Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

catena-Poly[[(4,4'-dimethyl-2,2'-bipyri-dine- $\kappa^{2} N, N^{\prime}$)cadmium]-di- μ-bromido]

Sadif A. Shirvan, ${ }^{\text {a* }}$ Sara Haydari Dezfuli, ${ }^{\text {a }}$ Fereydoon Khazali $^{\text {a }}$ and Ali Borsalani ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, Omidieh Branch, Islamic Azad University, Omidieh, Iran, and ${ }^{\mathbf{b}}$ Department of Petroleum Engineering, Omidieh Branch, Islamic Azad University, Omidieh, Iran
Correspondence e-mail: sadifchemist@hotmail.com

Received 11 November 2012; accepted 12 November 2012
Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.019 \AA$; R factor $=0.079 ; w R$ factor $=0.155$; data-to-parameter ratio $=16.8$.

In the crystal of the title polymeric compound, $\left[\mathrm{CdBr}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\right]_{n}$, the $\mathrm{Cd}^{\mathrm{II}}$ cation is located on a twofold rotation axis and is six-coordinated in a distorted octahedral geometry formed by two N atoms from the 4,4'-dimethyl-2, 2^{\prime} bipyridine ligand and by four bridging Br^{-}anions. The bridging function of the Br^{-}anions leads to a polymeric chain running along the c axis. Weak $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions observed between adjacent chains are effective in the stabilization of the three-dimensional packing.

Related literature

For related structures, see: Ahmadi et al. (2008); Alizadeh et al. (2010); Amani et al. (2009); Bellusci et al. (2008); Han et al. (2006); Hojjat Kashani et al. (2008); Kalateh et al. (2008, 2010); Shirvan \& Haydari Dezfuli (2012); Sofetis et al. (2006); Willett et al. (2001); Yousefi et al. (2008); Zhang (2007).

Experimental

Crystal data

$\left[\mathrm{CdBr}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\right]$
$M_{r}=456.45$
$a=17.979$ (4) \AA
Monoclinic, $C 2 / c$
$\beta=108.403(17)^{\circ}$
$V=1338.5$ (5) A ${ }^{3}$
$Z=4$
Mo $K \alpha$ radiation
Data collection
Bruker APEXII CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2001) $T_{\text {min }}=0.188, T_{\text {max }}=0.246$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.079 \quad 78$ parameters
$w R\left(F^{2}\right)=0.155$
$S=1.24$
1313 reflections

$$
\mu=7.58 \mathrm{~mm}^{-1}
$$

$T=298 \mathrm{~K}$
$0.25 \times 0.21 \times 0.20 \mathrm{~mm}$

3392 measured reflections 1313 independent reflections 909 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.095$

H -atom parameters constrained
$\Delta \rho_{\text {max }}=1.20 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.88 \mathrm{e}^{-3}$

Table 1
Selected bond lengths (\AA).

$\mathrm{Cd} 1-\mathrm{N} 1$	$2.357(10)$	$\mathrm{Cd} 1-\mathrm{Br} 1^{\mathrm{i}}$	$2.8789(16)$
$\mathrm{Cd} 1-\mathrm{Br} 1$	$2.6852(17)$		

Symmetry code: (i) $x,-y+2, z-\frac{1}{2}$.

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).
Cg is the centroid of the N1-pyridine ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 4-\mathrm{H} 4 B \cdots C g^{\text {ii }}$	0.96	2.84	$3.575(16)$	135
Symmetry code: (ii) $x,-y+1, z-\frac{1}{2}$.				

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

We are grateful to the Islamic Azad University, Omidieh Branch, for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5649).

References

Ahmadi, R., Kalateh, K., Abedi, A., Amani, V. \& Khavasi, H. R. (2008). Acta Cryst. E64, m1306-m1307.
Alizadeh, R., Mohammadi Eshlaghi, P. \& Amani, V. (2010). Acta Cryst. E66, m996.
Amani, V., Safari, N., Notash, B. \& Khavasi, H. R. (2009). J. Coord. Chem. 62, 1939-1950.
Bellusci, A., Crispini, A., Pucci, D., Szerb, E. I. \& Ghedini, M. (2008). Cryst. Growth Des. 8, 3114-3122.
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Han, J., Fang, J., Dong, Y. \& Chang, H. (2006). Acta Cryst. E62, m183-m184.
Hojjat Kashani, L., Amani, V., Yousefi, M. \& Khavasi, H. R. (2008). Acta Cryst. E64, m905-m906.
Kalateh, K., Ahmadi, R. \& Amani, V. (2010). Acta Cryst. E66, m512.
Kalateh, K., Ebadi, A., Ahmadi, R., Amani, V. \& Khavasi, H. R. (2008). Acta Cryst. E64, m1397-m1398.

metal-organic compounds

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Shirvan, S. A. \& Haydari Dezfuli, S. (2012). Acta Cryst. E68, m1006-m1007.
Sofetis, A., Raptopoulou, C. P., Terzis, A. \& Zafiropoulos, T. F. (2006). Inorg. Chim. Acta, 359, 3389-3395

Willett, R. D., Pon, G. \& Nagy, C. (2001). Inorg. Chem. 40, 4342-4352
Yousefi, M., Tadayon Pour, N., Amani, V. \& Khavasi, H. R. (2008). Acta Cryst. E64, m1259.
Zhang, B.-S. (2007). Acta Cryst. E63, m1562.

supporting information

Acta Cryst. (2012). E68, m1493-m1494 [doi:10.1107/S1600536812046636]

catena-Poly[[(4,4'-dimethyl-2,2'-bipyridine- $\left.\kappa^{2} N, N^{\prime}\right)$ cadmium $]$-di- μ-bromido] Sadif A. Shirvan, Sara Haydari Dezfuli, Fereydoon Khazali and Ali Borsalani

S1. Comment

Recently, we reported the synthes and crystal structure of [$\left.\mathrm{CdBr}_{2}\left(4,4^{\prime}-\mathrm{dmbpy}\right)(\mathrm{DMSO})\right]$, (Shirvan \& Haydari Dezfuli, 2012) [where $4,4^{\prime}$-dmbpy is $4,4^{\prime}$-dimethyl-2,2'-bipyridine and DMSO is dimethyl sulfoxide]. 4, 4^{\prime}-Dimethyl-2,2'-bipyridine is a good bidentate ligand, and numerous complexes with 4,4'-dmbipy have been prepared, such as that of mercury (Kalateh et al., 2008; Yousefi et al., 2008), indium (Ahmadi et al., 2008), iron (Amani et al., 2009), platin (Hojjat Kashani et al., 2008), silver (Bellusci et al., 2008), gallium (Sofetis et al., 2006), copper (Willett et al., 2001), cadmium (Kalateh et al., 2010) and zinc (Alizadeh et al., 2010). Here, we report the synthesis and structure of the title compound.
The asymmetric unit of the title compound, (Fig. 1), contains half-molecule; a twofold rotation axis passes through the Cd atom. The $\mathrm{Cd}^{\mathrm{II}}$ cation is six-coordinated in a distorted octahedral geometry formed by two N atoms from the 4,4'-di-methyl-2, 2^{\prime}-bipyridine ligand and four bridging Br^{-}anions. The bridging function of the Br^{-}anions leads to a polymeric chain running along the b axis. The $\mathrm{Cd}-\mathrm{N}$ and $\mathrm{Cd}-\mathrm{Br}$ bond lengths and angles (Table 1) are within normal range $\left[\mathrm{Cd}(\text { phen })(\mu-\mathrm{Br})_{2}\right]_{\mathrm{n}}$, (Zhang, 2007) and $\left[\mathrm{Cd}(\text { bipy })(\mu-\mathrm{Br})_{2}\right]_{\mathrm{n}}$, (Han et al., 2006) [where phen is 1,10 -phenanthroline and bipy is $2,2^{\prime}$-bipyridine].

S2. Experimental

For the preparation of the title compound, a solution of 4, 4^{\prime}-dimethyl-2, 2^{\prime}-bipyridine ($0.25 \mathrm{~g}, 1.33 \mathrm{mmol}$) in methanol (10 $\mathrm{ml})$ was added to a solution of $\mathrm{CdBr}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O},(0.46 \mathrm{~g}, 1.33 \mathrm{mmol})$ in methanol $(5 \mathrm{ml})$ at room temperature. The suitable crystals for X-ray diffraction experiment were obtained by methanol diffusion to a colorless solution in dimethylformamide. Suitable crystals were isolated after one week (yield; $0.45 \mathrm{~g}, 74.1 \%$).

S3. Refinement

H atoms were positioned geometrically with $\mathrm{C}-\mathrm{H}=0.93-0.96 \AA$ and constrained to ride on their parent atoms, $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\mathrm{eq}}(\mathrm{C})$.

Figure 1

The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

catena-Poly[[(4,4'-dimethyl-2, 2^{\prime}-bipyridine- $\left.\kappa^{2} N, N^{\prime}\right)$ cadmium $]$-di- μ-bromido]

Crystal data

$\left[\mathrm{CdBr}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\right]$
$M_{r}=456.45$
Monoclinic, $C 2 / c$
Hall symbol: -C 2yc
$a=17.979$ (4) \AA
$b=10.5319(18) \AA$
$c=7.4496(16) \AA$
$\beta=108.403(17)^{\circ}$
$V=1338.5(5) \AA^{3}$
$Z=4$

Data collection

Bruker APEXII CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator ω scans
$F(000)=864$
$D_{\mathrm{x}}=2.265 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3392 reflections
$\theta=2.3-26.0^{\circ}$
$\mu=7.58 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Prism, colorless
$0.25 \times 0.21 \times 0.20 \mathrm{~mm}$

Absorption correction: multi-scan
(SADABS; Bruker, 2001)
$T_{\text {min }}=0.188, T_{\text {max }}=0.246$
3392 measured reflections
1313 independent reflections
909 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.095$
$\theta_{\text {max }}=26.0^{\circ}, \theta_{\text {min }}=2.3^{\circ}$
$h=-22 \rightarrow 22$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.079$
$w R\left(F^{2}\right)=0.155$
$S=1.24$
1313 reflections
78 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

$$
\begin{aligned}
& k=-12 \rightarrow 12 \\
& l=-7 \rightarrow 9
\end{aligned}
$$

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0098 P)^{2}+54.7076 P\right]$ where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.022$
$\Delta \rho_{\text {max }}=1.20 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.88$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
Cd1	0.0000	$0.09337(9)$	$0.92501(14)$	0.2500
Br1	$-0.0688(6)$	$0.08683(16)$	$0.4997(2)$	$0.0312(4)$
N1	$-0.0397(7)$	$0.6266(12)$	$0.1090(15)$	$0.0439(5)$
C6	$-0.0804(7)$	$0.5157(13)$	$0.1779(18)$	$0.023(3)$
C5	-0.0585	0.4376	$0.111(2)$	$0.030(3)$
H5	$-0.1384(8)$	$0.7427(15)$	0.1574	0.036^{*}
C1	-0.1579	0.8209	$-0.025(2)$	$0.042(4)$
H1	$-0.1535(8)$	$0.5209(14)$	-0.0767	0.050^{*}
C3	$-0.2002(8)$	$0.4012(14)$	$-0.025(2)$	$0.031(3)$
C4	-0.2098	0.3586	$-0.094(2)$	$0.040(4)$
H4A	-0.1712	0.3462	0.0101	0.048^{*}
H4B	-0.2493	0.4229	-0.1505	0.048^{*}
H4C	$-0.1825(8)$	$0.6396(14)$	-0.1869	0.048^{*}
C2	-0.2318	0.6478	$-0.091(2)$	$0.036(3)$
H2		-0.1806	0.043^{*}	

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	$0.0363(8)$	$0.0203(7)$	$0.0304(9)$	0.000	$0.0011(6)$	0.000
Br1	$0.0434(10)$	$0.0394(9)$	$0.0520(12)$	$-0.0169(7)$	$0.0195(8)$	$-0.0153(8)$
N1	$0.032(6)$	$0.027(5)$	$0.022(6)$	$-0.009(5)$	$-0.005(4)$	$-0.006(5)$

C6	$0.018(6)$	$0.024(6)$	$0.030(7)$	$0.002(5)$	$0.009(5)$	$0.002(6)$
C5	$0.019(6)$	$0.031(7)$	$0.045(9)$	$0.002(5)$	$0.015(6)$	$-0.002(6)$
C1	$0.034(8)$	$0.030(7)$	$0.046(9)$	$0.003(6)$	$-0.008(7)$	$0.010(7)$
C3	$0.027(7)$	$0.042(8)$	$0.023(7)$	$0.001(6)$	$0.005(5)$	$-0.010(6)$
C4	$0.037(8)$	$0.044(9)$	$0.035(8)$	$-0.012(7)$	$0.006(6)$	$-0.003(7)$
C2	$0.026(7)$	$0.042(8)$	$0.031(8)$	$0.002(6)$	$-0.005(6)$	$0.004(7)$

Geometric parameters $\left({ }^{A},{ }^{\circ}\right)$

$\mathrm{Cd} 1-\mathrm{N} 1^{\text {i }}$	2.357 (10)	C5-C3	1.383 (18)
$\mathrm{Cd} 1-\mathrm{N} 1$	2.357 (10)	C5-H5	0.9300
$\mathrm{Cd} 1-\mathrm{Br} 1^{\text {i }}$	2.6852 (17)	$\mathrm{C} 1-\mathrm{C} 2$	1.34 (2)
$\mathrm{Cd} 1-\mathrm{Br} 1$	2.6852 (17)	C1-H1	0.9300
Cd1- $\mathrm{Br}^{1 i}$	2.8789 (16)	C3-C2	1.39 (2)
$\mathrm{Cd} 1-\mathrm{Br}{ }^{1 i i}$	2.8790 (16)	C3-C4	1.513 (19)
$\mathrm{Br} 1-\mathrm{Cd1}{ }^{\text {iii }}$	2.8789 (16)	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9600
N1-C1	1.331 (16)	C4-H4B	0.9600
N1-C6	1.353 (17)	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	0.9600
C6-C5	1.384 (18)	C2-H2	0.9300
C6- $\mathrm{C}^{\text {i }}$	1.49 (2)		
N1 ${ }^{\text {i }}$ - $\mathrm{Cd} 1-\mathrm{N} 1$	69.7 (5)	N1-C6- $6^{\text {i }}$	116.2 (7)
$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{Br} 1^{\mathrm{i}}$	162.8 (3)	C5-C6- $\mathrm{C}^{\text {i }}$	122.4 (7)
$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{Br} 1^{\mathrm{i}}$	95.0 (3)	C3-C5-C6	120.1 (13)
$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{Br} 1$	95.0 (3)	C3-C5-H5	119.9
N1-Cd1-Br1	162.8 (3)	C6-C5-H5	119.9
$\mathrm{Br} 1-\mathrm{Cd} 1-\mathrm{Br} 1$	101.21 (9)	N1-C1-C2	125.0 (14)
$\mathrm{N} 1^{i}-\mathrm{Cd} 1-\mathrm{Br} 1^{\text {ii }}$	85.5 (3)	N1-C1-H1	117.5
$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{Br} 1^{\text {ii }}$	90.4 (3)	C2-C1-H1	117.5
$\mathrm{Br} 1^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{Br} 1^{\text {ii }}$	86.77 (5)	C5-C3-C2	117.4 (13)
$\mathrm{Br} 1-\mathrm{Cd} 1-\mathrm{Br} 1^{\text {ii }}$	96.39 (5)	C5-C3-C4	121.0 (13)
$\mathrm{N} 1{ }^{\text {i }}-\mathrm{Cd} 1-\mathrm{Br} 1^{\text {iii }}$	90.4 (3)	C2-C3-C4	121.6 (12)
$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{Br} 1^{\text {iii }}$	85.5 (3)	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	109.5
$\mathrm{Br} 1^{\text {i }}-\mathrm{Cd} 1-\mathrm{Br} 1^{\text {iii }}$	96.39 (5)	C3-C4-H4B	109.5
$\mathrm{Br} 1-\mathrm{Cd} 1-\mathrm{Br} 1^{\text {iii }}$	86.77 (5)	H4A-C4-H4B	109.5
$\mathrm{Br} 1^{\text {iii }}-\mathrm{Cd} 1-\mathrm{Br} 1^{\text {iii }}$	175.03 (9)	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	109.5
$\mathrm{Cd} 1-\mathrm{Br} 1-\mathrm{Cd} 1{ }^{\text {iii }}$	93.23 (5)	H4A-C4-H4C	109.5
C1-N1-C6	116.9 (12)	H4B-C4-H4C	109.5
C1-N1-Cd1	124.3 (10)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	119.1 (12)
C6-N1-Cd1	118.6 (8)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	120.4
N1-C6-C5	121.3 (11)	C3-C2-H2	120.4
	-90.1 (3)	$\mathrm{Br} 1{ }^{\text {iiii }} \mathrm{Cd} 1-\mathrm{N} 1-\mathrm{C} 6$	-89.3 (10)
$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{Br} 1-\mathrm{Cd} 1{ }^{\text {iii }}$	-63.5 (10)	C1-N1-C6-C5	0 (2)
Brl ${ }^{\text {i }}$ - $\mathrm{Cd} 1-\mathrm{Br} 1-\mathrm{Cd} 1^{\text {iii }}$	95.88 (5)	Cd1-N1-C6-C5	175.0 (10)
$\mathrm{Br}^{1}{ }^{\text {ii }}-\mathrm{Cd} 1-\mathrm{Br} 1-\mathrm{Cd} 1{ }^{\text {iii }}$	-176.16 (7)	C1-N1-C6- $\mathrm{C}^{\text {i }}$	177.6 (15)
$\mathrm{Br} 1^{\text {iii }}-\mathrm{Cd} 1-\mathrm{Br} 1-\mathrm{Cd} 1{ }^{\text {iii }}$	0.0	Cd1-N1-C6- $\mathrm{C}^{\text {i }}$	-7.7 (19)
$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{N} 1-\mathrm{C} 1$	177.1 (15)	N1-C6-C5-C3	-2 (2)

$\mathrm{Br} 1-\mathrm{Cd} 1-\mathrm{N} 1-\mathrm{C} 1$	$-11.0(12)$	$\mathrm{C} 6-\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 3$	$-179.3(14)$
$\mathrm{Br} 1-\mathrm{Cd} 1-\mathrm{N} 1-\mathrm{C} 1$	$148.7(10)$	$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$2(2)$
$\mathrm{Br} 1^{\mathrm{ii}}-\mathrm{Cd} 1-\mathrm{N} 1-\mathrm{C} 1$	$-97.8(12)$	$\mathrm{Cd} 1-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$-171.9(13)$
$\mathrm{Br} 1^{\mathrm{iii}-\mathrm{Cd} 1-\mathrm{N} 1-\mathrm{C} 1}$	$85.0(12)$	$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 3-\mathrm{C} 2$	$1(2)$
$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{N} 1-\mathrm{C} 6$	$2.9(7)$	$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 3-\mathrm{C} 4$	$-177.8(13)$
$\mathrm{Br} 1-\mathrm{Cd} 1-\mathrm{N} 1-\mathrm{C} 6$	$\mathrm{~N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-3(3)$	
$\mathrm{Br} 1-\mathrm{Cd} 1-\mathrm{N} 1-\mathrm{C} 6$	$-25.6(17)$	$\mathrm{C} 5-\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$1(2)$
$\mathrm{Br} 1 \mathrm{C} 1-\mathrm{Cd} 1-\mathrm{N} 1-\mathrm{C} 6$	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$-179.7(15)$	

Symmetry codes: (i) $-x, y,-z+1 / 2$; (ii) $x,-y+2, z-1 / 2$; (iii) $-x,-y+2,-z+1$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)
Cg is the centroid of the N1-pyridine ring.

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 4 — \mathrm{H} 4 B \cdots C g^{\text {iv }}$	0.96	2.84	$3.575(16)$	135

Symmetry code: (iv) $x,-y+1, z-1 / 2$.

