metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

[(*R*)-2,2-Bis(diphenylphosphanyl)-1,1'binaphthyl- $\kappa^2 P$,*P*']{2-[(2*R*)-1,2-diamino-1-(4-methoxyphenyl)-3-methylbutyl]-5-methoxyphenyl- κC^1 }hydridoruthenium(II) benzene monosolvate

Kamaluddin Abdur-Rashid^a and Alan J. Lough^{b*}

^aKanata Chemical Technologies Inc., 101 College Street, Office 230, Toronto, Ontario, Canada M5G 1L7, and ^bDepartment of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6 Correspondence e-mail: alough@chem.utoronto.ca

Received 31 October 2012; accepted 7 November 2012

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.005 Å; *R* factor = 0.039; w*R* factor = 0.089; data-to-parameter ratio = 16.5.

In the title complex, $[Ru(C_{19}H_{25}N_2O_2)H(C_{44}H_{32}P_2)]\cdot C_6H_6$, the Ru^{II} ion is in a distorted octahedral coordination environment with the hydride H atom *trans* to the tertiary carbinamine N atom, giving an H-Ru-N angle of 160.8 (12)°. The equatorial sites are occupied by two P atoms, the secondary carbinamine N atom and a coordinated C atom.

Related literature

For the synthesis of Ru(II) hydride complexes with an RuN₂P₂ coordination environment, see: Abdur-Rashid, Faatz *et al.* (2001); Abdur-Rashid, Abbel *et al.* (2005); Ohkuma *et al.* (1995). For their use as catalysts, see: Abdur-Rashid, Guo *et al.* (2005); Abdur-Rashid *et al.* (2000); Abdur-Rashid, Lough *et al.* (2001); Cobley & Henschke (2003); Doucet *et al.* (1998); Matsumura *et al.* (2011). For related structures, see: Guo *et al.* (2004); Li *et al.* (2004). For kinetic studies, see: Abbel *et al.* (2005); Abdur-Rashid *et al.* (2002).

Experimental

Crystal data

 $[Ru(C_{19}H_{25}N_2O_2)H(C_{44}H_{32}P_2)]-C_6H_6$ $M_r = 1116.23$ Monoclinic, C2 a = 38.8848 (8) Å b = 13.5741 (3) Å c = 10.8871 (2) Å

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (SORTAV; Blessing, 1995) $T_{min} = 0.876, T_{max} = 0.909$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.089$ S = 1.0411534 reflections 698 parameters 1 restraint $\beta = 103.967 (1)^{\circ}$ $V = 5576.6 (2) Å^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.39 \text{ mm}^{-1}$ T = 150 K $0.35 \times 0.32 \times 0.25 \text{ mm}$

21246 measured reflections 11534 independent reflections 10079 reflections with $I > 2\sigma(I)$ $R_{int} = 0.051$

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 0.54 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.54 \text{ e } \text{\AA}^{-3}$
Absolute structure: Flack (1983),
4924 Friedel pairs
Flack parameter: -0.045 (19)

Data collection: *COLLECT* (Nonius, 2002); cell refinement: *DENZO-SMN* (Otwinowski & Minor, 1997); data reduction: *DENZO-SMN*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *SHELXTL* (Sheldrick, 2008); molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The authors wish to acknowledge NSERC Canada and the University of Toronto for funding and donors of the American Chemical Society Petroleum Research Fund for partial support of this research.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2180).

References

- Abbel, R., Abdur-Rashid, K., Faatz, M., Hadzovic, A., Lough, A. J. & Morris, R. H. (2005). J. Am. Chem. Soc. 127, 1870–1882.
- Abdur-Rashid, K., Abbel, R., Hadzovic, A., Lough, A. J. & Morris, R. H. (2005). *Inorg. Chem.* 44, 2483–2492.
- Abdur-Rashid, K., Clapham, S. E., Hadzovic, A., Harvey, J. N., Lough, A. J. & Morris, R. H. (2002). J. Am. Chem. Soc. 124, 15104–15118.
- Abdur-Rashid, K., Faatz, M., Lough, A. J. & Morris, R. H. (2001). J. Am. Chem. Soc. 123, 7473–7474.
- Abdur-Rashid, K., Guo, R., Lough, A. J., Morris, R. H. & Song, D. (2005). Adv. Synth. Catal. 347, 571–579.
- Abdur-Rashid, K., Lough, A. J. & Morris, R. H. (2000). Organometallics, 19, 2655–2657.
- Abdur-Rashid, K., Lough, A. J. & Morris, R. H. (2001). Organometallics, 20, 1047–1049.
- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Cobley, C. J. & Henschke, J. P. (2003). Adv. Synth. Catal. 345, 195-201.
- Doucet, H., Ohkuma, T., Murata, K., Yokozawa, T., Kozawa, M., Katayama, E., England, A. F., Ikariya, T. & Noyori, R. (1998). Angew. Chem. Int. Ed. 37, 1703–1707.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

- Guo, R., Lough, A. J., Morris, R. H. & Song, D. (2004). Organometallics, 23, 5524–5529.
- Li, T., Churlaud, R., Lough, A. J., Abdur-Rashid, K. & Morris, R. H. (2004). Organometallics, 23, 6239-6247.
- Matsumura, K., Arai, N., Hori, K., Saito, T., Sayo, N. & Ohkuma, T. (2011). J. Am. Chem. Soc. 133, 10696–10699.

Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.

- Ohkuma, T., Ooka, H., Ikariya, T. & Noyori, R. (1995). J. Am. Chem. Soc. 117, 10417–10418.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2012). E68, m1486-m1487 [doi:10.1107/S1600536812046065]

[(*R*)-2,2-Bis(diphenylphosphanyl)-1,1'-binaphthyl- $\kappa^2 P, P'$]{2-[(2*R*)-1,2-diamino-1-(4-methoxyphenyl)-3-methylbutyl]-5-methoxyphenyl- κC^1 }hydridoruthenium(II) benzene monosolvate

Kamaluddin Abdur-Rashid and Alan J. Lough

S1. Comment

Asymmetric hydrogenation of ketones and imines constitute a very valuable technology for the production of chiral alcohols and amines which are useful precursors and end products in the pharmaceutical, agrochemical, fragrance and flavor industries. A variety of useful catalysts have been developed that are broadly applicable, very active and highly selective. These include ruthenium complexes of the type RuCl₂(diphosphine)(diamine) originally developed by Noyori and coworkers for ketone hydrogenation processes (Ohkuma et al., 1995; Doucet et al., 1998). Our research (Abdur-Rashid et al., 2000; Abdur-Rashid, Lough et al., 2001) and that of others (Cobley & Henschke, 2003) demonstrated that these catalysts were also capable of reducing imines to amines, including the production of single isomer chiral products. There have been extensive investigations towards isolating and understanding the nature of the active catalytic species generated from RuCl₂(diphosphine)(diamine) under the reaction conditions of added base in the presence of hydrogen gas. Our seminal papers (Abdur-Rashid, Faatz et al., 2001; Abdur-Rashid et al., 2002; Abbel et al., 2005) proved that the active catalysts are ruthenium dihydride compounds and demonstrated the role of the bifunctional cis-Ru-H···H-N motif to provide nascent, polarized dihydrogen ($H^{\delta+\dots}H^{\delta-}$) for the catalytic ionic hydrogenation of polar C=O and C=N bonds. Our research also resulted in the unprecedented isolation and characterization of stable hydridoamido intermediates and proved that these species are responsible for the rapid heterolytic activation and splitting of hydrogen gas (Abdur-Rashid, Faatz et al., 2001; Abdur-Rashid, et al., 2002). Recently Ohkuma and coworkers reported chlororuthenabicyclic compounds (Matsumura et al., 2011) which are derived from ruthenium complexes containing a chiral diphosphine and the chiral diamine ligand daipen. The work demonstrated that in the presence of base and hydrogen gas these ruthenabicyclic compounds are very useful for the hydrogenation of a wide variety of ketones and are capable of producing chiral alcohols with high enantioselectivities. The authors proposed a mechanism based on a hydridoruthenabicyclic catalytic species. However, their attempts to isolate and characterize this species were not successful. We previously reported the preparation and characterization of the *trans*-dihydride complex $RuH_2(R-binap)$ (R-daipen) (1) (Fig. 1), [R-Binap = (R)-bis(diphenylphosphanyl)-1,1-binaphthyl and R-Daipen = (R)-1,1-bis(4-methoxyphenyl)-3-methylbutane-1,2-diamine] and proved that this compound was an active base-free catalyst for the hydrogenation of ketones in the presence of hydrogen gas (Abdur-Rashid, Faatz et al., 2001).

The title compound (I) was readily obtained from (1) by the loss of hydrogen upon stirring a suspension of (1) in hexanes for 48 h at room temperature under an atmosphere of argon. It was demonstrated that the novel hydridoruthenabicyclic compound (I) is also a very effective base-free catalyst for the hydrogenation of ketones to alcohols. For example, a catalytic amount of (I) resulted in the complete conversion of neat acetophenone (S:C = 2000:1) to (S)-1-phenylethanol (92% e.e.) within 12 h at room temperature in the presence of hydrogen gas (3 atm.).

The molecular structure of complex (I) is shown in Fig. 2. The Ru^{II} ion is in a distorted octahedral coordination environment with the hydride H atom (H1RU) *trans* to the tertiary carbinamine nitrogen atom (N2) giving an H1RU— Ru1—N2 angle of 160.8 (12)°. The equatorial sites are occupied by two phosphorus atoms (P1 and P2), the secondary carbinamine nitrogen atom (N1) and a coordinated carbon atom (C11). The geometric parameters in (I) are comparable to related structures (Guo *et al.*, 2004; Li *et al.*, 2004).

S2. Experimental

A solution of K-Selectride (100 ml of a 1.0 *M* solution in THF) was added to a solution of RuHCl(*R*-binap)(*R*-daipen) (100 mg) in THF (5 ml) and the mixture stirred under hydrogen gas at room temperature for 2 h. The mixture was filtered and the filtrate evaporated to dryness to give the bright yellow dihydride compound $\text{RuH}_2(R\text{-binap})(R\text{-daipen})$ (1) [*R*-Binap = (*R*)-bis(diphenylphosphanyl)-1,1-binaphthyl and *R*-Daipen = (*R*)-1,1-Bis(4-methoxyphenyl)-3-methylbutane-1,2-diamine]. This was suspended in hexanes (5 ml) and the suspension stirred for 48 h at room temperature under argon. The solids were filtered and washed with hexanes (5 ml) and dried under vacuum to give 76 mg of the hydridoruthenabicyclic compound (I) as a bright yellow solid. X-ray diffraction quality single crystals were grown by the slow diffusion of hexanes into a solution of (I) in benzene.

S3. Refinement

Hydrogen atoms bonded to C atoms were placed in calculated positions with C—H = 0.95-1.00 Å and were included in the refinement in a riding-model approximation with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(C)$ for methyl C atoms. The hydride and amine H atoms were refined independently with isotropic displacement parameters. The benzene solvent molecule was fitted as a regular hexagon with C—C = 1.39 Å using the AFIX 66 command in *SHELXL* (Sheldrick, 2008).

Figure 1

The synthetic scheme

Figure 2

The molecular structure of (I). Displacement ellipsoids are at the 30% probability level. The benzene solvent molecule and H atoms bonded to C atoms are not shown.

[(R)-2,2-Bis(diphenylphosphanyl)-1,1'-binaphthyl- $\kappa^2 P, P'$]{2-[(2R)-1,2-diamino-1-(4-methoxyphenyl)- 3methylbutyl]-5-methoxyphenyl-*k*C¹}hydridoruthenium(II) benzene monosolvate

Crystal data	
$[\operatorname{Ru}(\operatorname{C}_{19}\operatorname{H}_{25}\operatorname{N}_{2}\operatorname{O}_{2})\operatorname{H}(\operatorname{C}_{44}\operatorname{H}_{32}\operatorname{P}_{2})]\cdot\operatorname{C}_{6}\operatorname{H}_{6}$ $M_{r} = 1116.23$ Monoclinic, C2 Hall symbol: C 2y a = 38.8848 (8) Å b = 13.5741 (3) Å c = 10.8871 (2) Å $\beta = 103.967$ (1)° V = 5576.6 (2) Å ³ Z = 4	F(000) = 2328 $D_x = 1.330 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 Å Cell parameters from 11534 reflections $\theta = 2.7-27.5^{\circ}$ $\mu = 0.39 \text{ mm}^{-1}$ T = 150 K Block, yellow $0.35 \times 0.32 \times 0.25 \text{ mm}$
Data collection	
Nonius KappaCCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 9 pixels mm ⁻¹ φ scans and ω scans with κ offsets Absorption correction: multi-scan (<i>SORTAV</i> ; Blessing, 1995) $T_{min} = 0.876, T_{max} = 0.909$	21246 measured reflections 11534 independent reflections 10079 reflections with $I > 2\sigma(I)$ $R_{int} = 0.051$ $\theta_{max} = 27.5^{\circ}, \theta_{min} = 2.7^{\circ}$ $h = -50 \rightarrow 50$ $k = -17 \rightarrow 17$ $l = -14 \rightarrow 14$

Refinement

Refinement on F^2	H atoms treated by a mixture of independent
Least-squares matrix: full	and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.039$	$w = 1/[\sigma^2(F_o^2) + (0.0286P)^2 + 2.2793P]$
$wR(F^2) = 0.089$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.04	$(\Delta/\sigma)_{\rm max} = 0.002$
11534 reflections	$\Delta ho_{ m max} = 0.54 \ { m e} \ { m \AA}^{-3}$
698 parameters	$\Delta ho_{ m min} = -0.54 \ m e \ m \AA^{-3}$
1 restraint	Extinction correction: SHELXTL (Sheldrick,
Primary atom site location: structure-invariant	2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
direct methods	Extinction coefficient: 0.00045 (11)
Secondary atom site location: difference Fourier map	Absolute structure: Flack (1983), 4924 Friedel pairs
Hydrogen site location: inferred from	Absolute structure parameter: -0.045 (19)
neighbouring sites	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Ru1	0.365924 (6)	0.782933 (18)	0.603130 (19)	0.02226 (7)	
H1RU	0.3380 (8)	0.809 (3)	0.685 (3)	0.029 (9)*	
P1	0.40933 (2)	0.81338 (6)	0.77366 (7)	0.02362 (18)	
P2	0.35821 (2)	0.94374 (6)	0.54146 (7)	0.02201 (17)	
01	0.33911 (8)	0.4662 (2)	0.8879 (2)	0.0368 (7)	
O2	0.44751 (7)	0.3603 (2)	0.1801 (2)	0.0398 (6)	
N1	0.32414 (7)	0.7297 (2)	0.4435 (3)	0.0275 (6)	
H1B	0.3095 (10)	0.778 (4)	0.392 (4)	0.056 (11)*	
H1C	0.3104 (12)	0.705 (3)	0.489 (4)	0.048 (13)*	
N2	0.39494 (7)	0.6998 (2)	0.4842 (3)	0.0247 (6)	
H2A	0.4178 (11)	0.684 (3)	0.534 (3)	0.039 (11)*	
H2B	0.3993 (9)	0.725 (3)	0.428 (3)	0.016 (9)*	
C1	0.33628 (8)	0.6555 (2)	0.3619 (3)	0.0254 (7)	
H1A	0.3421	0.6927	0.2903	0.031*	
C2	0.37185 (8)	0.6111 (2)	0.4411 (3)	0.0236 (6)	
C3	0.30748 (10)	0.5792 (3)	0.3020 (3)	0.0317 (8)	
H3A	0.3198	0.5172	0.2871	0.038*	
C4	0.28619 (11)	0.6170 (4)	0.1732 (4)	0.0482 (11)	
H4A	0.2681	0.5684	0.1354	0.072*	
H4B	0.3022	0.6272	0.1172	0.072*	
H4C	0.2747	0.6794	0.1848	0.072*	
C5	0.28160 (9)	0.5531 (3)	0.3852 (3)	0.0368 (8)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H5A	0.2951	0.5361	0.4707	0.055*
H5B	0.2669	0.4969	0.3481	0.055*
H5C	0.2664	0.6099	0.3894	0.055*
C6	0.36574 (8)	0.5661 (3)	0.5624 (3)	0.0260(7)
C7	0.36063 (8)	0.4660 (3)	0.5759 (3)	0.0279 (7)
H7A	0.3635	0.4223	0.5109	0.033*
C8	0.35141 (9)	0.4281 (3)	0.6828 (3)	0.0315 (7)
H8A	0.3475	0.3595	0.6909	0.038*
C9	0.34817 (9)	0.4944 (3)	0.7772 (3)	0.0294 (7)
C10	0.35333 (9)	0.5946 (2)	0.7629 (3)	0.0279 (7)
H10A	0.3507	0.6378	0.8288	0.033*
C11	0.36215 (8)	0.6352(2)	0.6568 (3)	0.0237 (6)
C12	0.33415 (11)	0.3639 (3)	0.9057 (4)	0.0443 (10)
H12A	0.3284	0.3535	0.9876	0.066*
H12B	0.3559	0.3282	0.9039	0.066*
H12C	0.3147	0.3394	0.8378	0.066*
C13	0.39027 (8)	0.5435 (2)	0.3657 (3)	0.0266 (7)
C14	0.38130 (9)	0.5383 (3)	0.2346 (3)	0.0315 (8)
H14A	0.3621	0.5770	0.1888	0.038*
C15	0.39949 (9)	0.4781 (3)	0.1678 (3)	0.0325 (8)
H15A	0.3926	0.4755	0.0780	0.039*
C16	0.42779 (9)	0.4219 (3)	0.2338 (3)	0.0320(7)
C17	0.43839 (9)	0.4296 (3)	0.3658 (3)	0.0320 (8)
H17A	0.4584	0.3936	0.4113	0.038*
C18	0.41996 (9)	0.4893 (3)	0.4300 (3)	0.0308 (7)
H18A	0.4275	0.4939	0.5196	0.037*
C19	0.43718 (12)	0.3472 (3)	0.0455 (4)	0.0470 (10)
H19A	0.4545	0.3050	0.0188	0.071*
H19B	0.4363	0.4114	0.0038	0.071*
H19C	0.4137	0.3163	0.0221	0.071*
C20	0.37929 (8)	1.0340 (2)	0.7784 (3)	0.0242 (6)
C21	0.35121 (8)	1.0207 (2)	0.6733 (3)	0.0249 (7)
C22	0.31719 (8)	1.0571 (3)	0.6782 (3)	0.0287 (7)
H22A	0.2982	1.0527	0.6048	0.034*
C23	0.31115 (9)	1.0981 (3)	0.7854 (3)	0.0328 (8)
H23A	0.2882	1.1226	0.7848	0.039*
C24	0.33835 (10)	1.1045 (3)	0.8968 (3)	0.0298 (8)
C25	0.33263 (10)	1.1434 (3)	1.0118 (3)	0.0346 (8)
H25A	0.3095	1.1645	1.0145	0.042*
C26	0.35911 (11)	1.1509 (3)	1.1161 (3)	0.0403 (9)
H26A	0.3548	1.1785	1.1912	0.048*
C27	0.39342 (11)	1.1178 (3)	1.1146 (3)	0.0414 (9)
H27A	0.4119	1.1215	1.1895	0.050*
C28	0.40020 (10)	1.0803 (3)	1.0063 (3)	0.0322 (8)
H28A	0.4235	1.0592	1.0065	0.039*
C29	0.37304 (9)	1.0725 (2)	0.8940 (3)	0.0270 (7)
C30	0.41747 (8)	1.0206 (2)	0.7768 (3)	0.0227 (6)
C31	0.43490 (8)	0.9308 (3)	0.7890 (3)	0.0250 (7)
	× /	× /	· · ·	

C32	0.47271 (9)	0.9318 (3)	0.8113 (3)	0.0300(7)
H32A	0.4853	0.8714	0.8274	0.036*
C33	0.49113 (9)	1.0167 (3)	0.8102 (3)	0.0306 (8)
H33A	0.5162	1.0143	0.8253	0.037*
C34	0.47370 (8)	1.1086 (3)	0.7871 (3)	0.0275 (7)
C35	0.49190 (9)	1.1972 (3)	0.7781 (3)	0.0342 (8)
H35A	0.5168	1.1957	0.7875	0.041*
C36	0.47426 (8)	1.2858 (4)	0.7560 (3)	0.0349(7)
H36A	0.4868	1.3447	0.7487	0.042*
C37	0.43762 (8)	1.2884 (3)	0.7444 (3)	0.0327 (7)
H37A	0.4254	1.3495	0.7301	0.039*
C38	0.41919 (9)	1.2040 (2)	0.7533 (3)	0.0272 (7)
H38A	0.3944	1.2077	0.7459	0.033*
C39	0.43620 (8)	1.1113 (2)	0.7731 (3)	0.0250(7)
C41	0.31730 (8)	0.9610(2)	0.4156 (3)	0.0256 (7)
C42	0.28469 (9)	0.9283 (3)	0.4369 (3)	0.0295 (7)
H42A	0.2840	0.9022	0.5172	0.035*
C43	0.25372 (9)	0.9338 (3)	0.3420 (3)	0.0384 (8)
H43A	0.2318	0.9140	0.3585	0.046*
C44	0.25466 (10)	0.9684 (3)	0.2222 (4)	0.0493 (11)
H44A	0.2335	0.9732	0.1572	0.059*
C45	0.28661 (11)	0.9954 (4)	0.1995 (4)	0.0485 (11)
H45A	0.2876	1.0158	0.1169	0.058*
C46	0.31755 (10)	0.9933 (3)	0.2953 (3)	0.0347 (9)
H46A	0.3392	1.0144	0.2779	0.042*
C51	0.39023 (8)	1.0214 (3)	0.4854 (3)	0.0270(7)
C52	0.42172 (9)	0.9793 (3)	0.4729 (3)	0.0354 (8)
H52A	0.4252	0.9102	0.4825	0.042*
C53	0.44850 (10)	1.0390 (4)	0.4461 (3)	0.0517 (12)
H53A	0.4700	1.0101	0.4371	0.062*
C54	0.44376 (12)	1.1387 (4)	0.4328 (4)	0.0570 (14)
H54A	0.4623	1.1787	0.4168	0.068*
C55	0.41235 (13)	1.1818 (3)	0.4424 (3)	0.0487 (11)
H55A	0.4089	1.2508	0.4311	0.058*
C56	0.38568 (10)	1.1226 (3)	0.4688 (3)	0.0348 (8)
H56A	0.3640	1.1520	0.4756	0.042*
C61	0.44425 (9)	0.7199 (3)	0.7828 (3)	0.0303 (7)
C62	0.46595 (9)	0.7245 (3)	0.6967 (3)	0.0332 (8)
H62A	0.4641	0.7800	0.6424	0.040*
C63	0.48997 (10)	0.6504 (3)	0.6887 (4)	0.0408 (9)
H63A	0.5047	0.6554	0.6308	0.049*
C64	0.49206 (12)	0.5694 (3)	0.7665 (5)	0.0534 (12)
H64A	0.5086	0.5185	0.7634	0.064*
C65	0.47035 (12)	0.5619(3)	0.8486 (4)	0.0543 (11)
H65A	0.4714	0.5046	0.8995	0.065*
C66	0.44688 (10)	0.6369 (3)	0.8581 (4)	0.0406 (9)
H66A	0.4325	0.6312	0.9170	0.049*
C71	0.40170 (9)	0.8134 (2)	0.9349 (3)	0.0298 (7)

070	0.2(759.(0)	0.0050 (2)	0.050((2))	0.0207 (7)
C72	0.36/58 (9)	0.8250 (3)	0.9506 (3)	0.0327(7)
H72A	0.3480	0.8238	0.8788	0.039*
C73	0.36170 (11)	0.8386 (3)	1.0712 (3)	0.0396 (9)
H73A	0.3382	0.8465	1.0806	0.048*
C74	0.38965 (12)	0.8404 (3)	1.1762 (3)	0.0429 (10)
H74A	0.3856	0.8518	1.2576	0.052*
C75	0.42389 (12)	0.8256 (3)	1.1626 (3)	0.0474 (10)
H75A	0.4431	0.8239	1.2354	0.057*
C76	0.43013 (10)	0.8134 (3)	1.0431 (3)	0.0386 (9)
H76A	0.4537	0.8049	1.0344	0.046*
C1S	0.23578 (10)	0.2324 (4)	0.2839 (5)	0.113 (3)
H1SA	0.2148	0.2043	0.2993	0.135*
C2S	0.23558 (14)	0.2706 (5)	0.1653 (4)	0.141 (4)
H2SA	0.2145	0.2686	0.0996	0.170*
C3S	0.2662 (2)	0.3117 (4)	0.1429 (4)	0.134 (4)
H3SA	0.2661	0.3378	0.0619	0.160*
C4S	0.29709 (15)	0.3146 (3)	0.2392 (7)	0.119 (3)
H4SA	0.3180	0.3427	0.2239	0.143*
C5S	0.29729 (9)	0.2764 (4)	0.3578 (5)	0.101 (2)
H5SA	0.3184	0.2784	0.4236	0.122*
C6S	0.26664 (14)	0.2353 (3)	0.3802 (4)	0.0886 (18)
H6SA	0.2668	0.2092	0.4613	0.106*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ru1	0.01979 (11)	0.02082 (11)	0.02517 (11)	-0.00075 (12)	0.00348 (8)	-0.00106 (12)
P1	0.0211 (4)	0.0227 (4)	0.0256 (4)	0.0000 (3)	0.0029 (3)	-0.0001 (3)
P2	0.0188 (4)	0.0225 (4)	0.0243 (4)	-0.0010 (3)	0.0042 (3)	-0.0011 (3)
O1	0.0467 (17)	0.0315 (16)	0.0327 (14)	-0.0044 (13)	0.0104 (12)	0.0072 (12)
O2	0.0353 (14)	0.0433 (15)	0.0419 (14)	0.0072 (12)	0.0116 (12)	-0.0109 (11)
N1	0.0214 (14)	0.0269 (16)	0.0313 (14)	0.0012 (12)	0.0005 (12)	-0.0045 (12)
N2	0.0241 (15)	0.0223 (15)	0.0274 (14)	-0.0010 (12)	0.0057 (12)	0.0008 (12)
C1	0.0222 (15)	0.0253 (17)	0.0267 (15)	0.0007 (13)	0.0018 (12)	-0.0021 (13)
C2	0.0245 (16)	0.0203 (16)	0.0246 (15)	-0.0034 (13)	0.0029 (12)	-0.0023 (12)
C3	0.0270 (19)	0.0313 (19)	0.0344 (18)	-0.0028 (16)	0.0027 (14)	-0.0073 (15)
C4	0.034 (2)	0.072 (3)	0.034 (2)	-0.008(2)	-0.0001 (16)	-0.008 (2)
C5	0.0269 (18)	0.038 (2)	0.0444 (19)	-0.0074 (16)	0.0065 (15)	-0.0074 (16)
C6	0.0210 (16)	0.0236 (17)	0.0317 (16)	-0.0005 (14)	0.0028 (13)	0.0007 (14)
C7	0.0231 (16)	0.0248 (17)	0.0351 (17)	0.0013 (14)	0.0060 (13)	-0.0031 (14)
C8	0.0289 (18)	0.0214 (17)	0.0419 (18)	-0.0012 (14)	0.0039 (14)	0.0054 (15)
C9	0.0239 (17)	0.0295 (18)	0.0330 (17)	0.0019 (14)	0.0031 (13)	0.0090 (14)
C10	0.0274 (17)	0.0253 (18)	0.0288 (16)	-0.0030 (14)	0.0029 (13)	0.0022 (13)
C11	0.0204 (15)	0.0226 (16)	0.0269 (15)	-0.0017 (13)	0.0031 (12)	0.0026 (13)
C12	0.049 (2)	0.034 (2)	0.052 (2)	-0.0016 (19)	0.017 (2)	0.0153 (18)
C13	0.0233 (16)	0.0259 (17)	0.0305 (16)	0.0002 (14)	0.0059 (12)	-0.0012 (13)
C14	0.0284 (18)	0.036 (2)	0.0293 (16)	0.0030 (15)	0.0051 (13)	-0.0003 (15)
C15	0.0311 (19)	0.034 (2)	0.0316 (18)	-0.0008 (16)	0.0060 (15)	-0.0009 (15)

C16	0.0301 (18)	0.0269 (18)	0.0417 (18)	-0.0060 (15)	0.0137 (15)	-0.0072 (15)
C17	0.0264 (18)	0.033 (2)	0.0357 (18)	0.0039 (16)	0.0048 (14)	0.0006 (16)
C18	0.0291 (18)	0.0301 (18)	0.0307 (17)	0.0012 (15)	0.0025 (14)	-0.0027 (14)
C19	0.052 (2)	0.050 (3)	0.043 (2)	0.008 (2)	0.0173 (19)	-0.0104 (19)
C20	0.0245 (16)	0.0206 (16)	0.0281 (15)	0.0001 (13)	0.0077 (12)	-0.0001 (13)
C21	0.0231 (16)	0.0236 (17)	0.0284 (15)	0.0008 (14)	0.0067 (12)	0.0020 (13)
C22	0.0197 (16)	0.0310 (19)	0.0350 (17)	0.0024 (14)	0.0057 (13)	-0.0044 (14)
C23	0.0244 (17)	0.034 (2)	0.0435 (19)	0.0001 (15)	0.0141 (15)	-0.0099(16)
C24	0.033(2)	0.026(2)	0.0345 (19)	-0.0032(16)	0.0158 (16)	-0.0049(15)
C25	0.038(2)	0.030(2)	0.042 (2)	0.0004 (16)	0.0214 (16)	-0.0015(16)
C26	0.063(3)	0.032(2)	0.0300(18)	0.0003 (18)	0.0198(17)	-0.0032(15)
C27	0.051(2)	0.022(2) 0.043(2)	0.0293(18)	0.001(2)	0.0080(17)	-0.0016(17)
C28	0.0345(19)	0.0322(19)	0.0293(10) 0.0303(16)	0.001(2)	0.00000(17) 0.0082(14)	-0.0018(14)
C29	0.0319(19) 0.0328(18)	0.0322(19) 0.0225(16)	0.0303(10) 0.0274(15)	-0.0036(14)	0.0002(11) 0.0102(13)	0.0001 (13)
C30	0.0220(10) 0.0215(15)	0.0229(16)	0.0271(10) 0.0223(14)	-0.0029(13)	0.0102(13) 0.0047(11)	-0.0049(12)
C31	0.0213(15) 0.0231(16)	0.0259(10) 0.0268(18)	0.0229(11) 0.0250(15)	-0.0019(14)	0.0017(11) 0.0055(12)	0.0019(12)
C32	0.0231(10) 0.0231(16)	0.0200(10) 0.0271(18)	0.0230(13) 0.0384(17)	0.0019(14)	0.0055(12) 0.0046(13)	-0.0014(13)
C33	0.0231(10) 0.0170(16)	0.0271(10) 0.0304(19)	0.0304(17) 0.0440(19)	-0.0010(14)	0.0046 (13)	-0.0070(14)
C34	0.0170(10) 0.0240(16)	0.0304(19) 0.0285(18)	0.0309(16)	-0.0010(14)	0.0000(14) 0.0081(13)	-0.0062(13)
C35	0.0240(10) 0.0257(17)	0.0205(10)	0.0309(10) 0.0443(19)	-0.0037(14)	0.0001(15) 0.0114(15)	-0.0054(15)
C36	0.0257(17) 0.0359(16)	0.034(2) 0.0251(15)	0.0445(19) 0.0465(16)	-0.0078(13)	0.0114(13) 0.0157(13)	-0.003(2)
C37	0.0356(16)	0.0231(13) 0.0276(17)	0.0405(10) 0.0356(14)	0.000(2)	0.0197(13) 0.0096(12)	-0.003(2)
C38	0.0350(10) 0.0261(17)	0.0270(17) 0.0268(18)	0.0330(14) 0.0278(15)	-0.001(2)	0.0090(12) 0.0050(13)	-0.0017(13)
C39	0.0201(17) 0.0247(16)	0.0260(10) 0.0262(17)	0.0241(15)	-0.0022(14)	0.0050(13) 0.0061(12)	-0.0022(13)
C41	0.0247(10) 0.0217(16)	0.0202(17) 0.0221(16)	0.0241(15) 0.0323(16)	-0.0023(13)	0.0001(12) 0.0053(13)	-0.0041(13)
C42	0.0217(10) 0.0265(17)	0.0221(10) 0.0284(18)	0.0319(16)	-0.0023(15)	0.0035(13) 0.0036(13)	-0.0019(14)
C43	0.0205(17) 0.0257(18)	0.0204(10)	0.0317(10)	0.0002(13)	0.0030(15) 0.0025(15)	0.0019(14)
C44	0.0237(10)	0.040(2) 0.063(3)	0.040(2) 0.044(2)	-0.010(2)	-0.0103(16)	0.0000(17)
C45	0.031(2) 0.038(2)	0.003(3)	0.044(2) 0.033(2)	-0.013(2)	-0.0042(16)	0.009(2)
C46	0.030(2) 0.0270(19)	0.000(3)	0.033(2)	-0.0062(17)	0.00012(10)	0.011(2)
C51	0.0270(19) 0.0241(16)	0.013(2) 0.0345(19)	0.0216(10)	-0.0043(15)	0.0020(13) 0.0018(12)	-0.0013(13)
C52	0.0211(10) 0.0264(18)	0.053(2)	0.0260(11) 0.0267(16)	-0.0031(16)	0.0010(12) 0.0074(13)	-0.0035(15)
C53	0.0201(10)	0.093(2) 0.097(4)	0.0207(10) 0.0314(19)	-0.015(2)	0.0071(15) 0.0104(15)	-0.008(2)
C54	0.029(2) 0.050(3)	0.097(1)	0.031(2)	-0.050(3)	0.0101(19) 0.0090(18)	-0.005(2)
C55	0.030(3) 0.071(3)	0.090(1)	0.031(2) 0.0299(18)	-0.032(2)	0.0000(10) 0.0137(18)	-0.000(2)
C56	0.071(3) 0.043(2)	0.036(2)	0.0255(16)	-0.0092(18)	0.0137(10) 0.0075(15)	-0.0007(17)
C61	0.013(2) 0.0243(17)	0.030(2) 0.0277(18)	0.0237(10) 0.0347(17)	0.0092(10)	-0.0011(13)	-0.0042(14)
C62	0.0243(17) 0.0271(18)	0.0277(10)	0.0347(17) 0.0359(18)	0.0000(14) 0.0049(15)	0.0011(13)	-0.0093(15)
C63	0.0271(18) 0.0277(18)	0.035(2) 0.037(2)	0.0557(10)	0.0049(15) 0.0038(16)	0.0010(14) 0.0061(16)	-0.0146(18)
C64	0.0277(10) 0.034(2)	0.037(2) 0.041(3)	0.030(2) 0.083(3)	0.0030(10)	0.0001(10)	-0.007(2)
C65	0.037(2) 0.047(3)	0.033(2)	0.009(3)	0.000(2)	0.009(2) 0.007(2)	0.007(2)
C66	0.033(2)	0.033(2)	0.079(3)	-0.0013(17)	0.007(2) 0.0036(17)	0.011(2) 0.0073(18)
C71	0.035(2) 0.0344(17)	0.032(2) 0.0259(18)	0.037(2)	-0.0046(14)	0.0050(17) 0.0053(13)	0.0073(10) 0.0002(12)
C72	0.0350(19)	0.0342(18)	0.0291 (16)	-0.0041(15)	0.0000(10)	-0.0002(12)
C73	0.042(2)	0.044(2)	0.0365(18)	-0.0026(18)	0.0168 (16)	-0.0014(17)
C74	0.063(3)	0.041(2)	0.0257(18)	-0.0020(10)	0.0133(17)	0.0020(16)
C75	0.057(3)	0.053(2)	0.0252(17)	-0.008(2)	-0.0026(16)	0.0030(10)
C76	0.0342 (18)	0.046 (2)	0.0329 (16)	-0.0025(16)	0.0026 (14)	0.0028 (15)
	······································	··· · · · · · · · · · · · · · · · · ·	···· — · · · · · · · · · · · · · · · ·	······································	· · · · = · · · · /	······································

supporting information

C1S	0.059 (4)	0.151 (7)	0.138 (6)	-0.013 (4)	0.044 (4)	-0.062 (5)
C2S	0.104 (6)	0.227 (11)	0.082 (4)	0.089 (7)	0.000 (4)	-0.020 (6)
C3S	0.199 (9)	0.117 (8)	0.111 (6)	0.067 (7)	0.090 (7)	0.006 (5)
C4S	0.128 (7)	0.055 (4)	0.215 (9)	-0.013 (4)	0.120 (7)	-0.041 (5)
C5S	0.063 (3)	0.070 (4)	0.158 (6)	0.010 (4)	0.000 (4)	-0.055 (5)
C6S	0.110 (5)	0.067 (4)	0.088 (4)	0.010 (4)	0.024 (4)	0.005 (3)

Geometric parameters (Å, °)

Ru1—H1RU	1.60 (3)	С27—Н27А	0.9500
Ru1—C11	2.104 (3)	C28—C29	1.413 (5)
Ru1—N1	2.195 (3)	C28—H28A	0.9500
Ru1—N2	2.219 (3)	C30—C31	1.386 (5)
Ru1—P1	2.2258 (8)	C30—C39	1.435 (5)
Ru1—P2	2.2821 (9)	C31—C32	1.431 (4)
P1—C61	1.843 (3)	C32—C33	1.358 (5)
P1—C71	1.849 (3)	С32—Н32А	0.9500
P1—C31	1.864 (3)	C33—C34	1.412 (5)
P2—C51	1.845 (3)	С33—Н33А	0.9500
P2—C41	1.847 (3)	C34—C35	1.411 (5)
P2—C21	1.848 (3)	C34—C39	1.430 (4)
O1—C9	1.388 (4)	C35—C36	1.377 (6)
O1—C12	1.422 (5)	С35—Н35А	0.9500
O2—C16	1.358 (4)	C36—C37	1.400 (4)
O2—C19	1.433 (4)	С36—Н36А	0.9500
N1—H1C	0.88 (4)	C37—C38	1.367 (5)
N1—H1B	0.96 (5)	С37—Н37А	0.9500
N1—C1	1.493 (4)	C38—C39	1.414 (5)
N2—H2B	0.76 (3)	C38—H38A	0.9500
N2—H2A	0.95 (4)	C41—C46	1.384 (5)
N2—C2	1.508 (4)	C41—C42	1.414 (5)
C1—C3	1.550 (5)	C42—C43	1.387 (5)
C1—C2	1.564 (4)	C42—H42A	0.9500
C1—H1A	1.0000	C43—C44	1.394 (5)
C2—C13	1.521 (4)	C43—H43A	0.9500
C2—C6	1.525 (4)	C44—C45	1.374 (6)
C3—C4	1.534 (5)	C44—H44A	0.9500
C3—C5	1.548 (5)	C45—C46	1.389 (5)
С3—НЗА	1.0000	C45—H45A	0.9500
C4—H4A	0.9800	C46—H46A	0.9500
C4—H4B	0.9800	C51—C52	1.387 (5)
C4—H4C	0.9800	C51—C56	1.391 (5)
C5—H5A	0.9800	C52—C53	1.405 (6)
С5—Н5В	0.9800	С52—Н52А	0.9500
С5—Н5С	0.9800	C53—C54	1.369 (7)
C6—C7	1.386 (5)	С53—Н53А	0.9500
C6—C11	1.423 (5)	C54—C55	1.380 (7)
C7—C8	1.397 (5)	C54—H54A	0.9500

С7—Н7А	0.9500	C55—C56	1.396 (5)
C8—C9	1.395 (5)	С55—Н55А	0.9500
C8—H8A	0.9500	С56—Н56А	0.9500
C9—C10	1.390 (5)	C61—C66	1.382 (5)
C10—C11	1.395 (4)	C61—C62	1.406 (5)
C10—H10A	0.9500	C62—C63	1.390 (5)
C12—H12A	0.9800	С62—Н62А	0.9500
C12—H12B	0.9800	C63—C64	1.378 (6)
C12—H12C	0.9800	С63—Н63А	0.9500
C13—C14	1.387 (4)	C64—C65	1.373 (6)
C13—C18	1.405 (5)	C64—H64A	0.9500
C14—C15	1.395 (5)	C65—C66	1.388 (6)
C14—H14A	0.9500	С65—Н65А	0.9500
C15—C16	1.388 (5)	С66—Н66А	0.9500
С15—Н15А	0.9500	C71—C72	1.387 (5)
C16—C17	1.399 (5)	C71—C76	1.408 (5)
C17—C18	1.379 (5)	C72—C73	1.398 (5)
С17—Н17А	0.9500	C72—H72A	0.9500
C18—H18A	0.9500	C73—C74	1.374 (5)
C19—H19A	0.9800	C73—H73A	0.9500
C19—H19B	0.9800	C74—C75	1.389 (6)
C19—H19C	0.9800	C74—H74A	0.9500
C20—C21	1.389 (4)	C75—C76	1.390 (5)
C_{20} C_{29}	1.437 (4)	C75—H75A	0.9500
C20—C30	1.500 (4)	C76—H76A	0.9500
C21—C22	1.425 (4)	C1S-C2S	1.3900
C22—C23	1.363 (4)	C1S—C6S	1.3900
C22—H22A	0.9500	C1S—H1SA	0.9500
C23—C24	1.407 (5)	C2S-C3S	1.3900
C23—H23A	0.9500	C2S—H2SA	0.9500
C24—C25	1.424 (5)	C3S—C4S	1.3900
C24—C29	1.424 (5)	C3S—H3SA	0.9500
C25—C26	1.340 (5)	C4S—C5S	1.3900
C25—H25A	0.9500	C4S—H4SA	0.9500
C26—C27	1.412 (6)	C5S—C6S	1.3900
C26—H26A	0.9500	C5S—H5SA	0.9500
C27—C28	1.367 (5)	C6S—H6SA	0.9500
H1RU—Ru1—C11	87.1 (12)	C26—C25—H25A	119.3
H1RU—Ru1—N1	92.4 (11)	C24—C25—H25A	119.3
C11—Ru1—N1	79.53 (12)	C25—C26—C27	120.0 (3)
H1RU—Ru1—N2	160.8 (12)	C25—C26—H26A	120.0
C11—Ru1—N2	75.93 (12)	C27—C26—H26A	120.0
N1—Ru1—N2	75.76 (10)	C28—C27—C26	120.5 (3)
H1RU—Ru1—P1	88.4 (11)	C28—C27—H27A	119.7
C11—Ru1—P1	92.01 (8)	C26—C27—H27A	119.7
N1—Ru1—P1	171.43 (9)	C27-C28-C29	121.0 (3)
N2—Ru1—P1	101.01 (8)	C27—C28—H28A	119.5

H1RU—Ru1—P2	84.1 (12)	C29—C28—H28A	119.5
C11—Ru1—P2	168.64 (8)	C28—C29—C24	118.2 (3)
N1—Ru1—P2	93.57 (9)	C28—C29—C20	122.4 (3)
N2—Ru1—P2	111.33 (8)	C24—C29—C20	119.4 (3)
P1—Ru1—P2	95.00 (3)	C31—C30—C39	121.2 (3)
C61—P1—C71	103.52 (15)	C31—C30—C20	124.6 (3)
C61—P1—C31	102.32 (16)	C39—C30—C20	114.0 (3)
C71—P1—C31	96.82 (14)	C30—C31—C32	117.8 (3)
C61—P1—Ru1	108.53 (11)	C30—C31—P1	120.4 (2)
C71—P1—Ru1	121.91 (11)	C32—C31—P1	121.9 (3)
C31—P1—Ru1	120.94 (10)	C33—C32—C31	122.0 (3)
C51—P2—C41	102.20 (14)	С33—С32—Н32А	119.0
C51 - P2 - C21	99.88 (15)	C31—C32—H32A	119.0
C41 - P2 - C21	104.05 (14)	C32—C33—C34	121.3 (3)
C51— $P2$ — $Ru1$	126.36 (12)	С32—С33—Н33А	119.4
C41 - P2 - Ru1	111 59 (11)	C34—C33—H33A	119.4
C_{21} P_{2} R_{11}	110.25 (10)	C_{35} C_{34} C_{33}	122 5 (3)
$C_{2} = 01 - C_{12}$	117 3 (3)	$C_{35} = C_{34} = C_{39}$	122.3(3) 1191(3)
$C_{16} = 0^{2} = C_{19}$	117.5(3)	C_{33} C_{34} C_{39}	119.1(3) 118.3(3)
HIC-NI-HIB	104 (4)	$C_{36} = C_{35} = C_{34}$	1213(3)
HIC—NI—CI	114(3)	C36—C35—H35A	1193
HIB-N1-C1	110(3)	C_{34} C_{35} H_{35A}	119.3
H1C - N1 - Ru1	97 (3)	$C_{35} - C_{36} - C_{37}$	119.4 (4)
H1B $N1$ $Ru1$	117 (3)	C35—C36—H36A	120.3
C1-N1-Ru1	114 41 (19)	C37—C36—H36A	120.3
H2B—N2—H2A	102 (3)	$C_{38} = C_{37} = C_{36}$	120.8(4)
H2B N2 C2	102(3)	$C_{38} = C_{37} = H_{37A}$	119.6
$H_2A = N_2 = C_2$	113(2)	C36—C37—H37A	119.6
H2B $N2$ $Bu1$	119 (3)	$C_{37} - C_{38} - C_{39}$	121.5(3)
H2A— $N2$ — $Ru1$	109 (2)	C37—C38—H38A	119.2
$C_2 = N_2 = R_{11}$	103 85 (19)	C39—C38—H38A	119.2
N1-C1-C3	113.6 (3)	C38—C39—C34	117.8 (3)
N1-C1-C2	107.3 (2)	C_{38} C_{39} C_{30}	123.1(3)
$C_3 - C_1 - C_2$	115.3 (3)	C_{34} C_{39} C_{30}	119.1 (3)
N1—C1—H1A	106.7	C46-C41-C42	117.8 (3)
C3—C1—H1A	106.7	C46—C41—P2	122.8 (2)
C2-C1-H1A	106.7	C42-C41-P2	119.0(2)
N2-C2-C13	109.1 (3)	C43 - C42 - C41	120.9(3)
N2-C2-C6	104.8 (2)	C43—C42—H42A	119.6
C13—C2—C6	114.7 (3)	C41—C42—H42A	119.6
N2—C2—C1	104.1 (3)	C42—C43—C44	120.0 (3)
$C_{13} - C_{2} - C_{1}$	113.8 (2)	C42—C43—H43A	120.0
C6-C2-C1	109.3 (3)	C44—C43—H43A	120.0
C4—C3—C5	109.1 (3)	C45—C44—C43	119.2 (3)
C4—C3—C1	109.7 (3)	C45—C44—H44A	120.4
C5—C3—C1	114.4 (3)	C43—C44—H44A	120.4
С4—С3—Н3А	107.8	C44—C45—C46	121.1 (4)
С5—С3—НЗА	107.8	C44—C45—H45A	119.5

С1—С3—НЗА	107.8	C46—C45—H45A	119.5
C3—C4—H4A	109.5	C41—C46—C45	121.0 (3)
C3—C4—H4B	109.5	C41—C46—H46A	119.5
H4A—C4—H4B	109.5	C45—C46—H46A	119.5
C3—C4—H4C	109.5	C52—C51—C56	118.8 (3)
H4A—C4—H4C	109.5	C52—C51—P2	118.6 (3)
H4B—C4—H4C	109.5	C56—C51—P2	122.2 (3)
С3—С5—Н5А	109.5	C51—C52—C53	119.9 (4)
C3—C5—H5B	109.5	С51—С52—Н52А	120.1
H5A—C5—H5B	109.5	С53—С52—Н52А	120.1
C3—C5—H5C	109.5	C54—C53—C52	120.3 (4)
H5A—C5—H5C	109.5	C54—C53—H53A	119.8
H5B—C5—H5C	109.5	C52—C53—H53A	119.8
C7—C6—C11	121.9 (3)	C53—C54—C55	120.7 (4)
C7—C6—C2	122.7(3)	C53—C54—H54A	119.7
$C_{11} - C_{6} - C_{2}^{2}$	1151(3)	C55-C54-H54A	119.7
C6-C7-C8	121.5(3)	$C_{54} - C_{55} - C_{56}$	119.1 (4)
С6—С7—Н7А	1193	C54—C55—H55A	120.4
C8—C7—H7A	119.3	C56-C55-H55A	120.1
C9 - C8 - C7	117.6 (3)	$C_{51} - C_{56} - C_{55}$	120.1 121.2(4)
C9—C8—H8A	121.2	C51—C56—H56A	119.4
C7 - C8 - H8A	121.2	C55-C56-H56A	119.1
01 - C9 - C10	116.2 (3)	C_{66} C_{61} C_{62}	117.4(3)
01 - C9 - C8	123 3 (3)	$C_{66} - C_{61} - P_{1}$	122.8(3)
C10-C9-C8	129.5(3) 120.6(3)	C62-C61-P1	122.0(3) 1191(3)
C9-C10-C11	123.4(3)	C_{63} C_{62} C_{61} C_{61}	122.0(4)
C9-C10-H10A	118.3	C_{63} C_{62} C_{62} C_{63} C	119.0
C_{11} C_{10} H_{10A}	118.3	C61 - C62 - H62A	119.0
C10-C11-C6	115.2 (3)	C64 - C63 - C62	119.0 118 7 (4)
C10-C11-Bu1	130.8(2)	C64 - C63 - H63 A	120.7
C6-C11-Ru1	130.0(2) 113.7(2)	C62 - C63 - H63A	120.7
O1 - C12 - H12A	109.5	C_{65} C_{64} C_{63}	120.7 120.3(4)
01 - C12 - H12R	109.5	C65 - C64 - H64A	119.8
$H_{12} = C_{12} = H_{12} = H_{12}$	109.5	C63 - C64 - H64A	119.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5	C64 $C65$ $C66$	119.8 120.8(4)
$H_{12} - C_{12} - H_{12} C_{12}$	109.5	C64 - C65 - H65A	120.8 (4)
$H_{12R} = C_{12} = H_{12C}$	109.5	C66 C65 H65A	119.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107.3 117.3(3)	C_{61} C_{66} C_{65}	119.0 120.7(4)
$C_{14} = C_{13} = C_{18}$	117.3(3)	$C_{01} = C_{00} = C_{03}$	120.7 (4)
C14 - C13 - C2	123.3(3) 1100(3)	C65 C66 H66A	119.7
$C_{10} = C_{13} = C_2$	119.0(3) 122.2(3)	$C_{00} = C_{00} = 100 \text{Å}$	119.7 118.6(3)
$C_{13} = C_{14} = C_{13}$	122.2 (3)	$C_{12} = C_{11} = C_{10}$	110.0(3)
C15 C14 H14A	118.9	$C_{12} - C_{11} - \Gamma_{11}$	119.0(2) 121.4(3)
$C_{15} - C_{14} - M_{4X}$	110.3	C71 C72 C73	121.4(3)
$C_{10} = C_{13} = C_{14}$	119.5 (3)	$C_{11} - C_{12} - C_{13}$ $C_{71} - C_{72} - H_{72}$	120.0 (3)
C14 $C15$ $H15A$	120.3	$C_{11} - C_{12} - H_{12} A$	119.7
02 - C16 - C15	120.3 125.0 (3)	$C_{73} - C_{72} - C_{72}$	119.7 120 5 (A)
02 - 010 - 013	123.0(3)	C_{14} C_{13} C_{12} C_{14} C_{13} C_{12} A	120.3 (4)
02 - 010 - 017	113.0(3)	U/7-U/J-11/JA	117./

C15—C16—C17	119.4 (3)	С72—С73—Н73А	119.7
C18—C17—C16	120.3 (3)	C73—C74—C75	119.7 (3)
C18—C17—H17A	119.9	С73—С74—Н74А	120.2
C16—C17—H17A	119.9	С75—С74—Н74А	120.2
C17—C18—C13	121.3 (3)	C74—C75—C76	120.3 (3)
C17—C18—H18A	119.3	С74—С75—Н75А	119.8
C13—C18—H18A	119.3	С76—С75—Н75А	119.8
O2—C19—H19A	109.5	C75—C76—C71	120.3 (3)
O2—C19—H19B	109.5	С75—С76—Н76А	119.9
H19A—C19—H19B	109.5	С71—С76—Н76А	119.9
O2—C19—H19C	109.5	C2S-C1S-C6S	120.0
H19A—C19—H19C	109.5	C2S-C1S-H1SA	120.0
H19B—C19—H19C	109.5	C6S—C1S—H1SA	120.0
C21—C20—C29	120.2 (3)	C1S—C2S—C3S	120.0
C21—C20—C30	123.9 (3)	C1S—C2S—H2SA	120.0
C29—C20—C30	115.6 (3)	C3S—C2S—H2SA	120.0
C20—C21—C22	118.4 (3)	C4S—C3S—C2S	120.0
C20—C21—P2	118.6 (2)	C4S—C3S—H3SA	120.0
C22—C21—P2	122.5 (2)	C2S—C3S—H3SA	120.0
C23—C22—C21	121.8 (3)	C3S—C4S—C5S	120.0
C23—C22—H22A	119.1	C3S—C4S—H4SA	120.0
C21—C22—H22A	119.1	C5S—C4S—H4SA	120.0
C22—C23—C24	121.0 (3)	C6S—C5S—C4S	120.0
С22—С23—Н23А	119.5	C6S—C5S—H5SA	120.0
С24—С23—Н23А	119.5	C4S—C5S—H5SA	120.0
C23—C24—C25	122.4 (3)	C5S—C6S—C1S	120.0
C23—C24—C29	118.8 (3)	C5S—C6S—H6SA	120.0
C25—C24—C29	118.8 (3)	C1S—C6S—H6SA	120.0
C26—C25—C24	121.5 (3)		