

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(E)-4-(2-Chloro-1-hydroxy-2,6,6-trimethylcyclohexyl)but-3-en-2-one

Shan Liu,* Xiao-Yan Yang and Yu-Ling Zhang

Nanjing College of Chemical Technology, No. 625 Geguan Road, Luhe, Nanjing 210048, People's Republic of China Correspondence e-mail: dols80@163.com

Received 6 November 2012; accepted 26 November 2012

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.004 Å; R factor = 0.068; wR factor = 0.179; data-to-parameter ratio = 16.9.

In the title molecule, $C_{13}H_{21}ClO_2$, there is an intramolecular C-H···Cl hydrogen bond. The conformation about the C=C bond is E and the six-membered ring has a chair conformation. In the crystal, molecules are linked by pairs of $O-H \cdots O$ hydrogen bonds, forming inversion dimers, which are consolidated by $C-H \cdots O$ hydrogen bonds. The dimers are linked via C−H.·O hydrogen bonds, forming chains along [100].

Related literature

For the use of (E)-4-(2-chloro-1-hydroxy-2,6,6-trimethylcyclohexyl)but-3-en-2-one, see: Sakai et al. (1992). For bondlength data, see: Allen et al. (1987).

(5) Å

Experimental

Crystal data	
$C_{13}H_{21}ClO_2$	a = 6.266 (1) Å
$M_r = 244.75$	b = 8.586 (2) Å
Monoclinic, $P2_1/n$	c = 24.868(5) Å

 $\beta = 92.24 \ (3)^{\circ}$ V = 1336.9 (5) Å³ Z = 4Mo $K\alpha$ radiation

Data collection

Enraf–Nonius CAD-4
diffractometer
Absorption correction: ψ scan
(North et al., 1968)
$T_{\min} = 0.923, T_{\max} = 0.973$
2688 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.068$ wR(F²) = 0.179 S = 1.002450 reflections 145 parameters

$\Delta \rho_{\rm max} = 0.45 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.29$ e Å⁻³

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$O1-H1A\cdots O2^i$	0.82	2.12	2.858 (3)	149
$C7 - H7A \cdots O2^{i}$	0.96	2.58	3.473 (5)	155
$C8-H8C\cdots Cl$	0.96	2.59	3.257 (3)	127
$C13-H13C\cdots O1^{ii}$	0.96	2.59	3.536 (4)	169

Symmetry codes: (i) -x + 2, -y, -z; (ii) x - 1, y, z.

Data collection: CAD-4 Software (Enraf-Nonius, 1985); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZJ2098).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359

Sakai, K., Takahashi, K. & Nukano, T. (1992). Tetrahedron, 64, 8229-8238. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

organic compounds

 $\mu = 0.27 \text{ mm}^{-1}$

 $0.30 \times 0.20 \times 0.10 \text{ mm}$

3 standard reflections every 200 reflections intensity decay: 1%

2450 independent reflections

1611 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

. Т – 298 К

 $R_{\rm int} = 0.068$

1 restraint

supporting information

Acta Cryst. (2012). E68, o3485 [doi:10.1107/S1600536812048544]

(E)-4-(2-Chloro-1-hydroxy-2,6,6-trimethylcyclohexyl)but-3-en-2-one

Shan Liu, Xiao-Yan Yang and Yu-Ling Zhang

S1. Comment

(*E*)-4-(2-Chloro-1-hydroxy-2,6,6-trimethylcyclohexyl)but-3-en-2-one is an important intermediate used to synthesize abscisic acid (ABA), which has important activities as a plant hormone (Sakai, *et al.*, 1992). We report here the crystal structure of the title compound (Fig. 1).

In the title molecule, bond lengths (Allen *et al.*, 1987) and angles are within normal ranges. In the crystal packing (Fig. 2), mmolecules are linked to form three-dimensional framework by intra- and intermolecular C—H…Cl, C—H…O and O —H…O hydrogen bonds, which may be effective for the stabilization of the crystals (see, Table 1).

S2. Experimental

(*E*)-4-(2-Chloro-1-hydroxy-2,6,6-trimethylcyclohexyl)but-3-en-2-one was prepared by the reaction of (*E*)-4-(2,2,6-trimethyl-7- oxabicyclo[4.1.0]heptan-1-yl)but-3-en-2-one (20.8 g, 0.100 mmol) and 1*M* hydrochloric acid (30 ml) in ethanol (150 ml) at 273 K for 3 h, and separated by column chromatography on silica gel (hexane / ethyl acetate = 8/2, V/V) with a yield of 50%. Single crystals were obtained by dissolving the title compound (0.50 g, 2.04 mmol) in ethyl acetate (30 ml) and evaporating the solvent slowly at 288–293 K for about 1 d.

S3. Refinement

H atoms were positioned geometrically, with O—H = 0.82, and constrained to ride on their parent atoms, with $U_{iso}(H) = xU_{eq}(C/O)$, where x = 1.5 for H.

Figure 1

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. H atoms are presented as small spheres of arbitrary radius.

Figure 2

A view of the C—H···Cl, C—H···O and O—H···O hydrogen bonds (dotted lines) in the crystal structure of the title compound. [Symmter codes: (i) 2 - x, -y, -z; (ii) 2 - x, -y, -z; (iii) -1 + x, y, z.]

(E)-4-(2-Chloro-1-hydroxy-2,6,6-trimethylcyclohexyl)but-3-en-2-one

Crystal data

C₁₃H₂₁ClO₂ $M_r = 244.75$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 6.266 (1) Å b = 8.586 (2) Å c = 24.868 (5) Å $\beta = 92.24$ (3)° V = 1336.9 (5) Å³ Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator $\omega/2\theta$ scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{\min} = 0.923, T_{\max} = 0.973$ 2688 measured reflections

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.068$	Hydrogen site location: inferred from
$wR(F^2) = 0.179$	neighbouring sites
S = 1.00	H-atom parameters constrained
2450 reflections	$w = 1/[\sigma^2(F_o^2) + (0.1P)^2 + 0.3P]$
145 parameters	where $P = (F_o^2 + 2F_c^2)/3$
1 restraint	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.45 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

F(000) = 528

 $\theta = 10 - 13^{\circ}$

T = 298 K

 $R_{\rm int} = 0.068$

 $h = 0 \rightarrow 7$

 $k = 0 \rightarrow 10$

 $l = -29 \rightarrow 29$

 $\mu = 0.27 \text{ mm}^{-1}$

Cube, colorless

 $0.30 \times 0.20 \times 0.10 \text{ mm}$

 $\theta_{\text{max}} = 25.4^{\circ}, \ \theta_{\text{min}} = 1.6^{\circ}$

intensity decay: 1%

2450 independent reflections 1611 reflections with $I > 2\sigma(I)$

3 standard reflections every 200 reflections

 $D_{\rm x} = 1.216 {\rm Mg} {\rm m}^{-3}$

Melting point = 380–383 K

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 25 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl	0.73792 (16)	0.51609 (11)	0.14841 (4)	0.0672 (4)	
O1	1.1529 (3)	0.2036 (2)	0.09894 (8)	0.0447 (6)	
H1A	1.1530	0.1117	0.0899	0.067*	

C1	0.8845 (5)	0.1320 (3)	0.16368 (12)	0.0425 (7)
02	0.6807 (4)	0.0827 (3)	-0.05952 (10)	0.0669 (8)
C2	1.0445 (5)	0.1541 (4)	0.21162 (13)	0.0505 (8)
H2A	1.0002	0.0904	0.2414	0.061*
H2B	1.1839	0.1177	0.2015	0.061*
C3	1.0635 (6)	0.3233 (4)	0.23029 (15)	0.0622 (10)
H3A	0.9271	0.3583	0.2430	0.075*
H3B	1.1681	0.3306	0.2600	0.075*
C4	1.1304 (6)	0.4266 (4)	0.18449 (15)	0.0549 (9)
H4A	1.1366	0.5335	0.1972	0.066*
H4B	1.2733	0.3972	0.1748	0.066*
C5	0.9854 (5)	0.4199 (3)	0.13459 (13)	0.0433 (8)
C6	0.9465 (5)	0.2448 (3)	0.11647 (11)	0.0365 (7)
C7	0.8980 (6)	-0.0372 (4)	0.14485 (15)	0.0601 (10)
H7A	1.0381	-0.0573	0.1321	0.090*
H7B	0.7935	-0.0550	0.1162	0.090*
H7C	0.8710	-0.1056	0.1744	0.090*
C8	0.6432 (4)	0.1588 (3)	0.18449 (11)	0.0300 (6)
H8A	0.6166	0.0868	0.2130	0.045*
H8B	0.5415	0.1418	0.1552	0.045*
H8C	0.6298	0.2635	0.1975	0.045*
C9	1.0807 (6)	0.5136 (4)	0.08881 (15)	0.0615 (10)
H9A	1.2142	0.4680	0.0795	0.092*
H9B	1.1039	0.6192	0.1003	0.092*
H9C	0.9836	0.5122	0.0580	0.092*
C10	0.7826 (5)	0.2374 (3)	0.07141 (12)	0.0397 (7)
H10A	0.6470	0.2752	0.0781	0.048*
C11	0.8145 (5)	0.1811 (4)	0.02232 (12)	0.0447 (8)
H11A	0.9515	0.1480	0.0148	0.054*
C12	0.6479 (5)	0.1680 (3)	-0.02048 (12)	0.0447 (8)
C13	0.4476 (5)	0.2548 (4)	-0.01817 (13)	0.0527 (9)
H13A	0.3583	0.2309	-0.0493	0.079*
H13B	0.4775	0.3645	-0.0174	0.079*
H13C	0.3755	0.2260	0.0137	0.079*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl	0.0756 (7)	0.0548 (6)	0.0719 (7)	0.0143 (5)	0.0108 (5)	-0.0036 (4)
01	0.0380(11)	0.0435 (12)	0.0534 (13)	0.0036 (9)	0.0116 (10)	-0.0076 (10)
C1	0.0447 (17)	0.0388 (16)	0.0450 (17)	0.0001 (14)	0.0132 (14)	0.0023 (14)
02	0.0759 (18)	0.0694 (17)	0.0551 (14)	0.0135 (14)	0.0005 (13)	-0.0249 (13)
C2	0.0510 (19)	0.0507 (19)	0.0496 (19)	0.0063 (16)	-0.0001 (16)	0.0062 (16)
C3	0.071 (2)	0.064 (2)	0.051 (2)	0.000 (2)	-0.0090 (18)	-0.0096 (18)
C4	0.051 (2)	0.0417 (18)	0.071 (2)	-0.0013 (15)	-0.0016 (18)	-0.0108 (17)
C5	0.0494 (19)	0.0305 (15)	0.0503 (18)	-0.0027 (14)	0.0056 (15)	-0.0040 (13)
C6	0.0393 (16)	0.0359 (15)	0.0350 (15)	-0.0037 (12)	0.0098 (13)	-0.0003 (12)
C7	0.078 (3)	0.0330 (17)	0.070 (2)	-0.0073 (17)	0.006 (2)	0.0025 (16)

supporting information

C 8	0.0208 (12)	0.0245(14)	0.0246(14)	-0.0022(11)	0.0010 (11)	0.0120 (11)
Co	0.0208 (12)	0.0343(14)	0.0340 (14)	-0.0033 (11)	0.0010(11)	0.0130 (11)
C9	0.070 (2)	0.0427 (19)	0.074 (2)	-0.0124 (17)	0.023 (2)	0.0067 (17)
C10	0.0392 (16)	0.0382 (16)	0.0423 (16)	0.0047 (13)	0.0072 (14)	-0.0021 (13)
C11	0.0503 (18)	0.0415 (17)	0.0429 (17)	0.0026 (14)	0.0077 (14)	-0.0041 (14)
C12	0.062 (2)	0.0335 (16)	0.0393 (16)	-0.0003 (14)	0.0105 (15)	-0.0040 (13)
C13	0.061 (2)	0.052 (2)	0.0450 (18)	0.0059 (17)	0.0027 (16)	-0.0053 (16)

Geometric parameters (Å, °)

Cl—C5	1.802 (3)	C6—C10	1.491 (4)
O1—C6	1.425 (3)	C7—H7A	0.9600
O1—H1A	0.8200	С7—Н7В	0.9600
C1—C7	1.530 (4)	С7—Н7С	0.9600
C1—C2	1.539 (4)	C8—H8A	0.9600
C1—C6	1.582 (4)	C8—H8B	0.9600
C1—C8	1.633 (4)	C8—H8C	0.9600
O2—C12	1.240 (4)	С9—Н9А	0.9600
C2—C3	1.528 (5)	С9—Н9В	0.9600
C2—H2A	0.9700	С9—Н9С	0.9600
C2—H2B	0.9700	C10—C11	1.336 (4)
C3—C4	1.516 (5)	C10—H10A	0.9300
С3—НЗА	0.9700	C11—C12	1.466 (4)
С3—Н3В	0.9700	C11—H11A	0.9300
C4—C5	1.510 (5)	C12—C13	1.463 (4)
C4—H4A	0.9700	C13—H13A	0.9600
C4—H4B	0.9700	C13—H13B	0.9600
С5—С9	1.534 (4)	C13—H13C	0.9600
C5—C6	1.586 (4)		
C6—O1—H1A	109.5	C10—C6—C5	110.3 (2)
C7—C1—C2	108.2 (3)	C1—C6—C5	114.1 (2)
C7—C1—C6	109.6 (3)	C1—C7—H7A	109.5
C2—C1—C6	109.1 (2)	C1—C7—H7B	109.5
C7—C1—C8	107.1 (2)	H7A—C7—H7B	109.5
C2—C1—C8	108.7 (2)	C1—C7—H7C	109.5
C6—C1—C8	114.0 (2)	H7A—C7—H7C	109.5
C3—C2—C1	113.1 (3)	H7B—C7—H7C	109.5
C3—C2—H2A	109.0	C1—C8—H8A	109.5
C1—C2—H2A	109.0	C1—C8—H8B	109.5
C3—C2—H2B	109.0	H8A—C8—H8B	109.5
C1—C2—H2B	109.0	C1—C8—H8C	109.5
H2A—C2—H2B	107.8	H8A—C8—H8C	109.5
C4—C3—C2	110.4 (3)	H8B—C8—H8C	109.5
C4—C3—H3A	109.6	С5—С9—Н9А	109.5
С2—С3—Н3А	109.6	С5—С9—Н9В	109.5
С4—С3—Н3В	109.6	H9A—C9—H9B	109.5
С2—С3—Н3В	109.6	С5—С9—Н9С	109.5
НЗА—СЗ—НЗВ	108.1	Н9А—С9—Н9С	109.5

C5—C4—C3	114.8 (3)	Н9В—С9—Н9С	109.5
C5—C4—H4A	108.6	C11—C10—C6	125.4 (3)
C3—C4—H4A	108.6	C11—C10—H10A	117.3
C5—C4—H4B	108.6	C6C10H10A	117.3
C3—C4—H4B	108.6	C10-C11-C12	124.3 (3)
H4A—C4—H4B	107.5	C10-C11-H11A	117.8
C4—C5—C9	110.5 (3)	C12—C11—H11A	117.8
C4—C5—C6	110.5 (3)	O2—C12—C13	120.0 (3)
C9—C5—C6	110.2 (2)	O2—C12—C11	118.6 (3)
C4—C5—C1	108.7 (2)	C13—C12—C11	121.4 (3)
C9—C5—C1	105.3 (2)	С12—С13—Н13А	109.5
C6—C5—C1	111.4 (2)	С12—С13—Н13В	109.5
O1—C6—C10	111.5 (2)	H13A—C13—H13B	109.5
O1—C6—C1	109.1 (2)	С12—С13—Н13С	109.5
C10—C6—C1	110.5 (2)	H13A—C13—H13C	109.5
O1—C6—C5	101.0 (2)	H13B—C13—H13C	109.5
C7—C1—C2—C3	173.8 (3)	C8—C1—C6—C5	72.1 (3)
C6—C1—C2—C3	54.6 (4)	C4—C5—C6—O1	-69.0 (3)
C8—C1—C2—C3	-70.3 (3)	C9—C5—C6—O1	53.6 (3)
C1—C2—C3—C4	-58.1 (4)	ClC5C6O1	170.10 (19)
C2—C3—C4—C5	56.5 (4)	C4C5C10	173.0 (2)
C3—C4—C5—C9	-173.5 (3)	C9—C5—C6—C10	-64.5 (3)
C3—C4—C5—C6	-51.2 (4)	ClC5C6C10	52.1 (3)
C3—C4—C5—Cl	71.4 (3)	C4—C5—C6—C1	48.0 (3)
C7—C1—C6—O1	-55.7 (3)	C9—C5—C6—C1	170.5 (3)
C2-C1-C6-01	62.6 (3)	ClC5C6C1	-73.0 (3)
C8—C1—C6—O1	-175.7 (2)	O1—C6—C10—C11	8.0 (4)
C7—C1—C6—C10	67.2 (3)	C1-C6-C10-C11	-113.5 (3)
C2-C1-C6-C10	-174.5 (2)	C5-C6-C10-C11	119.4 (3)
C8—C1—C6—C10	-52.9 (3)	C6-C10-C11-C12	176.8 (3)
C7—C1—C6—C5	-167.9 (3)	C10—C11—C12—O2	-163.5 (3)
C2—C1—C6—C5	-49.6 (3)	C10-C11-C12-C13	17.4 (5)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D··· A	<i>D</i> —H··· <i>A</i>
O1—H1A····O2 ⁱ	0.82	2.12	2.858 (3)	149
C7—H7A···O2 ⁱ	0.96	2.58	3.473 (5)	155
C8—H8 <i>C</i> ···Cl	0.96	2.59	3.257 (3)	127
C13—H13C…O1 ⁱⁱ	0.96	2.59	3.536 (4)	169

Symmetry codes: (i) –*x*+2, –*y*, –*z*; (ii) *x*–1, *y*, *z*.