15)
N1—C1—C2	88.89 (11)	C1—N1—H1C	113.4
N1—C1—H1A	113.8	C1—N1—H1D	113.4
C2—C1—H1A	113.8	H1C—N1—H1D	110.7
N1—C1—H1B	113.8	N2—C2—N3	105.67 (17)
C2C1H1B	113.8	N2—C2—C1	115.17 (13)
H1A—C1—H1B	111.1	N3—C2—C1	115.58 (13)
O4—N3—O3	126.7 (3)	C1-C2-C1 ⁱ	89.62 (15)
C2-C1-N1-C1 ⁱ	8.66 (17)	O3—N3—C2—N2	0.0
01 ⁱ —N2—C2—N3	89.58 (16)	O4—N3—C2—C1	51.39 (11)
O1—N2—C2—N3	-89.58 (16)	O3—N3—C2—C1	-128.61 (11)
01 ⁱ —N2—C2—C1	-141.56 (16)	O4—N3—C2—C1 ⁱ	-51.39 (11)
O1—N2—C2—C1	39.3 (2)	O3—N3—C2—C1 ⁱ	128.61 (11)
01^{i} —N2—C2—C 1^{i}	-39.3 (2)	N1-C1-C2-N2	109.30 (15)
$01 - N2 - C2 - C1^{i}$	141.56 (16)	N1-C1-C2-N3	-126.93 (15)
O4—N3—C2—N2	180.0	$N1$ — $C1$ — $C2$ — $C1^i$	-8.53 (17)

Symmetry code: (i) -x, y, z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
N1—H1C···Cl	0.90	2.35	3.087 (2)	139
N1—H1D····Cl ⁱⁱ	0.90	2.19	3.0575 (19)	163
C1—H1 <i>B</i> …O1	0.97	2.50	2.8432 (19)	100
C1—H1B···O4 ⁱⁱⁱ	0.97	2.58	3.543 (2)	172

Symmetry codes: (ii) -*x*, -*y*+1, *z*+1/2; (iii) *x*+1/2, -*y*+1/2, *z*-1/2.