

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(2,4,6-Trimethylphenyl){2-[N-(2,4,6trimethylphenyl)formamido]ethyl}ammonium chloride

Monisola I. Ikhile and Muhammad D. Bala*

School of Chemistry, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa Correspondence e-mail: bala@ukzn.ac.za

Received 21 October 2012; accepted 28 October 2012

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.002 Å; R factor = 0.044; wR factor = 0.107; data-to-parameter ratio = 20.9.

In the title salt, $C_{21}H_{29}N_2O^+ \cdot Cl^-$, the benzene rings form a dihedral angle of 6.13 (1)°. In the crystal, $N-H \cdots Cl$ hydrogen bonds link the cations and anions into chains extending along the c axis.

Related literature

For closely related compounds, see: Kocher & Hermann (1997); Denk et al. (2001).

Experimental

Crystal data

 $C_{21}H_{29}N_2O^+ \cdot Cl^ M_r = 360.91$

Triclinic, $P\overline{1}$ a = 8.2516 (2) Å

b = 8.8822 (2) Å	Z = 2
c = 14.7524 (4) Å	Mo $K\alpha$ radiation
$\alpha = 74.857 \ (2)^{\circ}$	$\mu = 0.20 \text{ mm}^{-1}$
$\beta = 86.315 \ (2)^{\circ}$	T = 173 K
$\gamma = 74.635 \ (2)^{\circ}$	$0.36 \times 0.21 \times 0.11 \text{ mm}$
$V = 1006.38 (5) \text{ Å}^3$	
Data collection	
Bruker APEXII CCD	4853 independent reflections
diffractometer	2975 reflections with $I > 2\sigma(I)$
19610 measured reflections	$R_{\rm int} = 0.062$

232 parameters

 $\Delta \rho_{\rm max} = 0.31 \text{ e } \text{\AA}^ \Delta \rho_{\rm min} = -0.25 \text{ e } \text{\AA}^{-3}$

H-atom parameters constrained

Refinement $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.107$ S = 0.904853 reflections

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2A\cdots$ Cl1	0.92	2.23	3.0585 (14)	149
$N2-H2B\cdots Cl1^{i}$	0.92	2.17	3.0531 (14)	161

Symmetry code: (i) -x, -y + 1, -z + 1.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

We thank Dr Manuel Fernandes for the data collection and the University of KwaZulu-Natal for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5637).

References

Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Denk, M. K., Rodezno, J. M., Gupta, S. & Lough, A. J. (2001). J. Organomet. Chem. 617, 242-253.

Kocher, C. & Hermann, W. A. (1997). J. Organomet. Chem. 532, 261-265. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

organic compounds

supporting information

Acta Cryst. (2012). E68, o3263 [doi:10.1107/S1600536812044595]

(2,4,6-Trimethylphenyl){2-[*N*-(2,4,6-trimethylphenyl)formamido]ethyl}ammonium chloride

Monisola I. Ikhile and Muhammad D. Bala

S1. Comment

The title compound was isolated from the hydrolysis of an imidazolium based salt in a ring opening reaction. Stable *N*-heterocyclic carbene ligands are often prepared from imidazolium based salt precursors. However the reaction must be conducted under strict anaerobic conditions using Schlenk techniques, otherwise attack by moisture will lead to the isolation of products such as (I).

In (I) (Fig.1), the planes of the two phenyl rings (mean: C1–C6 and mean: C13–C18) form a dihedral angle of 6.13 (1)°. In the crystal, intermolecular N—H···Cl hydrogen bonds (Table 1) link the molecules into chains extending along the crystallographic c axis with a separation of 2.17–2.23 Å (Fig. 2).

S2. Experimental

A mixture of 1,3–bis(2,4,6-trimethyl phenyl)imidazolinium chloride (0.101 g, 0.29 mmol) and potassium *tert*-butoxide (0.039 g, 0.35 mmol) were dissolved in 20 ml of tetrahydrofuran and stirred at room temperature for 30 min. After evaporating the solvent, the free carbene was extracted in warm toluene (2 x 20 ml). FeCl₂ (0.037 g, 0.29 mmol) was added to the toluene solution and refluxed for 24 h at 90 °C. Removal of the solvent gave a residue that was purified by recrystallization from CH₂Cl₂/hexane to yield orange crystals of (I). Yield: 0.05 g, 51%; m.p. 180 °C.

S3. Refinement

H-atoms were refined using a riding model, with C—H = 0.95 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic and C—H = 0.98 Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for CH₃. The amino H atoms were placed in calculated positions with N—H = 0.92 Å and refined in a riding mode with $U_{iso}(H) = 1.2U_{eq}(N)$.

Figure 1

ORTEP diagram of compound (I). Thermal ellipsoids are represented at the 50% probability level. Hydrogen atoms are eliminated for clarity.

Figure 2

Packing in the title compound showing the N—H…Cl hydrogen bonds.

(2,4,6-Trimethylphenyl){2-[N-(2,4,6-trimethylphenyl)formamido]ethyl}ammonium chloride

Z = 2

F(000) = 388

 $\theta = 2.5 - 24.0^{\circ}$

 $\mu = 0.20 \text{ mm}^{-1}$

Block, colourless

 $0.36 \times 0.21 \times 0.11 \text{ mm}$

 $\theta_{\rm max} = 28.0^\circ, \, \theta_{\rm min} = 1.4^\circ$

2975 reflections with $I > 2\sigma(I)$

T = 173 K

 $R_{\rm int} = 0.062$

 $h = -10 \rightarrow 10$ $k = -11 \rightarrow 11$ $l = -19 \rightarrow 19$

 $D_{\rm x} = 1.191 {\rm Mg m^{-3}}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 3132 reflections

Crystal data

 $C_{21}H_{29}N_2O^+ \cdot CI^ M_r = 360.91$ Triclinic, *P*1 Hall symbol: -P 1 a = 8.2516 (2) Å b = 8.8822 (2) Å c = 14.7524 (4) Å $a = 74.857 (2)^{\circ}$ $\beta = 86.315 (2)^{\circ}$ $\gamma = 74.635 (2)^{\circ}$ $V = 1006.38 (5) \text{ Å}^3$

Data collection

Bruker APEXII CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
19610 measured reflections
4853 independent reflections

Refinement

Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.0478P)^2]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{\rm max} = 0.31 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{\rm min} = -0.25 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. IR (ATR cm⁻¹): 2918, 2718, 2607, 1669, 1568, 1482, 1446, 1381, 1345, 1306, 1285, 1207, 1193, 1033, 850, 781, 705, 577, 477, 425; $\delta_{\rm H}$ (400 MHz, CDCl₃): 1.60 (6*H*, s, CH₃), 2.16 (12*H*, m, CH₃), 2.58 (3*H*, s, NH₂), 3.76 (2*H*, s, NCH₂NCHO), 6.83 (3*H*, s, ArH), 6.88 (2*H*, s, ArH) and 7.89 p.p.m. (1*H*, s, NCHO); $\delta_{\rm C}$ (100 MHz, CDCl₃): 18.09 (C₆H₂(CH₃)₃), 19.35 (C₆H₂(CH₃)₃), 21.15 (C₆H₂(CH₃)₃), 23.17 (C₆H₂(CH₃)₃), 51.12 (NHCH₂), 52.08 (NCH₂), 128.27, 130.18, 134.72, 135.91, 138.54, 140.21, 145.23 and 160.28 p.p.m. (NCHO); HRMS (ESI), Found, 325.22737 (*M*⁺ - Cl⁻) Calculated for C₂₁H₂₉N₂O 325.22799 (*M*⁺ - Cl⁻).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	-0.0762 (2)	0.8248 (2)	0.13320 (12)	0.0263 (4)	
C2	-0.0175 (2)	0.9590 (2)	0.13117 (12)	0.0298 (4)	
C3	-0.1346 (2)	1.1060 (2)	0.12548 (13)	0.0347 (5)	
Н3	-0.0958	1.1971	0.1266	0.042*	
C4	-0.3055 (2)	1.1251 (2)	0.11826 (13)	0.0365 (5)	
C5	-0.3594 (2)	0.9905 (2)	0.11714 (13)	0.0373 (5)	
Н5	-0.4761	1.0021	0.1104	0.045*	
C6	-0.2486 (2)	0.8385 (2)	0.12561 (12)	0.0318 (4)	
C7	0.1675 (2)	0.9497 (2)	0.13254 (14)	0.0390 (5)	
H7A	0.2107	0.9029	0.1969	0.058*	
H7B	0.1844	1.0584	0.1096	0.058*	
H7C	0.2277	0.8817	0.0920	0.058*	
C8	-0.4291 (3)	1.2871 (3)	0.11207 (17)	0.0573 (6)	
H8A	-0.4089	1.3296	0.1641	0.086*	
H8B	-0.5439	1.2744	0.1159	0.086*	
H8C	-0.4145	1.3622	0.0522	0.086*	
C9	-0.3162 (2)	0.6959 (2)	0.12768 (15)	0.0441 (5)	
H9A	-0.2934	0.6669	0.0676	0.066*	
H9B	-0.4378	0.7239	0.1383	0.066*	
H9C	-0.2616	0.6041	0.1786	0.066*	
C10	0.0609 (2)	0.5899 (2)	0.07631 (14)	0.0392 (5)	
H10	0.0013	0.6435	0.0190	0.047*	
C11	0.1348 (2)	0.5881 (2)	0.23205 (12)	0.0288 (4)	
H11A	0.1508	0.6696	0.2630	0.035*	
H11B	0.2471	0.5234	0.2188	0.035*	
C12	0.0402 (2)	0.4789 (2)	0.29708 (12)	0.0277 (4)	
H12A	-0.0680	0.5452	0.3143	0.033*	
H12B	0.0153	0.4042	0.2638	0.033*	
C13	0.2789 (2)	0.2444 (2)	0.37526 (12)	0.0249 (4)	
C14	0.2386 (2)	0.1044 (2)	0.36930 (12)	0.0265 (4)	
C15	0.3711 (2)	-0.0292 (2)	0.36709 (12)	0.0320 (4)	
H15	0.3467	-0.1262	0.3634	0.038*	
C16	0.5376 (2)	-0.0257 (2)	0.37002 (12)	0.0328 (4)	
C17	0.5706 (2)	0.1165 (2)	0.37419 (13)	0.0345 (5)	
H17	0.6843	0.1205	0.3750	0.041*	
C18	0.4440 (2)	0.2546 (2)	0.37721 (12)	0.0280 (4)	
C19	0.0599 (2)	0.0917 (2)	0.36649 (14)	0.0345 (5)	
H19A	-0.0098	0.1503	0.4090	0.052*	
H19B	0.0581	-0.0221	0.3863	0.052*	
H19C	0.0155	0.1386	0.3024	0.052*	
C20	0.6787 (2)	-0.1744 (2)	0.36982 (15)	0.0471 (6)	
H20A	0.6388	-0.2712	0.3968	0.071*	
H20B	0.7730	-0.1756	0.4074	0.071*	
H20C	0.7157	-0.1727	0.3052	0.071*	
C21	0.4916 (2)	0.4051 (2)	0.38237 (15)	0.0409 (5)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H21A	0.6129	0.3795	0.3934	0.061*	
H21B	0.4309	0.4457	0.4340	0.061*	
H21C	0.4620	0.4877	0.3231	0.061*	
N1	0.04243 (17)	0.66963 (18)	0.14387 (10)	0.0289 (3)	
N2	0.13837 (16)	0.38311 (16)	0.38442 (10)	0.0246 (3)	
H2A	0.1811	0.4518	0.4072	0.030*	
H2B	0.0652	0.3452	0.4287	0.030*	
01	0.14983 (17)	0.45239 (18)	0.08378 (10)	0.0544 (4)	
C11	0.13717 (5)	0.66160 (5)	0.47043 (3)	0.03312 (14)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U ¹²	U^{13}	U ²³
C1	0.0249 (9)	0.0308 (10)	0.0200 (9)	-0.0033 (8)	-0.0015 (7)	-0.0046 (8)
C2	0.0297 (10)	0.0356 (11)	0.0228 (9)	-0.0091 (9)	-0.0013 (8)	-0.0041 (8)
C3	0.0427 (11)	0.0315 (11)	0.0277 (10)	-0.0080 (9)	-0.0031 (9)	-0.0043 (9)
C4	0.0357 (11)	0.0368 (12)	0.0290 (10)	0.0015 (9)	-0.0019 (9)	-0.0052 (9)
C5	0.0236 (9)	0.0494 (13)	0.0331 (11)	-0.0026 (9)	-0.0023 (8)	-0.0069 (10)
C6	0.0280 (10)	0.0399 (12)	0.0261 (10)	-0.0075 (9)	-0.0019 (8)	-0.0065 (9)
C7	0.0321 (10)	0.0436 (12)	0.0413 (12)	-0.0132 (9)	-0.0015 (9)	-0.0071 (10)
C8	0.0571 (14)	0.0446 (14)	0.0557 (15)	0.0123 (11)	-0.0079 (12)	-0.0117 (12)
C9	0.0331 (11)	0.0495 (13)	0.0516 (14)	-0.0140 (10)	-0.0051 (10)	-0.0115 (11)
C10	0.0345 (11)	0.0473 (13)	0.0331 (11)	0.0000 (10)	-0.0053 (9)	-0.0152 (10)
C11	0.0262 (9)	0.0323 (10)	0.0252 (9)	-0.0033 (8)	-0.0053 (7)	-0.0056 (8)
C12	0.0225 (9)	0.0274 (10)	0.0295 (10)	-0.0014 (8)	-0.0067 (7)	-0.0044 (8)
C13	0.0222 (9)	0.0263 (10)	0.0226 (9)	0.0004 (7)	-0.0028 (7)	-0.0058 (8)
C14	0.0265 (9)	0.0268 (10)	0.0232 (9)	-0.0025 (8)	-0.0016 (7)	-0.0052 (8)
C15	0.0372 (11)	0.0276 (10)	0.0275 (10)	-0.0028 (8)	0.0009 (8)	-0.0067 (8)
C16	0.0313 (10)	0.0345 (11)	0.0242 (10)	0.0044 (9)	0.0000 (8)	-0.0060 (8)
C17	0.0208 (9)	0.0479 (12)	0.0291 (10)	-0.0014 (9)	0.0001 (8)	-0.0077 (9)
C18	0.0232 (9)	0.0363 (11)	0.0234 (9)	-0.0056 (8)	-0.0026 (7)	-0.0074 (8)
C19	0.0322 (10)	0.0308 (11)	0.0443 (12)	-0.0095 (9)	-0.0002 (9)	-0.0143 (9)
C20	0.0418 (12)	0.0468 (13)	0.0361 (12)	0.0127 (10)	0.0024 (9)	-0.0070 (10)
C21	0.0272 (10)	0.0490 (13)	0.0514 (13)	-0.0133 (9)	-0.0024 (9)	-0.0172 (11)
N1	0.0295 (8)	0.0312 (9)	0.0227 (8)	-0.0015 (7)	-0.0042 (6)	-0.0065 (7)
N2	0.0225 (7)	0.0259 (8)	0.0264 (8)	-0.0065 (6)	0.0002 (6)	-0.0079 (6)
01	0.0514 (9)	0.0540 (10)	0.0525 (10)	0.0147 (8)	-0.0150 (8)	-0.0295 (8)
C11	0.0312 (3)	0.0314 (3)	0.0414 (3)	-0.0118 (2)	0.0066 (2)	-0.0148 (2)

Geometric parameters (Å, °)

C1—C2	1.394 (2)	C11—H11B	0.9900	
C1—C6	1.404 (2)	C12—N2	1.495 (2)	
C1—N1	1.440 (2)	C12—H12A	0.9900	
C2—C3	1.389 (2)	C12—H12B	0.9900	
C2—C7	1.508 (2)	C13—C18	1.392 (2)	
C3—C4	1.383 (3)	C13—C14	1.394 (2)	
С3—Н3	0.9500	C13—N2	1.4802 (19)	

C4—C5	1.385 (3)	C14—C15	1.391 (2)
C4—C8	1.511 (3)	C14—C19	1.513 (2)
C5—C6	1.396 (2)	C15—C16	1.386 (2)
С5—Н5	0.9500	C15—H15	0.9500
С6—С9	1.506 (3)	C16—C17	1.378 (3)
C7—H7A	0.9800	C16—C20	1.512 (2)
С7—Н7В	0.9800	C17—C18	1.393 (2)
C7—H7C	0.9800	C17—H17	0.9500
C8—H8A	0.9800	C18-C21	1 511 (2)
C8—H8B	0.9800	C19—H19A	0.9800
C8—H8C	0.9800	C19—H19B	0.9800
C9—H9A	0.9800	C19—H19C	0.9800
C9_H9B	0.9800	C_{20} H204	0.9800
C9_H9C	0.9800	C20—H20B	0.9800
	1,227(2)	C_{20} H20C	0.9800
C1001	1.227(2) 1.345(2)	$C_{20} = H_{20}C_{20}$	0.9800
C_{10} H_{10}	1.343(2)	C_{21} $H_{21}R$	0.9800
C10—H10	1.462(2)	$\begin{array}{c} C_{21} \\ C_{21} \\ \end{array}$	0.9800
C_{11} C_{12}	1.403(2) 1.512(2)		0.9800
	1.313(2)	NZ-IZA	0.9200
СП—НПА	0.9900	N2—H2B	0.9200
$C_2 C_1 C_6$	121 13 (16)	N2 C12 H12B	100.2
$C_2 = C_1 = C_0$	121.13(10) 110.10(15)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.2
$C_2 = C_1 = N_1$	119.19 (15)	$H_{12A} = C_{12} = H_{12B}$	107.0
$C_0 = C_1 = N_1$	119.09 (13)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107.9
$C_{3} = C_{2} = C_{1}$	110.23(10)	$C_{18} = C_{13} = C_{14}$	122.39 (13)
$C_{3} = C_{2} = C_{7}$	119.08 (10)	C16 - C13 - N2	119.80 (13)
C1 = C2 = C7	122.08 (10)	C14 - C13 - N2	117.49 (14)
C4 - C3 - C2	122.03 (18)	C15 - C14 - C13	117.30(15)
C4—C3—H3	118./	C13 - C14 - C19	119.38 (16)
C2—C3—H3	118./	C13 - C14 - C19	123.25 (15)
$C_3 - C_4 - C_5$	117.69 (17)	C16-C15-C14	122.21 (17)
C3—C4—C8	121.08 (19)	C16—C15—H15	118.9
C5—C4—C8	121.24 (18)	C14—C15—H15	118.9
C4—C5—C6	122.44 (17)	C17—C16—C15	118.06 (16)
C4—C5—H5	118.8	C17—C16—C20	121.05 (17)
C6—C5—H5	118.8	C15—C16—C20	120.88 (18)
C5—C6—C1	117.82 (17)	C16—C17—C18	122.75 (17)
C5—C6—C9	119.69 (16)	C16—C17—H17	118.6
C1—C6—C9	122.49 (17)	C18—C17—H17	118.6
С2—С7—Н7А	109.5	C13—C18—C17	117.00 (16)
С2—С7—Н7В	109.5	C13—C18—C21	123.79 (16)
H7A—C7—H7B	109.5	C17—C18—C21	119.21 (16)
С2—С7—Н7С	109.5	C14—C19—H19A	109.5
Н7А—С7—Н7С	109.5	C14—C19—H19B	109.5
H7B—C7—H7C	109.5	H19A—C19—H19B	109.5
C4—C8—H8A	109.5	C14—C19—H19C	109.5
C4—C8—H8B	109.5	H19A—C19—H19C	109.5
H8A—C8—H8B	109.5	H19B—C19—H19C	109.5

C4—C8—H8C	109.5	C16—C20—H20A	109.5
Н8А—С8—Н8С	109.5	C16—C20—H20B	109.5
H8B—C8—H8C	109.5	H20A—C20—H20B	109.5
С6—С9—Н9А	109.5	C16—C20—H20C	109.5
С6—С9—Н9В	109.5	H20A—C20—H20C	109.5
H9A—C9—H9B	109.5	H20B—C20—H20C	109.5
С6—С9—Н9С	109.5	C18—C21—H21A	109.5
Н9А—С9—Н9С	109.5	C18—C21—H21B	109.5
Н9В—С9—Н9С	109.5	H21A—C21—H21B	109.5
O1-C10-N1	124.35 (18)	C18—C21—H21C	109.5
O1—C10—H10	117.8	H21A—C21—H21C	109.5
N1-C10-H10	117.8	H21B—C21—H21C	109.5
N1—C11—C12	110.66 (14)	C10—N1—C1	121.01 (15)
N1-C11-H11A	109.5	C10—N1—C11	118.12 (15)
C12—C11—H11A	109.5	C1—N1—C11	120.64 (14)
N1-C11-H11B	109.5	C13—N2—C12	116.63 (13)
C12—C11—H11B	109.5	C13—N2—H2A	108.1
H11A—C11—H11B	108.1	C12—N2—H2A	108.1
N2—C12—C11	111.89 (13)	C13—N2—H2B	108.1
N2—C12—H12A	109.2	C12—N2—H2B	108.1
C11—C12—H12A	109.2	H2A—N2—H2B	107.3
C6-C1-C2-C3	2.7 (3)	C19—C14—C15—C16	-179.61 (17)
N1—C1—C2—C3	-176.89 (16)	C14—C15—C16—C17	-0.8 (3)
C6-C1-C2-C7	-175.73 (17)	C14—C15—C16—C20	178.54 (17)
N1-C1-C2-C7	4.6 (3)	C15—C16—C17—C18	1.2 (3)
C1—C2—C3—C4	-2.5 (3)	C20-C16-C17-C18	-178.12 (17)
C7—C2—C3—C4	176.02 (17)	C14—C13—C18—C17	-0.8 (3)
C2—C3—C4—C5	0.3 (3)	N2-C13-C18-C17	176.08 (15)
C2—C3—C4—C8	-179.90 (18)	C14—C13—C18—C21	179.17 (17)
C3—C4—C5—C6	1.8 (3)	N2-C13-C18-C21	-3.9 (3)
C8—C4—C5—C6	-178.02 (19)	C16—C17—C18—C13	-0.4 (3)
C4—C5—C6—C1	-1.6 (3)	C16-C17-C18-C21	179.60 (17)
C4—C5—C6—C9	177.59 (18)	O1-C10-N1-C1	-174.15 (17)
C2-C1-C6-C5	-0.8 (3)	O1-C10-N1-C11	0.4 (3)
N1—C1—C6—C5	178.83 (15)	C2-C1-N1-C10	-117.52 (19)
C2-C1-C6-C9	-179.92 (17)	C6-C1-N1-C10	62.9 (2)
N1—C1—C6—C9	-0.3 (3)	C2-C1-N1-C11	68.1 (2)
N1-C11-C12-N2	175.09 (13)	C6-C1-N1-C11	-111.52 (18)
C18—C13—C14—C15	1.2 (3)	C12-C11-N1-C10	-83.4 (2)
N2-C13-C14-C15	-175.77 (15)	C12—C11—N1—C1	91.09 (18)
C18—C13—C14—C19	-179.60 (17)	C18—C13—N2—C12	106.18 (18)
N2-C13-C14-C19	3.4 (2)	C14—C13—N2—C12	-76.74 (19)
C13-C14-C15-C16	-0.4 (3)	C11—C12—N2—C13	-75.89 (18)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
N2—H2A…C11	0.92	2.23	3.0585 (14)	149
N2—H2 B ···Cl1 ⁱ	0.92	2.17	3.0531 (14)	161

Symmetry code: (i) -x, -y+1, -z+1.