

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[[(4,4'-dimethyl-2,2'-bipyridine- $\kappa^2 N, N'$)cadmium]-di- μ -bromido]

Sadif A. Shirvan,^a* Sara Haydari Dezfuli,^a Fereydoon Khazali^a and Ali Borsalani^b

^aDepartment of Chemistry, Omidieh Branch, Islamic Azad University, Omidieh, Iran, and ^bDepartment of Petroleum Engineering, Omidieh Branch, Islamic Azad University, Omidieh, Iran

Correspondence e-mail: sadifchemist@hotmail.com

Received 11 November 2012; accepted 12 November 2012

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.019 Å; R factor = 0.079; wR factor = 0.155; data-to-parameter ratio = 16.8.

In the crystal of the title polymeric compound, $[CdBr_2(C_{12}H_{12}N_2)]_n$, the Cd^{II} cation is located on a twofold rotation axis and is six-coordinated in a distorted octahedral geometry formed by two N atoms from the 4,4'-dimethyl-2,2'-bipyridine ligand and by four bridging Br⁻ anions. The bridging function of the Br⁻ anions leads to a polymeric chain running along the *c* axis. Weak $C-H\cdots\pi$ interactions observed between adjacent chains are effective in the stabilization of the three-dimensional packing.

Related literature

For related structures, see: Ahmadi *et al.* (2008); Alizadeh *et al.* (2010); Amani *et al.* (2009); Bellusci *et al.* (2008); Han *et al.* (2006); Hojjat Kashani *et al.* (2008); Kalateh *et al.* (2008, 2010); Shirvan & Haydari Dezfuli (2012); Sofetis *et al.* (2006); Willett *et al.* (2001); Yousefi *et al.* (2008); Zhang (2007).

Br Br Cd Br Cd Br Cd Br Cd Br

Experimental

Crystal data $[CdBr_2(C_{12}H_{12}N_2)]$ $M_r = 456.45$ Monoclinic, C2/c

a = 17.979 (4) Å b = 10.5319 (18) Å c = 7.4496 (16) Å $\beta = 108.403 (17)^{\circ}$ $V = 1338.5 (5) \text{ Å}^3$ Z = 4Mo $K\alpha$ radiation

Data collection

Bruker APEXII CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
$T_{\rm min} = 0.188, T_{\rm max} = 0.246$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.079$ 78 parameters $wR(F^2) = 0.155$ H-atom parameters constrainedS = 1.24 $\Delta \rho_{max} = 1.20 \text{ e } \text{ Å}^{-3}$ 1313 reflections $\Delta \rho_{min} = -0.88 \text{ e } \text{ Å}^{-3}$

Table 1

S

elected bo	ond lengths	(A).

Cd1-N1 Cd1-Br1	2.357 (10) 2.6852 (17)	Cd1-Br1 ⁱ	2.8789 (16)
Symmetry code: (i) x_{i} -	$v + 2, z - \frac{1}{2}$		

Table 2

Hydrogen-bond geometry (Å, °).

Cg is the centroid of the N1-pyridine ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C4-H4 B ··· Cg^{ii}	0.96	2.84	3.575 (16)	135

Symmetry code: (ii) $x, -y + 1, z - \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

We are grateful to the Islamic Azad University, Omidieh Branch, for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5649).

References

- Ahmadi, R., Kalateh, K., Abedi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1306–m1307.
- Alizadeh, R., Mohammadi Eshlaghi, P. & Amani, V. (2010). Acta Cryst. E66, m996.
- Amani, V., Safari, N., Notash, B. & Khavasi, H. R. (2009). J. Coord. Chem. 62, 1939–1950.
- Bellusci, A., Crispini, A., Pucci, D., Szerb, E. I. & Ghedini, M. (2008). Cryst. Growth Des. 8, 3114–3122.
- Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Han, J., Fang, J., Dong, Y. & Chang, H. (2006). Acta Cryst. E62, m183–m184.
 Hojjat Kashani, L., Amani, V., Yousefi, M. & Khavasi, H. R. (2008). Acta Cryst. E64, m905–m906.
- Kalateh, K., Ahmadi, R. & Amani, V. (2010). Acta Cryst. E66, m512.
- Kalateh, K., Ebadi, A., Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). *Acta Cryst.* E64, m1397–m1398.

 $\mu = 7.58 \text{ mm}^{-1}$

 $0.25 \times 0.21 \times 0.20 \text{ mm}$

3392 measured reflections

1313 independent reflections 909 reflections with $I > 2\sigma(I)$

T = 298 K

 $R_{\rm int} = 0.095$

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Shirvan, S. A. & Haydari Dezfuli, S. (2012). *Acta Cryst.* E68, m1006–m1007.
 Sofetis, A., Raptopoulou, C. P., Terzis, A. & Zafiropoulos, T. F. (2006). *Inorg. Chim. Acta*, 359, 3389–3395.

Willett, R. D., Pon, G. & Nagy, C. (2001). *Inorg. Chem.* **40**, 4342–4352. Yousefi, M., Tadayon Pour, N., Amani, V. & Khavasi, H. R. (2008). *Acta Cryst.* E64, m1259.

Zhang, B.-S. (2007). Acta Cryst. E63, m1562.

supporting information

Acta Cryst. (2012). E68, m1493-m1494 [doi:10.1107/S1600536812046636]

catena-Poly[[(4,4'-dimethyl-2,2'-bipyridine- $\kappa^2 N$,N')cadmium]-di- μ -bromido]

Sadif A. Shirvan, Sara Haydari Dezfuli, Fereydoon Khazali and Ali Borsalani

S1. Comment

Recently, we reported the synthes and crystal structure of [CdBr₂(4,4'-dmbpy)(DMSO)], (Shirvan & Haydari Dezfuli, 2012) [where 4,4'-dmbpy is 4,4'-dimethyl-2,2'-bipyridine and DMSO is dimethyl sulfoxide]. 4,4'-Dimethyl-2,2'-bipyridine is a good bidentate ligand, and numerous complexes with 4,4'-dmbipy have been prepared, such as that of mercury (Kalateh *et al.*, 2008; Yousefi *et al.*, 2008), indium (Ahmadi *et al.*, 2008), iron (Amani *et al.*, 2009), platin (Hojjat Kashani *et al.*, 2008), silver (Bellusci *et al.*, 2008), gallium (Sofetis *et al.*, 2006), copper (Willett *et al.*, 2001), cadmium (Kalateh *et al.*, 2010) and zinc (Alizadeh *et al.*, 2010). Here, we report the synthesis and structure of the title compound.

The asymmetric unit of the title compound, (Fig. 1), contains half-molecule; a twofold rotation axis passes through the Cd atom. The Cd^{II} cation is six-coordinated in a distorted octahedral geometry formed by two N atoms from the 4,4'-dimethyl-2,2'-bipyridine ligand and four bridging Br anions. The bridging function of the Br anions leads to a polymeric chain running along the *b* axis. The Cd—N and Cd—Br bond lengths and angles (Table 1) are within normal range $[Cd(phen)(\mu-Br)_2]_n$, (Zhang, 2007) and $[Cd(bipy)(\mu-Br)_2]_n$, (Han *et al.*, 2006) [where phen is 1,10-phenanthroline and bipy is 2,2'-bipyridine].

S2. Experimental

For the preparation of the title compound, a solution of 4,4'-dimethyl-2,2'-bipyridine (0.25 g, 1.33 mmol) in methanol (10 ml) was added to a solution of $CdBr_2.4H_2O$, (0.46 g, 1.33 mmol) in methanol (5 ml) at room temperature. The suitable crystals for X-ray diffraction experiment were obtained by methanol diffusion to a colorless solution in dimethyl-formamide. Suitable crystals were isolated after one week (yield; 0.45 g, 74.1%).

S3. Refinement

H atoms were positioned geometrically with C—H = 0.93–0.96 Å and constrained to ride on their parent atoms, $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

catena-Poly[[(4,4'-dimethyl-2,2'-bipyridine- $\kappa^2 N, N'$)cadmium]-di- μ -bromido]

Crystal data	
$\begin{bmatrix} CdBr_2(C_{12}H_{12}N_2) \end{bmatrix} \\ M_r = 456.45 \\ Monoclinic, C2/c \\ Hall symbol: -C 2yc \\ a = 17.979 (4) Å \\ b = 10.5319 (18) Å \\ c = 7.4496 (16) Å \\ \beta = 108.403 (17)^{\circ} \\ V = 1338.5 (5) Å^3 \\ Z = 4 \end{bmatrix}$	F(000) = 864 $D_x = 2.265 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3392 reflections $\theta = 2.3-26.0^{\circ}$ $\mu = 7.58 \text{ mm}^{-1}$ T = 298 K Prism, colorless $0.25 \times 0.21 \times 0.20 \text{ mm}$
Data collection	
Bruker APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans	Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2001) $T_{min} = 0.188$, $T_{max} = 0.246$ 3392 measured reflections 1313 independent reflections 909 reflections with $I > 2\sigma(I)$

$R_{\rm int} = 0.095$	$k = -12 \rightarrow 12$
$\theta_{\text{max}} = 26.0^{\circ}, \ \theta_{\text{min}} = 2.3^{\circ}$ $h = -22 \rightarrow 22$	$l = -7 \rightarrow 9$
Refinement	
Refinement on F^2	Secondary ato

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.079$	Hydrogen site location: inferred from
$wR(F^2) = 0.155$	neighbouring sites
<i>S</i> = 1.24	H-atom parameters constrained
1313 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0098P)^2 + 54.7076P]$
78 parameters	where $P = (F_0^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.022$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 1.20 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\min} = -0.88 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cd1	0.0000	0.92501 (14)	0.2500	0.0312 (4)
Br1	0.09337 (9)	1.08683 (16)	0.4997 (2)	0.0439 (5)
N1	-0.0688 (6)	0.7414 (11)	0.1090 (15)	0.030 (3)
C6	-0.0397 (7)	0.6266 (12)	0.1779 (18)	0.023 (3)
C5	-0.0804 (7)	0.5157 (13)	0.111 (2)	0.030 (3)
Н5	-0.0585	0.4376	0.1574	0.036*
C1	-0.1384 (8)	0.7427 (15)	-0.025 (2)	0.042 (4)
H1	-0.1579	0.8209	-0.0767	0.050*
C3	-0.1535 (8)	0.5209 (14)	-0.025 (2)	0.031 (3)
C4	-0.2002 (8)	0.4012 (14)	-0.094 (2)	0.040 (4)
H4A	-0.2098	0.3586	0.0101	0.048*
H4B	-0.1712	0.3462	-0.1505	0.048*
H4C	-0.2493	0.4229	-0.1869	0.048*
C2	-0.1825 (8)	0.6396 (14)	-0.091 (2)	0.036 (3)
H2	-0.2318	0.6478	-0.1806	0.043*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	0.0363 (8)	0.0203 (7)	0.0304 (9)	0.000	0.0011 (6)	0.000
Br1	0.0434 (10)	0.0394 (9)	0.0520 (12)	-0.0169 (7)	0.0195 (8)	-0.0153 (8)
N1	0.032 (6)	0.027 (5)	0.022 (6)	-0.009 (5)	-0.005 (4)	-0.006 (5)

supporting information

C6	0.018 (6)	0.024 (6)	0.030 (7)	0.002 (5)	0.009 (5)	0.002 (6)
C5	0.019 (6)	0.031 (7)	0.045 (9)	0.002 (5)	0.015 (6)	-0.002 (6)
C1	0.034 (8)	0.030 (7)	0.046 (9)	0.003 (6)	-0.008 (7)	0.010 (7)
C3	0.027 (7)	0.042 (8)	0.023 (7)	0.001 (6)	0.005 (5)	-0.010 (6)
C4	0.037 (8)	0.044 (9)	0.035 (8)	-0.012 (7)	0.006 (6)	-0.003 (7)
C2	0.026 (7)	0.042 (8)	0.031 (8)	0.002 (6)	-0.005 (6)	0.004 (7)

Geometric parameters (Å, °)

Cd1—N1 ⁱ	2.357 (10)	С5—С3	1.383 (18)
Cd1—N1	2.357 (10)	С5—Н5	0.9300
Cd1—Br1 ⁱ	2.6852 (17)	C1—C2	1.34 (2)
Cd1—Br1	2.6852 (17)	C1—H1	0.9300
Cd1—Br1 ⁱⁱ	2.8789 (16)	C3—C2	1.39 (2)
Cd1—Br1 ⁱⁱⁱ	2.8790 (16)	C3—C4	1.513 (19)
Br1—Cd1 ⁱⁱⁱ	2.8789 (16)	C4—H4A	0.9600
N1—C1	1.331 (16)	C4—H4B	0.9600
N1—C6	1.353 (17)	C4—H4C	0.9600
C6—C5	1.384 (18)	C2—H2	0.9300
C6—C6 ⁱ	1.49 (2)		
			11(0(7)
NI-Cal-NI	69.7 (5) 1(2.8 (2)	NI = C6 = C6	116.2 (7)
$NI - CaI - BrI^{i}$	162.8 (3)	$C_{2} = C_{2} = C_{2}$	122.4 (7)
NI-CdI-Brl	95.0 (3)	C_{3} C_{5} C_{6}	120.1 (13)
NI-Cal-Brl	95.0 (3)	C3—C5—H5	119.9
NI-CdI-Bri	162.8 (3)	C6—C5—H5	119.9
Brl-Cdl-Brl	101.21 (9)	NI-CI-C2	125.0 (14)
NI ^I —CdI—BrI ^{II}	85.5 (3)	NI—CI—HI	117.5
N1—Cd1—Br1 ⁿ	90.4 (3)	C2—C1—H1	117.5
Brl ¹ —Cdl—Brl ¹	86.77 (5)	C5—C3—C2	117.4 (13)
Brl—Cdl—Brl"	96.39 (5)	C5—C3—C4	121.0 (13)
$N1^{i}$ —Cd1—Br1 ⁱⁱⁱ	90.4 (3)	C2—C3—C4	121.6 (12)
N1—Cd1—Br1 ⁱⁱⁱ	85.5 (3)	C3—C4—H4A	109.5
Br1 ⁱ —Cd1—Br1 ⁱⁱⁱ	96.39 (5)	C3—C4—H4B	109.5
Br1—Cd1—Br1 ⁱⁱⁱ	86.77 (5)	H4A—C4—H4B	109.5
Br1 ⁱⁱ —Cd1—Br1 ⁱⁱⁱ	175.03 (9)	C3—C4—H4C	109.5
Cd1—Br1—Cd1 ⁱⁱⁱ	93.23 (5)	H4A—C4—H4C	109.5
C1—N1—C6	116.9 (12)	H4B—C4—H4C	109.5
C1—N1—Cd1	124.3 (10)	C1—C2—C3	119.1 (12)
C6—N1—Cd1	118.6 (8)	C1—C2—H2	120.4
N1-C6-C5	121.3 (11)	С3—С2—Н2	120.4
N1 ⁱ —Cd1—Br1—Cd1 ⁱⁱⁱ	-90.1(3)	Br1 ⁱⁱⁱ —Cd1—N1—C6	-89.3 (10)
N1—Cd1—Br1—Cd1 ⁱⁱⁱ	-63.5(10)	C1 - N1 - C6 - C5	0(2)
$Br1^{i}$ —Cd1— $Br1$ —Cd1 ⁱⁱⁱ	95.88 (5)	Cd1 - N1 - C6 - C5	175.0 (10)
$Br1^{ii}$ —Cd1— $Br1$ —Cd1 ⁱⁱⁱ	-176.16(7)	$C1-N1-C6-C6^{i}$	177.6 (15)
$Br1^{iii}$ —Cd1— $Br1$ —Cd1 ⁱⁱⁱ	0.0	$Cd1 - N1 - C6 - C6^{i}$	-7.7(19)
$N1^{i}$ —Cd1—N1—C1	177.1 (15)	N1 - C6 - C5 - C3	-2 (2)
		1.1 00 00 00	- (-)

Br1 ⁱ —Cd1—N1—C1	-11.0 (12)	C6 ⁱ —C6—C5—C3	-179.3 (14)
Br1—Cd1—N1—C1	148.7 (10)	C6—N1—C1—C2	2 (2)
Br1 ⁱⁱ —Cd1—N1—C1	-97.8 (12)	Cd1—N1—C1—C2	-171.9 (13)
Br1 ⁱⁱⁱ —Cd1—N1—C1	85.0 (12)	C6—C5—C3—C2	1 (2)
N1 ⁱ —Cd1—N1—C6	2.9 (7)	C6—C5—C3—C4	-177.8 (13)
Br1 ⁱ —Cd1—N1—C6	174.7 (9)	N1—C1—C2—C3	-3 (3)
Br1—Cd1—N1—C6	-25.6 (17)	C5—C3—C2—C1	1 (2)
Br1 ⁱⁱ —Cd1—N1—C6	87.9 (10)	C4—C3—C2—C1	-179.7 (15)

Symmetry codes: (i) -*x*, *y*, -*z*+1/2; (ii) *x*, -*y*+2, *z*-1/2; (iii) -*x*, -*y*+2, -*z*+1.

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the N1-pyridine ring.

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H…A
C4—H4 B ···C g^{iv}	0.96	2.84	3.575 (16)	135

Symmetry code: (iv) x, -y+1, z-1/2.